Brain Functional Networks Based on Resting-State EEG Data for Major Depressive Disorder Analysis and Classification

If the brain is regarded as a system, it will be one of the most complex systems in the universe. Traditional analysis and classification methods of major depressive disorder (MDD) based on electroencephalography (EEG) feature-levels often regard electrode as isolated node and ignore the correlation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on neural systems and rehabilitation engineering Ročník 29; s. 215 - 229
Hlavní autoři: Zhang, Bingtao, Yan, Guanghui, Yang, Zhifei, Su, Yun, Wang, Jinfeng, Lei, Tao
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1534-4320, 1558-0210, 1558-0210
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract If the brain is regarded as a system, it will be one of the most complex systems in the universe. Traditional analysis and classification methods of major depressive disorder (MDD) based on electroencephalography (EEG) feature-levels often regard electrode as isolated node and ignore the correlation between them, so it's difficult to find alters of abnormal topological architecture in brain. To solve this problem, we propose a brain functional network framework for MDD of analysis and classification based on resting state EEG. The phase lag index (PLI) was calculated based on the 64-channel resting state EEG to construct the function connection matrix to reduce and avoid the volume conductor effect. Then binarization of brain function network based on small world index was realized. Statistical analyses were performed on different EEG frequency band and different brain regions. The results showed that significant alterations of brain synchronization occurred in frontal, temporal, parietal-occipital regions of left brain and temporal region of right brain. And average shortest path length and clustering coefficient in left central region of theta band and node betweenness centrality in right parietal-occipital region were significantly correlated with PHQ-9 score of MDD, which indicates these three network metrics may be served as potential biomarkers to effectively distinguish MDD from controls and the highest classification accuracy can reach 93.31%. Our findings also point out that the brain function network of MDD patients shows a random trend, and small world characteristics appears to weaken.
AbstractList If the brain is regarded as a system, it will be one of the most complex systems in the universe. Traditional analysis and classification methods of major depressive disorder (MDD) based on electroencephalography (EEG) feature-levels often regard electrode as isolated node and ignore the correlation between them, so it's difficult to find alters of abnormal topological architecture in brain. To solve this problem, we propose a brain functional network framework for MDD of analysis and classification based on resting state EEG. The phase lag index (PLI) was calculated based on the 64-channel resting state EEG to construct the function connection matrix to reduce and avoid the volume conductor effect. Then binarization of brain function network based on small world index was realized. Statistical analyses were performed on different EEG frequency band and different brain regions. The results showed that significant alterations of brain synchronization occurred in frontal, temporal, parietal-occipital regions of left brain and temporal region of right brain. And average shortest path length and clustering coefficient in left central region of theta band and node betweenness centrality in right parietal-occipital region were significantly correlated with PHQ-9 score of MDD, which indicates these three network metrics may be served as potential biomarkers to effectively distinguish MDD from controls and the highest classification accuracy can reach 93.31%. Our findings also point out that the brain function network of MDD patients shows a random trend, and small world characteristics appears to weaken.
If the brain is regarded as a system, it will be one of the most complex systems in the universe. Traditional analysis and classification methods of major depressive disorder (MDD) based on electroencephalography (EEG) feature-levels often regard electrode as isolated node and ignore the correlation between them, so it's difficult to find alters of abnormal topological architecture in brain. To solve this problem, we propose a brain functional network framework for MDD of analysis and classification based on resting state EEG. The phase lag index (PLI) was calculated based on the 64-channel resting state EEG to construct the function connection matrix to reduce and avoid the volume conductor effect. Then binarization of brain function network based on small world index was realized. Statistical analyses were performed on different EEG frequency band and different brain regions. The results showed that significant alterations of brain synchronization occurred in frontal, temporal, parietal-occipital regions of left brain and temporal region of right brain. And average shortest path length and clustering coefficient in left central region of theta band and node betweenness centrality in right parietal-occipital region were significantly correlated with PHQ-9 score of MDD, which indicates these three network metrics may be served as potential biomarkers to effectively distinguish MDD from controls and the highest classification accuracy can reach 93.31%. Our findings also point out that the brain function network of MDD patients shows a random trend, and small world characteristics appears to weaken.If the brain is regarded as a system, it will be one of the most complex systems in the universe. Traditional analysis and classification methods of major depressive disorder (MDD) based on electroencephalography (EEG) feature-levels often regard electrode as isolated node and ignore the correlation between them, so it's difficult to find alters of abnormal topological architecture in brain. To solve this problem, we propose a brain functional network framework for MDD of analysis and classification based on resting state EEG. The phase lag index (PLI) was calculated based on the 64-channel resting state EEG to construct the function connection matrix to reduce and avoid the volume conductor effect. Then binarization of brain function network based on small world index was realized. Statistical analyses were performed on different EEG frequency band and different brain regions. The results showed that significant alterations of brain synchronization occurred in frontal, temporal, parietal-occipital regions of left brain and temporal region of right brain. And average shortest path length and clustering coefficient in left central region of theta band and node betweenness centrality in right parietal-occipital region were significantly correlated with PHQ-9 score of MDD, which indicates these three network metrics may be served as potential biomarkers to effectively distinguish MDD from controls and the highest classification accuracy can reach 93.31%. Our findings also point out that the brain function network of MDD patients shows a random trend, and small world characteristics appears to weaken.
