In situ electro-generated Ni(OH)2 synergistic with Cu cathode to promote direct ammonia oxidation to nitrogen

To solve the problem of low removal rate and poor N2 selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as anode and cathode of the EAO system, respectively. The coupling effect between the cathode and anode promoted nitrogen cycling during the re...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Water science and technology Ročník 90; číslo 1; s. 225 - 237
Hlavní autoři: Xue, Yuzhou, Wang, Xuanxuan, Liu, Qing, Feng, Mengru, Ding, Zimo, Chu, Jiayue, Zhu, Wenyan, Liu, Na, Li, Zhichun
Médium: Journal Article
Jazyk:angličtina
Vydáno: England IWA Publishing 01.07.2024
Témata:
ISSN:0273-1223, 1996-9732
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To solve the problem of low removal rate and poor N2 selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as anode and cathode of the EAO system, respectively. The coupling effect between the cathode and anode promoted nitrogen cycling during the reaction process, which improved N2 selectivity of the reaction system and promoted it to achieve a high ammonia removal rate. This study showed that the thin Ni(OH)2 with oxygen vacancy formed on the surface of Ni foam anode played an effective role in the dimerization of intermediate products in ammonia oxidation to form N2. This electrochemical system was used to treat real goose wastewater containing 422.5 mg/L NH4+-N and 94.5 mg/L total organic carbon (TOC). After treatment, this electrochemical system achieved good performance with an ammonia removal rate of 87%, N2 selectivity of 77%, and TOC removal rate of 72%. Therefore, this simple and efficient system with Ni foam anode and Cu foam cathode is a promising method for treating ammonia nitrogen wastewater.
AbstractList To solve the problem of low removal rate and poor N selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as anode and cathode of the EAO system, respectively. The coupling effect between the cathode and anode promoted nitrogen cycling during the reaction process, which improved N selectivity of the reaction system and promoted it to achieve a high ammonia removal rate. This study showed that the thin Ni(OH) with oxygen vacancy formed on the surface of Ni foam anode played an effective role in the dimerization of intermediate products in ammonia oxidation to form N . This electrochemical system was used to treat real goose wastewater containing 422.5 mg/L NH -N and 94.5 mg/L total organic carbon (TOC). After treatment, this electrochemical system achieved good performance with an ammonia removal rate of 87%, N selectivity of 77%, and TOC removal rate of 72%. Therefore, this simple and efficient system with Ni foam anode and Cu foam cathode is a promising method for treating ammonia nitrogen wastewater.
To solve the problem of low removal rate and poor N2 selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as anode and cathode of the EAO system, respectively. The coupling effect between the cathode and anode promoted nitrogen cycling during the reaction process, which improved N2 selectivity of the reaction system and promoted it to achieve a high ammonia removal rate. This study showed that the thin Ni(OH)2 with oxygen vacancy formed on the surface of Ni foam anode played an effective role in the dimerization of intermediate products in ammonia oxidation to form N2. This electrochemical system was used to treat real goose wastewater containing 422.5 mg/L NH4+-N and 94.5 mg/L total organic carbon (TOC). After treatment, this electrochemical system achieved good performance with an ammonia removal rate of 87%, N2 selectivity of 77%, and TOC removal rate of 72%. Therefore, this simple and efficient system with Ni foam anode and Cu foam cathode is a promising method for treating ammonia nitrogen wastewater. HIGHLIGHTS The use of commercial electrodes has increased the practicality of this system.; The anode was responsible for the ammonia oxidation.; The cathode was responsible for the reduction of nitrate.; The nitrogen cycle between the electrodes enabled this system to achieve high performance.; The electrochemical system had achieved significant results in practical goose wastewater treatment.;
To solve the problem of low removal rate and poor N2 selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as anode and cathode of the EAO system, respectively. The coupling effect between the cathode and anode promoted nitrogen cycling during the reaction process, which improved N2 selectivity of the reaction system and promoted it to achieve a high ammonia removal rate. This study showed that the thin Ni(OH)2 with oxygen vacancy formed on the surface of Ni foam anode played an effective role in the dimerization of intermediate products in ammonia oxidation to form N2. This electrochemical system was used to treat real goose wastewater containing 422.5 mg/L NH4+-N and 94.5 mg/L total organic carbon (TOC). After treatment, this electrochemical system achieved good performance with an ammonia removal rate of 87%, N2 selectivity of 77%, and TOC removal rate of 72%. Therefore, this simple and efficient system with Ni foam anode and Cu foam cathode is a promising method for treating ammonia nitrogen wastewater.To solve the problem of low removal rate and poor N2 selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as anode and cathode of the EAO system, respectively. The coupling effect between the cathode and anode promoted nitrogen cycling during the reaction process, which improved N2 selectivity of the reaction system and promoted it to achieve a high ammonia removal rate. This study showed that the thin Ni(OH)2 with oxygen vacancy formed on the surface of Ni foam anode played an effective role in the dimerization of intermediate products in ammonia oxidation to form N2. This electrochemical system was used to treat real goose wastewater containing 422.5 mg/L NH4+-N and 94.5 mg/L total organic carbon (TOC). After treatment, this electrochemical system achieved good performance with an ammonia removal rate of 87%, N2 selectivity of 77%, and TOC removal rate of 72%. Therefore, this simple and efficient system with Ni foam anode and Cu foam cathode is a promising method for treating ammonia nitrogen wastewater.
To solve the problem of low removal rate and poor N2 selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as anode and cathode of the EAO system, respectively. The coupling effect between the cathode and anode promoted nitrogen cycling during the reaction process, which improved N2 selectivity of the reaction system and promoted it to achieve a high ammonia removal rate. This study showed that the thin Ni(OH)2 with oxygen vacancy formed on the surface of Ni foam anode played an effective role in the dimerization of intermediate products in ammonia oxidation to form N2. This electrochemical system was used to treat real goose wastewater containing 422.5 mg/L NH4+-N and 94.5 mg/L total organic carbon (TOC). After treatment, this electrochemical system achieved good performance with an ammonia removal rate of 87%, N2 selectivity of 77%, and TOC removal rate of 72%. Therefore, this simple and efficient system with Ni foam anode and Cu foam cathode is a promising method for treating ammonia nitrogen wastewater.
Author Wang, Xuanxuan
Liu, Na
Li, Zhichun
Chu, Jiayue
Zhu, Wenyan
Feng, Mengru
Liu, Qing
Ding, Zimo
Xue, Yuzhou
Author_xml – sequence: 1
  givenname: Yuzhou
  orcidid: 0000-0003-4682-4358
  surname: Xue
  fullname: Xue, Yuzhou
– sequence: 2
  givenname: Xuanxuan
  surname: Wang
  fullname: Wang, Xuanxuan
– sequence: 3
  givenname: Qing
  surname: Liu
  fullname: Liu, Qing
– sequence: 4
  givenname: Mengru
  surname: Feng
  fullname: Feng, Mengru
– sequence: 5
  givenname: Zimo
  surname: Ding
  fullname: Ding, Zimo
– sequence: 6
  givenname: Jiayue
  surname: Chu
  fullname: Chu, Jiayue
– sequence: 7
  givenname: Wenyan
  surname: Zhu
  fullname: Zhu, Wenyan
– sequence: 8
  givenname: Na
  surname: Liu
  fullname: Liu, Na
– sequence: 9
  givenname: Zhichun
  surname: Li
  fullname: Li, Zhichun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39007316$$D View this record in MEDLINE/PubMed
BookMark eNptkctP3DAQxq2Kqiy0t54rH0FqqF9x4mO1KmUlBJf2bPkxWYySmNqOgP--XhY4IE72jL75zeM7QgdznAGhr5ScMSrlj_tczhhhokbiA1pRpWSjOs4O0IqwjjeUMX6IjnK-JYR0XJBP6JCr3ZfKFZo2M86hLBhGcCXFZgszJFPA46twcn1xynB-rJltyCU4fB_KDV4v2JlyEz3gEvFdilMsgH1IlYDNNMU5GBwfgjclxHmnmUNFV_Jn9HEwY4Yvz-8x-nv-68_6orm8_r1Z_7xsHFdtaSRIsJIZIlkrlOgU7y0x1veiHZgVhojeUyGlpF3LiRiYaltjpBBMUaOI5Mdos-f6aG71XQqTSY86mqCfEjFttUl1nxE08QMjtmvBD1Y4PijXAVGtoJL01gJU1smeVRf9t0AuegrZwTiaGeKSNSd97SjrPFX67Vm62An8a-OXc1cB2wtcijknGLQL5elKJZkwakr0zlNdPdU7T2skatH3N0Uv3Hfl_wH2kqHt