Author Wang, Jinfeng
Zhang, Bingtao
Lei, Tao
Yan, Guanghui
Su, Yun
Yang, Zhifei
Author_xml – sequence: 1
  givenname: Bingtao
  orcidid: 0000-0003-3643-3580
  surname: Zhang
  fullname: Zhang, Bingtao
  email: zhangbingtao321@163.com
  organization: School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou, China
– sequence: 2
  givenname: Guanghui
  surname: Yan
  fullname: Yan, Guanghui
  organization: School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou, China
– sequence: 3
  givenname: Zhifei
  surname: Yang
  fullname: Yang, Zhifei
  organization: School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou, China
– sequence: 4
  givenname: Yun
  surname: Su
  fullname: Su, Yun
  organization: School of Information Science and Engineering, Lanzhou University, Lanzhou, China
– sequence: 5
  givenname: Jinfeng
  surname: Wang
  fullname: Wang, Jinfeng
  organization: Sleep Medicine Center of Gansu Province, Gansu Provincial People's Hospital, Lanzhou, China
– sequence: 6
  givenname: Tao
  orcidid: 0000-0002-2104-9298
  surname: Lei
  fullname: Lei, Tao
  organization: School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33296307$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS3Uij7gD4CELLFhM8HPGXvZJmmp1BapLeuR47mDHCZ2sD2g_ns8Teiii25s6_o79-qec4IOfPCA0AdKZpQS_fXh9v5uOWOEkRknggtWv0HHVEpVEUbJwfTmohKckSN0ktKaENrUsnmLjjhnuuakOUbpPBrn8cXobXbBmwHfQv4b4q-Ez02CDgeP7yBl539W99lkwMvlJV6YbHAfIr4x63IuYBshJfcH8MKlEDuI-Kz0ekwuYeM7PB9M-e6dNdOQd-iwN0OC9_v7FP24WD7Mv1XX3y-v5mfXleVa5qqRCuoVEwCGAZVKWAZCQyky3oAiVjdESNA9B6mZZqLnyojadBY6u-KMn6Ivu77bGH6PZYl245KFYTAewphaJmpNiiN1U9DPL9B1GGNZYaK0qhWhkhbq054aVxvo2m10GxMf2_92FoDtABtDShH6Z4SSdsqsfcqsnTJr95kVkXohsi4_GZVLNsPr0o87qQOA51maKaWE5P8A74CjaA
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_neucom_2025_131074
crossref_primary_10_3389_fnhum_2022_799881
crossref_primary_10_1109_ACCESS_2023_3270426
crossref_primary_10_1109_TCE_2024_3370310
crossref_primary_10_3389_fnhum_2021_799288
crossref_primary_10_3389_fpsyt_2022_864393
crossref_primary_10_1038_s41380_023_02395_3
crossref_primary_10_1109_TNSRE_2022_3154772
crossref_primary_10_2147_NDT_S456486
crossref_primary_10_1016_j_bspc_2024_107226
crossref_primary_10_1016_j_cjph_2024_09_011
crossref_primary_10_1109_TAFFC_2025_3527459
crossref_primary_10_1109_TNSRE_2022_3192533
crossref_primary_10_1007_s11517_024_03279_6
crossref_primary_10_1080_21642583_2024_2427028
crossref_primary_10_1007_s12539_023_00567_x
crossref_primary_10_1016_j_jad_2024_09_040
crossref_primary_10_1016_j_heliyon_2024_e36991
crossref_primary_10_1109_TNSRE_2023_3341923
crossref_primary_10_1016_j_bspc_2024_107271
crossref_primary_10_1109_TNSRE_2024_3465269
crossref_primary_10_1016_j_compbiomed_2024_108951
crossref_primary_10_1109_TBME_2022_3204861
crossref_primary_10_7717_peerj_17721
crossref_primary_10_1109_ACCESS_2025_3554758
crossref_primary_10_1088_1741_2552_acb088
crossref_primary_10_1109_ACCESS_2021_3103047
crossref_primary_10_1007_s10489_023_04702_5
crossref_primary_10_1016_j_brainres_2024_148816