CitedBy_id crossref_primary_10_1007_s10008_025_06213_4
crossref_primary_10_1016_j_jallcom_2024_177286
Cites_doi 10.1021/acsestwater.2c00127
10.2166/wst.2021.030
10.1038/s41467-023-36322-5
10.34311/jics.2020.03.1.17
10.1016/j.apcatb.2023.122544
10.1016/j.nanoen.2020.105528
10.1021/acsestengg.0c00186
10.1016/j.scitotenv.2023.163938
10.1021/acs.inorgchem.2c04440
10.1016/j.elecom.2009.10.026
10.1016/j.gca.2021.09.012
10.3390/ijerph16162931
10.1002/sstr.202200308
10.1016/j.electacta.2021.139480
10.1149/2.1051709jes
10.1016/j.cej.2021.129461
10.1016/j.watres.2023.119914
10.1016/j.ijhydene.2019.11.071
10.1016/j.watres.2022.119531
10.1016/j.apsusc.2021.149007
10.1021/jp4048874
10.1021/acs.est.2c03701
10.1016/j.apcatb.2022.121811
10.2166/wst.2021.261
10.1016/j.ijhydene.2020.03.094
10.1021/acsenvironau.2c00028
10.2166/wst.2021.421
10.1016/j.jwpe.2021.102501
10.1016/j.scitotenv.2022.161361
10.1002/smll.202300467
10.1016/j.electacta.2018.05.169
10.1016/j.electacta.2018.01.045
10.1021/acscatal.0c05247
10.1021/acs.est.2c05735
10.1016/j.electacta.2011.07.078
10.1007/s12274-021-3665-8
10.1039/D1TA02341A
10.1016/j.jcis.2023.05.184
10.1016/j.jece.2023.110608
10.1016/j.scitotenv.2021.147972
10.1016/j.apsusc.2019.144065
10.1002/ceat.202200118
10.1021/acssuschemeng.2c00740
10.1016/j.scitotenv.2023.162603
10.1016/j.scitotenv.2021.146035
10.2166/wst.2013.262
10.1016/j.chemosphere.2023.139027
10.1021/acscatal.3c00032
10.1016/j.jenvman.2022.115162
10.1016/j.scitotenv.2023.165169
10.1016/S1872-2067(18)63194-8
10.1016/j.jpowsour.2021.230463
10.1016/j.cej.2022.139370
10.1016/j.cattod.2020.09.024
ContentType Journal Article
Copyright 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.2166/wst.2024.214
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1996-9732
EndPage 237
ExternalDocumentID oai_doaj_org_article_0df20b75edfb4c3f9c7e09541608bbee
39007316
10_2166_wst_2024_214
Genre Journal Article
GrantInformation_xml – fundername: Suzhou University Startup Foundation for Doctor
  grantid: 2021BSK042
GroupedDBID ---
-~X
0R~
123
4.4
53G
7X7
88E
8CJ
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJVE
AAYXX
ABFYC
ABJCF
ABLGR
ABUWG
ACGFO
ACIWK
AECGI
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
BHPHI
BKSAR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1J
DU5
F5P
FDB
FYUFA
GEUZO
GROUPED_DOAJ
H13
HCIFZ
HFPTO
HMCUK
HZ~
L6V
L7B
M1P
M7S
O9-
OK1
P2P
PCBAR
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
R0Z
RHI
SJN
TN5
UKHRP
Y6R
~02
--K
1B1
29R
3V.