crossref_primary_10_1109_TAFFC_2022_3210958
crossref_primary_10_1016_j_clinph_2022_11_013
crossref_primary_10_1016_j_bspc_2024_106030
crossref_primary_10_1109_ACCESS_2024_3349552
crossref_primary_10_3389_fnhum_2023_1197613
crossref_primary_10_1109_TNSRE_2023_3320693
crossref_primary_10_1016_j_bja_2023_11_033
crossref_primary_10_1088_1741_2552_ad5048
crossref_primary_10_3389_fncom_2022_1046310
crossref_primary_10_1016_j_bspc_2023_104923
crossref_primary_10_1109_TCDS_2024_3523020
crossref_primary_10_1109_TNSRE_2024_3374651
crossref_primary_10_1016_j_bbii_2024_100064
crossref_primary_10_3389_fnins_2021_778488
crossref_primary_10_1109_TNSRE_2022_3223056
crossref_primary_10_1109_TCSS_2023_3291950
crossref_primary_10_1109_TNSRE_2023_3311458
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_3389_fnins_2022_976229
crossref_primary_10_1016_j_inffus_2024_102723
crossref_primary_10_3390_s25164989
crossref_primary_10_1016_j_neuroscience_2022_10_010
crossref_primary_10_3389_fphy_2021_822915
crossref_primary_10_1093_cercor_bhaf034
crossref_primary_10_1088_1741_2552_acbe20
crossref_primary_10_3390_s22072553
crossref_primary_10_1016_j_bspc_2024_106402
crossref_primary_10_1016_j_bspc_2025_107879
crossref_primary_10_1016_j_chaos_2025_116163
crossref_primary_10_1016_j_cmpb_2022_107113
crossref_primary_10_1016_j_jad_2023_01_126
crossref_primary_10_1007_s11571_025_10305_2
crossref_primary_10_1109_JSEN_2021_3108471
crossref_primary_10_1016_j_pscychresns_2023_111687
crossref_primary_10_1109_JBHI_2022_3165640
crossref_primary_10_1016_j_eswa_2023_122356
crossref_primary_10_1109_TNSRE_2024_3509776
crossref_primary_10_3390_brainsci13030384
Cites_doi 10.1007/s00422-004-0471-9
10.1016/j.clinph.2014.12.026
10.3389/fnhum.2017.00549
10.1016/j.biopsych.2011.05.018
10.1016/j.jad.2014.10.001
10.1109/TNSRE.2018.2828143
10.1016/j.neubiorev.2004.10.009
10.1016/S0924-9338(10)70289-3
10.1016/j.biopsych.2013.05.036
10.1016/j.clinph.2020.06.031
10.1109/TBME.2006.873748
10.1088/978-0-7503-3279-8ch1
10.1016/j.inffus.2020.01.008
10.1002/hbm.20662
10.1046/j.1525-1497.2001.016009606.x
10.1109/TNSRE.2019.2939655
10.1016/j.clinph.2018.01.017
10.1155/2018/5238028
10.1016/j.physa.2016.10.068
10.1371/journal.pone.0214406
10.3389/fnhum.2018.00341
10.1109/TFUZZ.2019.2903753
10.1038/s41593-020-0630-x
10.1007/978-3-319-47103-7_10
10.3389/fnins.2018.01037
10.1371/journal.pone.0032508
10.1001/archinte.166.10.1092
10.3389/fnins.2020.00192
10.1002/hbm.20517
10.1016/0021-9991(73)90003-X
10.1016/j.jad.2009.05.029
10.1093/brain/awn262
10.1360/972009-2150
10.1016/S1053-8119(09)71653-2
10.1109/TAFFC.2018.2801289
10.1002/hbm.20346
10.1109/JBHI.2013.2253614
10.1016/j.clinph.2016.06.023
10.1016/j.cmpb.2015.04.009
10.1016/j.biopsych.2018.11.011
10.1088/1741-2560/13/3/036015
10.1007/s11682-018-0003-1
10.1016/j.biopsych.2006.09.020
10.1002/hbm.20273
10.1002/hbm.20275
10.1109/ACCESS.2020.2994985
10.1155/2017/9514369
10.1007/978-3-319-47653-7_1
10.1109/TNSRE.2020.3013429
10.1097/WCO.0b013e32833aa567