AAEDT
AALRI
AAQXK
AAXUO
ABWVN
ABYZJ
ACRPL
ADMUD
ADNMO
AGVJA
AITUG
ALIPV
CGR
CUY
CVF
EBS
ECM
EIF
EJD
FEDTE
FGOYB
HVGLF
IHE
M41
NPM
NQ-
R2-
RHY
RIG
ROL
RPZ
UAO
UHS
~KM
7X8
PUEGO
ID FETCH-LOGICAL-c395t-6e6eb62a06254947938b0abd845f2b4a048d14666175304f2955aa644291a9063
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001258290800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0273-1223
IngestDate Fri Oct 03 12:50:53 EDT 2025
Sun Sep 28 07:16:40 EDT 2025
Wed Feb 19 02:04:06 EST 2025
Tue Nov 18 22:32:09 EST 2025
Sat Nov 29 01:31:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords selectivity
coupling effect
direct electrochemical ammonia oxidation
nitrogen cycle
goose-raising wastewater
N
Language English
License 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-6e6eb62a06254947938b0abd845f2b4a048d14666175304f2955aa644291a9063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4682-4358
OpenAccessLink https://doaj.org/article/0df20b75edfb4c3f9c7e09541608bbee
PMID 39007316
PQID 3080636146
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_0df20b75edfb4c3f9c7e09541608bbee
proquest_miscellaneous_3080636146
pubmed_primary_39007316
crossref_citationtrail_10_2166_wst_2024_214
crossref_primary_10_2166_wst_2024_214
PublicationCentury 2000
PublicationDate 2024-07-01
2024-Jul
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water science and technology
PublicationTitleAlternate Water Sci Technol
PublicationYear 2024
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References key-10.2166/wst.2024.214-8
key-10.2166/wst.2024.214-7
key-10.2166/wst.2024.214-6
key-10.2166/wst.2024.214-5
key-10.2166/wst.2024.214-4
key-10.2166/wst.2024.214-3
key-10.2166/wst.2024.214-2
key-10.2166/wst.2024.214-1
key-10.2166/wst.2024.214-31
key-10.2166/wst.2024.214-30
key-10.2166/wst.2024.214-9
key-10.2166/wst.2024.214-24
key-10.2166/wst.2024.214-23
key-10.2166/wst.2024.214-21
Kuang (key-10.2166/wst.2024.214-22) 2022; 57
key-10.2166/wst.2024.214-28
key-10.2166/wst.2024.214-27
key-10.2166/wst.2024.214-26
key-10.2166/wst.2024.214-25
key-10.2166/wst.2024.214-29
key-10.2166/wst.2024.214-42
key-10.2166/wst.2024.214-41
key-10.2166/wst.2024.214-40
key-10.2166/wst.2024.214-35
key-10.2166/wst.2024.214-34
key-10.2166/wst.2024.214-33
key-10.2166/wst.2024.214-32
key-10.2166/wst.2024.214-39
key-10.2166/wst.2024.214-38
key-10.2166/wst.2024.214-36
key-10.2166/wst.2024.214-53
key-10.2166/wst.2024.214-52
key-10.2166/wst.2024.214-51
key-10.2166/wst.2024.214-50
key-10.2166/wst.2024.214-46
key-10.2166/wst.2024.214-45
key-10.2166/wst.2024.214-44
key-10.2166/wst.2024.214-43
key-10.2166/wst.2024.214-49
Song (key-10.2166/wst.2024.214-37) 2021; 9
key-10.2166/wst.2024.214-48
key-10.2166/wst.2024.214-47
key-10.2166/wst.2024.214-20
key-10.2166/wst.2024.214-13
key-10.2166/wst.2024.214-12
key-10.2166/wst.2024.214-11
key-10.2166/wst.2024.214-10
key-10.2166/wst.2024.214-54
key-10.2166/wst.2024.214-17
key-10.2166/wst.2024.214-16
He (key-10.2166/wst.2024.214-15) 2022; 15
key-10.2166/wst.2024.214-14
key-10.2166/wst.2024.214-19
key-10.2166/wst.2024.214-18
References_xml – ident: key-10.2166/wst.2024.214-8
  doi: 10.1021/acsestwater.2c00127
– ident: key-10.2166/wst.2024.214-40
  doi: 10.2166/wst.2021.030
– ident: key-10.2166/wst.2024.214-30
  doi: 10.1038/s41467-023-36322-5
– ident: key-10.2166/wst.2024.214-21
  doi: 10.34311/jics.2020.03.1.17
– ident: key-10.2166/wst.2024.214-50
  doi: 10.1016/j.apcatb.2023.122544
– ident: key-10.2166/wst.2024.214-14
  doi: 10.1016/j.nanoen.2020.105528
– ident: key-10.2166/wst.2024.214-46
  doi: 10.1021/acsestengg.0c00186
– ident: key-10.2166/wst.2024.214-7
  doi: 10.1016/j.scitotenv.2023.163938
– ident: key-10.2166/wst.2024.214-16
  doi: 10.1021/acs.inorgchem.2c04440
– ident: key-10.2166/wst.2024.214-20
  doi: 10.1016/j.elecom.2009.10.026
– ident: key-10.2166/wst.2024.214-29
  doi: 10.1016/j.gca.2021.09.012
– ident: key-10.2166/wst.2024.214-43
  doi: 10.3390/ijerph16162931
– ident: key-10.2166/wst.2024.214-5
  doi: 10.1002/sstr.202200308
– ident: key-10.2166/wst.2024.214-12
  doi: 10.1016/j.electacta.2021.139480
– ident: key-10.2166/wst.2024.214-19
  doi: 10.1149/2.1051709jes
– ident: key-10.2166/wst.2024.214-48
  doi: 10.1016/j.cej.2021.129461
– ident: key-10.2166/wst.2024.214-18
  doi: 10.1016/j.watres.2023.119914
– ident: key-10.2166/wst.2024.214-3
  doi: 10.1016/j.ijhydene.2019.11.071
– ident: key-10.2166/wst.2024.214-11
  doi: 10.1016/j.watres.2022.119531
– ident: key-10.2166/wst.2024.214-41
  doi: 10.1016/j.apsusc.2021.149007
– ident: key-10.2166/wst.2024.214-35
  doi: 10.1021/jp4048874
– ident: key-10.2166/wst.2024.214-17
  doi: 10.1021/acs.est.2c03701
– ident: key-10.2166/wst.2024.214-53
  doi: 10.1016/j.apcatb.2022.121811
– ident: key-10.2166/wst.2024.214-9
  doi: 10.2166/wst.2021.261
– ident: key-10.2166/wst.2024.214-2
  doi: 10.1016/j.ijhydene.2020.03.094
– ident: key-10.2166/wst.2024.214-36
  doi: 10.1021/acsenvironau.2c00028
– ident: key-10.2166/wst.2024.214-51
  doi: 10.2166/wst.2021.421
– ident: key-10.2166/wst.2024.214-49
  doi: 10.1016/j.jwpe.2021.102501
– ident: key-10.2166/wst.2024.214-1
  doi: 10.1016/j.scitotenv.2022.161361
– ident: key-10.2166/wst.2024.214-13
  doi: 10.1002/smll.202300467
– ident: key-10.2166/wst.2024.214-34
  doi: 10.1016/j.electacta.2018.05.169
– ident: key-10.2166/wst.2024.214-33
  doi: 10.1016/j.electacta.2018.01.045
– ident: key-10.2166/wst.2024.214-42
  doi: 10.1021/acscatal.0c05247
– volume: 57
  start-page: 18538
  year: 2022
  ident: key-10.2166/wst.2024.214-22
  article-title: A bipolar membrane-integrated electrochlorination process for highly efficient ammonium removal in mature landfill leachate: The importance of ClO• generation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c05735
– ident: key-10.2166/wst.2024.214-6
  doi: 10.1016/j.electacta.2011.07.078
– volume: 15
  start-page: 1
  year: 2022
  ident: key-10.2166/wst.2024.214-15
  article-title: High entropy spinel oxide for efficient electrochemical oxidation of ammonia
  publication-title: Nano Res
  doi: 10.1007/s12274-021-3665-8
– volume: 9
  start-page: 14372
  year: 2021
  ident: key-10.2166/wst.2024.214-37
  article-title: Fe-doping induced localized amorphization in ultrathin α-Ni(OH)2 nanomesh for superior oxygen evolution reaction catalysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA02341A
– ident: key-10.2166/wst.2024.214-44
  doi: 10.1016/j.jcis.2023.05.184
– ident: key-10.2166/wst.2024.214-4
  doi: 10.1016/j.jece.2023.110608
– ident: key-10.2166/wst.2024.214-28
  doi: 10.1016/j.scitotenv.2021.147972
– ident: key-10.2166/wst.2024.214-47
  doi: 10.1016/j.apsusc.2019.144065
– ident: key-10.2166/wst.2024.214-23
  doi: 10.1002/ceat.202200118
– ident: key-10.2166/wst.2024.214-31
  doi: 10.1021/acssuschemeng.2c00740
– ident: key-10.2166/wst.2024.214-26
  doi: 10.1016/j.scitotenv.2023.162603
– ident: key-10.2166/wst.2024.214-38
  doi: 10.1016/j.scitotenv.2021.146035
– ident: key-10.2166/wst.2024.214-10
  doi: 10.2166/wst.2013.262
– ident: key-10.2166/wst.2024.214-52
  doi: 10.1016/j.chemosphere.2023.139027
– ident: key-10.2166/wst.2024.214-27
  doi: 10.1021/acscatal.3c00032
– ident: key-10.2166/wst.2024.214-54
  doi: 10.1016/j.jenvman.2022.115162
– ident: key-10.2166/wst.2024.214-25
  doi: 10.1016/j.scitotenv.2023.165169
– ident: key-10.2166/wst.2024.214-45
  doi: 10.1016/S1872-2067(18)63194-8
– ident: key-10.2166/wst.2024.214-24
  doi: 10.1016/j.jpowsour.2021.230463
– ident: key-10.2166/wst.2024.214-32
  doi: 10.1016/j.cej.2022.139370
– ident: key-10.2166/wst.2024.214-39
  doi: 10.1016/j.cattod.2020.09.024
SSID ssj0007340
Score 2.4397695
Snippet To solve the problem of low removal rate and poor N2 selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as...
To solve the problem of low removal rate and poor N selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 225
SubjectTerms Ammonia - chemistry
Copper - chemistry
coupling effect
direct electrochemical ammonia oxidation
Electrochemical Techniques - methods
Electrodes
goose-raising wastewater
Hydroxides - chemistry
n2 selectivity
Nickel - chemistry
Nitrogen - chemistry
nitrogen cycle
Oxidation-Reduction
Waste Disposal, Fluid - methods
Wastewater - chemistry
Water Pollutants, Chemical - chemistry
Title In situ electro-generated Ni(OH)2 synergistic with Cu cathode to promote direct ammonia oxidation to nitrogen
URI https://www.ncbi.nlm.nih.gov/pubmed/39007316
https://www.proquest.com/docview/3080636146
https://doaj.org/article/0df20b75edfb4c3f9c7e09541608bbee
Volume 90
WOSCitedRecordID wos001258290800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-9732
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0007340
  issn: 0273-1223
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1996-9732
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007340
  issn: 0273-1223
  databaseCode: PCBAR
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1996-9732
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007340
  issn: 0273-1223
  databaseCode: M7S
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1996-9732
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007340
  issn: 0273-1223
  databaseCode: 7X7
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-9732
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007340
  issn: 0273-1223
  databaseCode: BENPR
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_09EEfRE9P148lgoIi5dI2TZNH79jjBFkPv9i3krSJFLQ9tl0__ntnku56Phy--FJoGdo0M8n8Jpn8BuAZuoja1TZP0trzRCjHE61Lkyj09q7wlquw0f75bblcqtVKn10o9UU5YZEeOHbcIW98xm1ZuMZbUede16VDWIA4gitrnaPZF1HPNpia5uAyF3F1pcRWoAeMKe9ZKuXhj4FSKDOBd-IvZxQ4-y8HmsHhnNyGWxNSZK9jC-_AFdftw80L_IH7cLD4c0wNRadxOtyFb286NrTjhk1VbpIvgV0a0SVbti_enb7M2PCLTv0FmmZGi7HseMOIw7VvHBt7dh7S9ByLLo8ZMtfWsP5nG4swkQzOBuse33wPPp0sPh6fJlNhhaTOdTEm0klnZWa4pPCQ1taU5cY2ShQ-s8LgqG5wBkXXjcEMFz7TRWEMIqdMp0YjqDmAva7v3ANgEpXQCO4zU3gMnlJrjTLeeKU0z1XtZ_Bq28NVPbGOU_GLrxVGH6SPCvVRkT7wTszg-U76PLJtXCJ3RMrayRBHdniAllNNllP9y3Jm8HSr6grHFG2UmM71m6HK0aBkjsBFzuB-tIHdp3JN1pXKh_-jCY_gBv1STP99DHvjeuOewPX6-9gO6zlcLVdluKo5XDtaLM_ez4OZzylD9cNvG0n_ow
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+electro-generated+Ni%28OH%29+2+synergistic+with+Cu+cathode+to+promote+direct+ammonia+oxidation+to+nitrogen&rft.jtitle=Water+science+and+technology&rft.au=Xue%2C+Yuzhou&rft.au=Wang%2C+Xuanxuan&rft.au=Liu%2C+Qing&rft.au=Feng%2C+Mengru&rft.date=2024-07-01&rft.issn=0273-1223&rft.volume=90&rft.issue=1&rft.spage=225&rft_id=info:doi/10.2166%2Fwst.2024.214&rft_id=info%3Apmid%2F39007316&rft.externalDocID=39007316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1223&client=summon