10.1007/s11633-019-1171-1
10.3389/fnagi.2014.00011
10.1109/TNSRE.2019.2894423
10.1155/2018/6534041
10.1109/TNNLS.2016.2515080
10.1371/journal.pone.0108648
10.1109/JBHI.2019.2938247
10.1016/0165-1781(89)90047-4
10.1080/02699930903407948
10.1109/ACCESS.2019.2927121
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2020.3043426
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 229
ExternalDocumentID 33296307
10_1109_TNSRE_2020_3043426
9288845
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61962034; 61941109; 61862058
  funderid: 10.13039/501100001809
– fundername: Tianyou Youth Talent Lift Program of Lanzhou Jiaotong Univesity
  funderid: 10.13039/501100009014
– fundername: Scientific Research Innovation Project of School of Electronics and Information Engineering, Lanzhou Jiaotong University
  funderid: 10.13039/501100009014
– fundername: Opening Foundation of the Key Laboratory of Opto-Technology and Intelligent Control, Lanzhou Jiaotong University, Ministry of Education
  grantid: KFKT2020-13
  funderid: 10.13039/501100009014
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c395t-758e6b24eea2e1584c2e49e8e6237e80c97045e9f3e592924f38a46adcedcb323
IEDL.DBID RIE
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626331500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 15:11:12 EDT 2025
Fri Jul 25 05:35:11 EDT 2025
Thu Apr 03 07:08:58 EDT 2025
Tue Nov 18 22:31:03 EST 2025
Sat Nov 29 01:47:11 EST 2025
Wed Aug 27 02:51:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-758e6b24eea2e1584c2e49e8e6237e80c97045e9f3e592924f38a46adcedcb323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3643-3580
0000-0002-2104-9298
OpenAccessLink https://ieeexplore.ieee.org/document/9288845
PMID 33296307
PQID 2498680151
PQPubID 85423
PageCount 15
ParticipantIDs pubmed_primary_33296307
proquest_journals_2498680151
crossref_primary_10_1109_TNSRE_2020_3043426
proquest_miscellaneous_2469076567
crossref_citationtrail_10_1109_TNSRE_2020_3043426
ieee_primary_9288845
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref52
ref55
ref11
ref54
ref10
cai (ref39) 0
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
si (ref45) 2018; 46
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref38
ref24
ref23
ref26
ref25
ref64
ref20
ref63
ref22
ref65
sayers (ref1) 2001; 79
ref21
ref28
ref27
ref29
dharmadhikari (ref53) 2018; 28
ref60
ref62
ref61
References_xml – ident: ref61
  doi: 10.1007/s00422-004-0471-9
– ident: ref63
  doi: 10.1016/j.clinph.2014.12.026
– ident: ref30
  doi: 10.3389/fnhum.2017.00549
– ident: ref65
  doi: 10.1016/j.biopsych.2011.05.018
– ident: ref52
  doi: 10.1016/j.jad.2014.10.001
– ident: ref26
  doi: 10.1109/TNSRE.2018.2828143
– ident: ref13
  doi: 10.1016/j.neubiorev.2004.10.009
– ident: ref7
  doi: 10.1016/S0924-9338(10)70289-3
– ident: ref57
  doi: 10.1016/j.biopsych.2013.05.036
– ident: ref29
  doi: 10.1016/j.clinph.2020.06.031
– ident: ref12
  doi: 10.1109/TBME.2006.873748
– ident: ref34
  doi: 10.1088/978-0-7503-3279-8ch1
– ident: ref2
  doi: 10.1016/j.inffus.2020.01.008
– ident: ref59
  doi: 10.1002/hbm.20662
– ident: ref35
  doi: 10.1046/j.1525-1497.2001.016009606.x
– ident: ref18
  doi: 10.1109/TNSRE.2019.2939655
– ident: ref64
  doi: 10.1016/j.clinph.2018.01.017
– ident: ref37
  doi: 10.1155/2018/5238028
– ident: ref32
  doi: 10.1016/j.physa.2016.10.068
– ident: ref49
  doi: 10.1371/journal.pone.0214406
– ident: ref24
  doi: 10.3389/fnhum.2018.00341
– ident: ref11
  doi: 10.1109/TFUZZ.2019.2903753
– ident: ref33
  doi: 10.1038/s41593-020-0630-x
– ident: ref54
  doi: 10.1007/978-3-319-47103-7_10
– ident: ref27
  doi: 10.3389/fnins.2018.01037
– ident: ref20
  doi: 10.1371/journal.pone.0032508
– ident: ref36
  doi: 10.1001/archinte.166.10.1092
– ident: ref28
  doi: 10.3389/fnins.2020.00192
– ident: ref51
  doi: 10.1371/journal.pone.0032508
– ident: ref17
  doi: 10.1002/hbm.20517
– ident: ref44
  doi: 10.1016/0021-9991(73)90003-X
– volume: 28
  start-page: 17
  year: 2018
  ident: ref53
  article-title: Frontal theta asymmetry as a biomarker of depression
  publication-title: East Asian Arch Psychiatry
– ident: ref56
  doi: 10.1016/j.jad.2009.05.029
– ident: ref23
  doi: 10.1093/brain/awn262
– ident: ref47
  doi: 10.1360/972009-2150
– ident: ref62
  doi: 10.1016/S1053-8119(09)71653-2
– ident: ref15
  doi: 10.1109/TAFFC.2018.2801289
– ident: ref21
  doi: 10.1002/hbm.20346
– year: 0
  ident: ref39
  publication-title: MODMA Dataset A Multi-Modal Open Dataset for Mental-Disorder Analysis
– ident: ref42
  doi: 10.1109/JBHI.2013.2253614
– ident: ref16
  doi: 10.1016/j.clinph.2016.06.023
– ident: ref40
  doi: 10.1016/j.cmpb.2015.04.009
– ident: ref10
  doi: 10.1016/j.biopsych.2018.11.011
– ident: ref22
  doi: 10.1088/1741-2560/13/3/036015
– ident: ref6
  doi: 10.1007/s11682-018-0003-1
– ident: ref55
  doi: 10.1016/j.biopsych.2006.09.020
– ident: ref48
  doi: 10.1002/hbm.20273
– ident: ref50
  doi: 10.1002/hbm.20275
– ident: ref5
  doi: 10.1109/ACCESS.2020.2994985
– ident: ref46
  doi: 10.1155/2017/9514369
– ident: ref14
  doi: 10.1007/978-3-319-47653-7_1
– ident: ref19
  doi: 10.1109/TNSRE.2020.3013429
– ident: ref9
  doi: 10.1097/WCO.0b013e32833aa567
– ident: ref43
  doi: 10.1007/s11633-019-1171-1
– ident: ref31
  doi: 10.3389/fnagi.2014.00011
– ident: ref60
  doi: 10.1109/TNSRE.2019.2894423
– ident: ref41
  doi: 10.1155/2018/6534041
– ident: ref8
  doi: 10.1109/TNNLS.2016.2515080
– ident: ref25
  doi: 10.1371/journal.pone.0108648
– ident: ref4
  doi: 10.1109/JBHI.2019.2938247
– volume: 46
  start-page: 1742
  year: 2018
  ident: ref45
  article-title: Research on brain functional network and lie detection based on phase lag index
  publication-title: Acta Electronica Sinica
– volume: 79
  start-page: 1085
  year: 2001
  ident: ref1
  article-title: The world health report 2001-Mental health: New understanding, new hope
  publication-title: Bull World Health Org
– ident: ref38
  doi: 10.1016/0165-1781(89)90047-4
– ident: ref58
  doi: 10.1080/02699930903407948
– ident: ref3
  doi: 10.1109/ACCESS.2019.2927121
SSID ssj0017657
Score 2.596566
Snippet If the brain is regarded as a system, it will be one of the most complex systems in the universe. Traditional analysis and classification methods of major...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 215
SubjectTerms abnormal topological architecture
Biomarkers
Brain
Brain architecture
brain functional networks
Classification
Clustering
Complex systems
Conductors
Correlation analysis
Depression
EEG
Electrodes
Electroencephalography
Feature extraction
Frequencies
Functional magnetic resonance imaging
Major depressive disorder
Measurement
Mental depression
Phase lag
phase lag index
Statistical analysis
Synchronism
Synchronization
Title Brain Functional Networks Based on Resting-State EEG Data for Major Depressive Disorder Analysis and Classification
URI https://ieeexplore.ieee.org/document/9288845
https://www.ncbi.nlm.nih.gov/pubmed/33296307
https://www.proquest.com/docview/2498680151
https://www.proquest.com/docview/2469076567
Volume 29
WOSCitedRecordID wos000626331500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FUK98CrQQFkZCbiAWa_tPHykdBcOsEJlK-0tcuyJBKqyqNnt72fsPFQkisQlipJxbGXGmm_G8wB4RSCi8qI23DkluU6F5dZXhmdO1ugVgWAfE4W_5MtlsV6bb3vwbsyFQcQYfIbvw208y_cbtwuusqmRZK_pdB_28zzvcrXGE4M8i1U9aQNrrpUUQ4KMMNPV8vv5nExBSRaq0Ip00iHcVUqS7IUusjf0UWywcjvWjDpncf__VvsA7vXYkn3ohOEh7GHzCF7frCPMVl0RAfaGnf9RovsI2tPQLIItSM_1tMsuQrxlp6TpPNs0NKYNUdI8IlQ2n39iZ3ZrGeFe9tX-pOtZH1d7jWwo68mGsifMNp7FHpwhOinO-hguFvPVx8-878jAnTLplpNxgVklNaKVOCPs4iRqg_RQqhwL4UxOEBFNrTAl3CV1rQqrM-sdelcpqZ7AQbNp8BiYVV5Yb1yVKqPryhWiMJlLQzyhxGKmE5gNfCld_y9C14zLMpotwpSRrWVga9mzNYG345hfXbGOf1IfBaaNlD2_EjgZ2F_2-7ktyUgtMlLm6SyBl-Nr2onheMU2uNkFmuBpIHycJ_C0E5vx24O0Pfv7nM_hUIZYmejaOYGD7dUOX8Add7390V5NSNzXxSR6CyZR6H8Dzez7SQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgqAXXqUQKGAk4AJpHdt5-EjpLkVsI1QWqbfIsScSCGVRs9vfz9h5qEiAxCWKkkkc5RtrvrHnAfCSSETteKNja6WIVcpNbFyt48yKBp0kEuxCovAiL8vi_Fx_3oK3Uy4MIobgMzzwp2Ev363sxi-VHWpB_ppKr8H1VCmR9Nla055BnoW6njSFVayk4GOKDNeHy_LL2YycQUE-KleSrNIO3JRSkPb5PrJXLFJosfJ3thmszvzO_33vXbg9sEv2rleHe7CF7X14dbWSMFv2ZQTYa3b2W5HuXeiOfLsINidLN8iWfYx4x47I1jm2aumZzsdJx4GjstnsAzs2a8OI-bJT852Ox0Nk7SWysbAnGwufMNM6Frpw-vikMOoD-DqfLd-fxENPhthKna5jci8wq4VCNAITYi9WoNJIF4XMseBW50QSUTcSU2JeQjWyMCozzqKztRRyD7bbVYuPgBnpuHHa1qnUqqltwQud2dRHFAosEhVBMuJS2eFf-L4ZP6rguHBdBVgrD2s1wBrBm-mZn325jn9K73rQJskBrwj2R_irYUZ3FbmpRUbmPE0ieDHdprnoN1hMi6uNl_FrDcSQ8wge9mozvXvUtsd_HvM53DpZni6qxcfy0xPYET5yJiz07MP2-mKDT-GGvVx_6y6eBaX_BS8H_LM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Functional+Networks+Based+on+Resting-State+EEG+Data+for+Major+Depressive+Disorder+Analysis+and+Classification&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Zhang%2C+Bingtao&rft.au=Yan%2C+Guanghui&rft.au=Yang%2C+Zhifei&rft.au=Su%2C+Yun&rft.date=2021&rft.eissn=1558-0210&rft.volume=29&rft.spage=215&rft_id=info:doi/10.1109%2FTNSRE.2020.3043426&rft_id=info%3Apmid%2F33296307&rft.externalDocID=33296307
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon