In situ electro-generated Ni(OH)2 synergistic with Cu cathode to promote direct ammonia oxidation to nitrogen
To solve the problem of low removal rate and poor N2 selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as anode and cathode of the EAO system, respectively. The coupling effect between the cathode and anode promoted nitrogen cycling during the re...
Uloženo v:
| Vydáno v: | Water science and technology Ročník 90; číslo 1; s. 225 - 237 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
IWA Publishing
01.07.2024
|
| Témata: | |
| ISSN: | 0273-1223, 1996-9732 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | To solve the problem of low removal rate and poor N2 selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as anode and cathode of the EAO system, respectively. The coupling effect between the cathode and anode promoted nitrogen cycling during the reaction process, which improved N2 selectivity of the reaction system and promoted it to achieve a high ammonia removal rate. This study showed that the thin Ni(OH)2 with oxygen vacancy formed on the surface of Ni foam anode played an effective role in the dimerization of intermediate products in ammonia oxidation to form N2. This electrochemical system was used to treat real goose wastewater containing 422.5 mg/L NH4+-N and 94.5 mg/L total organic carbon (TOC). After treatment, this electrochemical system achieved good performance with an ammonia removal rate of 87%, N2 selectivity of 77%, and TOC removal rate of 72%. Therefore, this simple and efficient system with Ni foam anode and Cu foam cathode is a promising method for treating ammonia nitrogen wastewater. |
|---|---|
| AbstractList | To solve the problem of low removal rate and poor N
selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as anode and cathode of the EAO system, respectively. The coupling effect between the cathode and anode promoted nitrogen cycling during the reaction process, which improved N
selectivity of the reaction system and promoted it to achieve a high ammonia removal rate. This study showed that the thin Ni(OH)
with oxygen vacancy formed on the surface of Ni foam anode played an effective role in the dimerization of intermediate products in ammonia oxidation to form N
. This electrochemical system was used to treat real goose wastewater containing 422.5 mg/L NH
-N and 94.5 mg/L total organic carbon (TOC). After treatment, this electrochemical system achieved good performance with an ammonia removal rate of 87%, N
selectivity of 77%, and TOC removal rate of 72%. Therefore, this simple and efficient system with Ni foam anode and Cu foam cathode is a promising method for treating ammonia nitrogen wastewater. To solve the problem of low removal rate and poor N2 selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as anode and cathode of the EAO system, respectively. The coupling effect between the cathode and anode promoted nitrogen cycling during the reaction process, which improved N2 selectivity of the reaction system and promoted it to achieve a high ammonia removal rate. This study showed that the thin Ni(OH)2 with oxygen vacancy formed on the surface of Ni foam anode played an effective role in the dimerization of intermediate products in ammonia oxidation to form N2. This electrochemical system was used to treat real goose wastewater containing 422.5 mg/L NH4+-N and 94.5 mg/L total organic carbon (TOC). After treatment, this electrochemical system achieved good performance with an ammonia removal rate of 87%, N2 selectivity of 77%, and TOC removal rate of 72%. Therefore, this simple and efficient system with Ni foam anode and Cu foam cathode is a promising method for treating ammonia nitrogen wastewater. HIGHLIGHTS The use of commercial electrodes has increased the practicality of this system.; The anode was responsible for the ammonia oxidation.; The cathode was responsible for the reduction of nitrate.; The nitrogen cycle between the electrodes enabled this system to achieve high performance.; The electrochemical system had achieved significant results in practical goose wastewater treatment.; To solve the problem of low removal rate and poor N2 selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as anode and cathode of the EAO system, respectively. The coupling effect between the cathode and anode promoted nitrogen cycling during the reaction process, which improved N2 selectivity of the reaction system and promoted it to achieve a high ammonia removal rate. This study showed that the thin Ni(OH)2 with oxygen vacancy formed on the surface of Ni foam anode played an effective role in the dimerization of intermediate products in ammonia oxidation to form N2. This electrochemical system was used to treat real goose wastewater containing 422.5 mg/L NH4+-N and 94.5 mg/L total organic carbon (TOC). After treatment, this electrochemical system achieved good performance with an ammonia removal rate of 87%, N2 selectivity of 77%, and TOC removal rate of 72%. Therefore, this simple and efficient system with Ni foam anode and Cu foam cathode is a promising method for treating ammonia nitrogen wastewater.To solve the problem of low removal rate and poor N2 selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as anode and cathode of the EAO system, respectively. The coupling effect between the cathode and anode promoted nitrogen cycling during the reaction process, which improved N2 selectivity of the reaction system and promoted it to achieve a high ammonia removal rate. This study showed that the thin Ni(OH)2 with oxygen vacancy formed on the surface of Ni foam anode played an effective role in the dimerization of intermediate products in ammonia oxidation to form N2. This electrochemical system was used to treat real goose wastewater containing 422.5 mg/L NH4+-N and 94.5 mg/L total organic carbon (TOC). After treatment, this electrochemical system achieved good performance with an ammonia removal rate of 87%, N2 selectivity of 77%, and TOC removal rate of 72%. Therefore, this simple and efficient system with Ni foam anode and Cu foam cathode is a promising method for treating ammonia nitrogen wastewater. To solve the problem of low removal rate and poor N2 selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as anode and cathode of the EAO system, respectively. The coupling effect between the cathode and anode promoted nitrogen cycling during the reaction process, which improved N2 selectivity of the reaction system and promoted it to achieve a high ammonia removal rate. This study showed that the thin Ni(OH)2 with oxygen vacancy formed on the surface of Ni foam anode played an effective role in the dimerization of intermediate products in ammonia oxidation to form N2. This electrochemical system was used to treat real goose wastewater containing 422.5 mg/L NH4+-N and 94.5 mg/L total organic carbon (TOC). After treatment, this electrochemical system achieved good performance with an ammonia removal rate of 87%, N2 selectivity of 77%, and TOC removal rate of 72%. Therefore, this simple and efficient system with Ni foam anode and Cu foam cathode is a promising method for treating ammonia nitrogen wastewater. |
| Author | Wang, Xuanxuan Liu, Na Li, Zhichun Chu, Jiayue Zhu, Wenyan Feng, Mengru Liu, Qing Ding, Zimo Xue, Yuzhou |
| Author_xml | – sequence: 1 givenname: Yuzhou orcidid: 0000-0003-4682-4358 surname: Xue fullname: Xue, Yuzhou – sequence: 2 givenname: Xuanxuan surname: Wang fullname: Wang, Xuanxuan – sequence: 3 givenname: Qing surname: Liu fullname: Liu, Qing – sequence: 4 givenname: Mengru surname: Feng fullname: Feng, Mengru – sequence: 5 givenname: Zimo surname: Ding fullname: Ding, Zimo – sequence: 6 givenname: Jiayue surname: Chu fullname: Chu, Jiayue – sequence: 7 givenname: Wenyan surname: Zhu fullname: Zhu, Wenyan – sequence: 8 givenname: Na surname: Liu fullname: Liu, Na – sequence: 9 givenname: Zhichun surname: Li fullname: Li, Zhichun |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39007316$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkctP3DAQxq2Kqiy0t54rH0FqqF9x4mO1KmUlBJf2bPkxWYySmNqOgP--XhY4IE72jL75zeM7QgdznAGhr5ScMSrlj_tczhhhokbiA1pRpWSjOs4O0IqwjjeUMX6IjnK-JYR0XJBP6JCr3ZfKFZo2M86hLBhGcCXFZgszJFPA46twcn1xynB-rJltyCU4fB_KDV4v2JlyEz3gEvFdilMsgH1IlYDNNMU5GBwfgjclxHmnmUNFV_Jn9HEwY4Yvz-8x-nv-68_6orm8_r1Z_7xsHFdtaSRIsJIZIlkrlOgU7y0x1veiHZgVhojeUyGlpF3LiRiYaltjpBBMUaOI5Mdos-f6aG71XQqTSY86mqCfEjFttUl1nxE08QMjtmvBD1Y4PijXAVGtoJL01gJU1smeVRf9t0AuegrZwTiaGeKSNSd97SjrPFX67Vm62An8a-OXc1cB2wtcijknGLQL5elKJZkwakr0zlNdPdU7T2skatH3N0Uv3Hfl_wH2kqHt |
| CitedBy_id | crossref_primary_10_1007_s10008_025_06213_4 crossref_primary_10_1016_j_jallcom_2024_177286 |
| Cites_doi | 10.1021/acsestwater.2c00127 10.2166/wst.2021.030 10.1038/s41467-023-36322-5 10.34311/jics.2020.03.1.17 10.1016/j.apcatb.2023.122544 10.1016/j.nanoen.2020.105528 10.1021/acsestengg.0c00186 10.1016/j.scitotenv.2023.163938 10.1021/acs.inorgchem.2c04440 10.1016/j.elecom.2009.10.026 10.1016/j.gca.2021.09.012 10.3390/ijerph16162931 10.1002/sstr.202200308 10.1016/j.electacta.2021.139480 10.1149/2.1051709jes 10.1016/j.cej.2021.129461 10.1016/j.watres.2023.119914 10.1016/j.ijhydene.2019.11.071 10.1016/j.watres.2022.119531 10.1016/j.apsusc.2021.149007 10.1021/jp4048874 10.1021/acs.est.2c03701 10.1016/j.apcatb.2022.121811 10.2166/wst.2021.261 10.1016/j.ijhydene.2020.03.094 10.1021/acsenvironau.2c00028 10.2166/wst.2021.421 10.1016/j.jwpe.2021.102501 10.1016/j.scitotenv.2022.161361 10.1002/smll.202300467 10.1016/j.electacta.2018.05.169 10.1016/j.electacta.2018.01.045 10.1021/acscatal.0c05247 10.1021/acs.est.2c05735 10.1016/j.electacta.2011.07.078 10.1007/s12274-021-3665-8 10.1039/D1TA02341A 10.1016/j.jcis.2023.05.184 10.1016/j.jece.2023.110608 10.1016/j.scitotenv.2021.147972 10.1016/j.apsusc.2019.144065 10.1002/ceat.202200118 10.1021/acssuschemeng.2c00740 10.1016/j.scitotenv.2023.162603 10.1016/j.scitotenv.2021.146035 10.2166/wst.2013.262 10.1016/j.chemosphere.2023.139027 10.1021/acscatal.3c00032 10.1016/j.jenvman.2022.115162 10.1016/j.scitotenv.2023.165169 10.1016/S1872-2067(18)63194-8 10.1016/j.jpowsour.2021.230463 10.1016/j.cej.2022.139370 10.1016/j.cattod.2020.09.024 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/). |
| Copyright_xml | – notice: 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/). |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
| DOI | 10.2166/wst.2024.214 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1996-9732 |
| EndPage | 237 |
| ExternalDocumentID | oai_doaj_org_article_0df20b75edfb4c3f9c7e09541608bbee 39007316 10_2166_wst_2024_214 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Suzhou University Startup Foundation for Doctor grantid: 2021BSK042 |
| GroupedDBID | --- -~X 0R~ 123 4.4 53G 7X7 88E 8CJ 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJVE AAYXX ABFYC ABJCF ABLGR ABUWG ACGFO ACIWK AECGI AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ BHPHI BKSAR BPHCQ BVXVI CCPQU CITATION CS3 D1J DU5 F5P FDB FYUFA GEUZO GROUPED_DOAJ H13 HCIFZ HFPTO HMCUK HZ~ L6V L7B M1P M7S O9- OK1 P2P PCBAR PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS R0Z RHI SJN TN5 UKHRP Y6R ~02 --K 1B1 29R 3V. AAEDT AALRI AAQXK AAXUO ABWVN ABYZJ ACRPL ADMUD ADNMO AGVJA AITUG ALIPV CGR CUY CVF EBS ECM EIF EJD FEDTE FGOYB HVGLF IHE M41 NPM NQ- R2- RHY RIG ROL RPZ UAO UHS ~KM 7X8 PUEGO |
| ID | FETCH-LOGICAL-c395t-6e6eb62a06254947938b0abd845f2b4a048d14666175304f2955aa644291a9063 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001258290800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0273-1223 |
| IngestDate | Fri Oct 03 12:50:53 EDT 2025 Sun Sep 28 07:16:40 EDT 2025 Wed Feb 19 02:04:06 EST 2025 Tue Nov 18 22:32:09 EST 2025 Sat Nov 29 01:31:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | selectivity coupling effect direct electrochemical ammonia oxidation nitrogen cycle goose-raising wastewater N |
| Language | English |
| License | 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c395t-6e6eb62a06254947938b0abd845f2b4a048d14666175304f2955aa644291a9063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4682-4358 |
| OpenAccessLink | https://doaj.org/article/0df20b75edfb4c3f9c7e09541608bbee |
| PMID | 39007316 |
| PQID | 3080636146 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0df20b75edfb4c3f9c7e09541608bbee proquest_miscellaneous_3080636146 pubmed_primary_39007316 crossref_citationtrail_10_2166_wst_2024_214 crossref_primary_10_2166_wst_2024_214 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 2024-Jul 20240701 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Water science and technology |
| PublicationTitleAlternate | Water Sci Technol |
| PublicationYear | 2024 |
| Publisher | IWA Publishing |
| Publisher_xml | – name: IWA Publishing |
| References | key-10.2166/wst.2024.214-8 key-10.2166/wst.2024.214-7 key-10.2166/wst.2024.214-6 key-10.2166/wst.2024.214-5 key-10.2166/wst.2024.214-4 key-10.2166/wst.2024.214-3 key-10.2166/wst.2024.214-2 key-10.2166/wst.2024.214-1 key-10.2166/wst.2024.214-31 key-10.2166/wst.2024.214-30 key-10.2166/wst.2024.214-9 key-10.2166/wst.2024.214-24 key-10.2166/wst.2024.214-23 key-10.2166/wst.2024.214-21 Kuang (key-10.2166/wst.2024.214-22) 2022; 57 key-10.2166/wst.2024.214-28 key-10.2166/wst.2024.214-27 key-10.2166/wst.2024.214-26 key-10.2166/wst.2024.214-25 key-10.2166/wst.2024.214-29 key-10.2166/wst.2024.214-42 key-10.2166/wst.2024.214-41 key-10.2166/wst.2024.214-40 key-10.2166/wst.2024.214-35 key-10.2166/wst.2024.214-34 key-10.2166/wst.2024.214-33 key-10.2166/wst.2024.214-32 key-10.2166/wst.2024.214-39 key-10.2166/wst.2024.214-38 key-10.2166/wst.2024.214-36 key-10.2166/wst.2024.214-53 key-10.2166/wst.2024.214-52 key-10.2166/wst.2024.214-51 key-10.2166/wst.2024.214-50 key-10.2166/wst.2024.214-46 key-10.2166/wst.2024.214-45 key-10.2166/wst.2024.214-44 key-10.2166/wst.2024.214-43 key-10.2166/wst.2024.214-49 Song (key-10.2166/wst.2024.214-37) 2021; 9 key-10.2166/wst.2024.214-48 key-10.2166/wst.2024.214-47 key-10.2166/wst.2024.214-20 key-10.2166/wst.2024.214-13 key-10.2166/wst.2024.214-12 key-10.2166/wst.2024.214-11 key-10.2166/wst.2024.214-10 key-10.2166/wst.2024.214-54 key-10.2166/wst.2024.214-17 key-10.2166/wst.2024.214-16 He (key-10.2166/wst.2024.214-15) 2022; 15 key-10.2166/wst.2024.214-14 key-10.2166/wst.2024.214-19 key-10.2166/wst.2024.214-18 |
| References_xml | – ident: key-10.2166/wst.2024.214-8 doi: 10.1021/acsestwater.2c00127 – ident: key-10.2166/wst.2024.214-40 doi: 10.2166/wst.2021.030 – ident: key-10.2166/wst.2024.214-30 doi: 10.1038/s41467-023-36322-5 – ident: key-10.2166/wst.2024.214-21 doi: 10.34311/jics.2020.03.1.17 – ident: key-10.2166/wst.2024.214-50 doi: 10.1016/j.apcatb.2023.122544 – ident: key-10.2166/wst.2024.214-14 doi: 10.1016/j.nanoen.2020.105528 – ident: key-10.2166/wst.2024.214-46 doi: 10.1021/acsestengg.0c00186 – ident: key-10.2166/wst.2024.214-7 doi: 10.1016/j.scitotenv.2023.163938 – ident: key-10.2166/wst.2024.214-16 doi: 10.1021/acs.inorgchem.2c04440 – ident: key-10.2166/wst.2024.214-20 doi: 10.1016/j.elecom.2009.10.026 – ident: key-10.2166/wst.2024.214-29 doi: 10.1016/j.gca.2021.09.012 – ident: key-10.2166/wst.2024.214-43 doi: 10.3390/ijerph16162931 – ident: key-10.2166/wst.2024.214-5 doi: 10.1002/sstr.202200308 – ident: key-10.2166/wst.2024.214-12 doi: 10.1016/j.electacta.2021.139480 – ident: key-10.2166/wst.2024.214-19 doi: 10.1149/2.1051709jes – ident: key-10.2166/wst.2024.214-48 doi: 10.1016/j.cej.2021.129461 – ident: key-10.2166/wst.2024.214-18 doi: 10.1016/j.watres.2023.119914 – ident: key-10.2166/wst.2024.214-3 doi: 10.1016/j.ijhydene.2019.11.071 – ident: key-10.2166/wst.2024.214-11 doi: 10.1016/j.watres.2022.119531 – ident: key-10.2166/wst.2024.214-41 doi: 10.1016/j.apsusc.2021.149007 – ident: key-10.2166/wst.2024.214-35 doi: 10.1021/jp4048874 – ident: key-10.2166/wst.2024.214-17 doi: 10.1021/acs.est.2c03701 – ident: key-10.2166/wst.2024.214-53 doi: 10.1016/j.apcatb.2022.121811 – ident: key-10.2166/wst.2024.214-9 doi: 10.2166/wst.2021.261 – ident: key-10.2166/wst.2024.214-2 doi: 10.1016/j.ijhydene.2020.03.094 – ident: key-10.2166/wst.2024.214-36 doi: 10.1021/acsenvironau.2c00028 – ident: key-10.2166/wst.2024.214-51 doi: 10.2166/wst.2021.421 – ident: key-10.2166/wst.2024.214-49 doi: 10.1016/j.jwpe.2021.102501 – ident: key-10.2166/wst.2024.214-1 doi: 10.1016/j.scitotenv.2022.161361 – ident: key-10.2166/wst.2024.214-13 doi: 10.1002/smll.202300467 – ident: key-10.2166/wst.2024.214-34 doi: 10.1016/j.electacta.2018.05.169 – ident: key-10.2166/wst.2024.214-33 doi: 10.1016/j.electacta.2018.01.045 – ident: key-10.2166/wst.2024.214-42 doi: 10.1021/acscatal.0c05247 – volume: 57 start-page: 18538 year: 2022 ident: key-10.2166/wst.2024.214-22 article-title: A bipolar membrane-integrated electrochlorination process for highly efficient ammonium removal in mature landfill leachate: The importance of ClO• generation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c05735 – ident: key-10.2166/wst.2024.214-6 doi: 10.1016/j.electacta.2011.07.078 – volume: 15 start-page: 1 year: 2022 ident: key-10.2166/wst.2024.214-15 article-title: High entropy spinel oxide for efficient electrochemical oxidation of ammonia publication-title: Nano Res doi: 10.1007/s12274-021-3665-8 – volume: 9 start-page: 14372 year: 2021 ident: key-10.2166/wst.2024.214-37 article-title: Fe-doping induced localized amorphization in ultrathin α-Ni(OH)2 nanomesh for superior oxygen evolution reaction catalysis publication-title: J. Mater. Chem. A doi: 10.1039/D1TA02341A – ident: key-10.2166/wst.2024.214-44 doi: 10.1016/j.jcis.2023.05.184 – ident: key-10.2166/wst.2024.214-4 doi: 10.1016/j.jece.2023.110608 – ident: key-10.2166/wst.2024.214-28 doi: 10.1016/j.scitotenv.2021.147972 – ident: key-10.2166/wst.2024.214-47 doi: 10.1016/j.apsusc.2019.144065 – ident: key-10.2166/wst.2024.214-23 doi: 10.1002/ceat.202200118 – ident: key-10.2166/wst.2024.214-31 doi: 10.1021/acssuschemeng.2c00740 – ident: key-10.2166/wst.2024.214-26 doi: 10.1016/j.scitotenv.2023.162603 – ident: key-10.2166/wst.2024.214-38 doi: 10.1016/j.scitotenv.2021.146035 – ident: key-10.2166/wst.2024.214-10 doi: 10.2166/wst.2013.262 – ident: key-10.2166/wst.2024.214-52 doi: 10.1016/j.chemosphere.2023.139027 – ident: key-10.2166/wst.2024.214-27 doi: 10.1021/acscatal.3c00032 – ident: key-10.2166/wst.2024.214-54 doi: 10.1016/j.jenvman.2022.115162 – ident: key-10.2166/wst.2024.214-25 doi: 10.1016/j.scitotenv.2023.165169 – ident: key-10.2166/wst.2024.214-45 doi: 10.1016/S1872-2067(18)63194-8 – ident: key-10.2166/wst.2024.214-24 doi: 10.1016/j.jpowsour.2021.230463 – ident: key-10.2166/wst.2024.214-32 doi: 10.1016/j.cej.2022.139370 – ident: key-10.2166/wst.2024.214-39 doi: 10.1016/j.cattod.2020.09.024 |
| SSID | ssj0007340 |
| Score | 2.4397695 |
| Snippet | To solve the problem of low removal rate and poor N2 selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as... To solve the problem of low removal rate and poor N selectivity in direct electrochemical ammonia oxidation (EAO), commercial Ni foam and Cu foam were used as... |
| SourceID | doaj proquest pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source |
| StartPage | 225 |
| SubjectTerms | Ammonia - chemistry Copper - chemistry coupling effect direct electrochemical ammonia oxidation Electrochemical Techniques - methods Electrodes goose-raising wastewater Hydroxides - chemistry n2 selectivity Nickel - chemistry Nitrogen - chemistry nitrogen cycle Oxidation-Reduction Waste Disposal, Fluid - methods Wastewater - chemistry Water Pollutants, Chemical - chemistry |
| Title | In situ electro-generated Ni(OH)2 synergistic with Cu cathode to promote direct ammonia oxidation to nitrogen |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39007316 https://www.proquest.com/docview/3080636146 https://doaj.org/article/0df20b75edfb4c3f9c7e09541608bbee |
| Volume | 90 |
| WOSCitedRecordID | wos001258290800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-9732 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0007340 issn: 0273-1223 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1996-9732 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0007340 issn: 0273-1223 databaseCode: PCBAR dateStart: 19820101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1996-9732 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0007340 issn: 0273-1223 databaseCode: M7S dateStart: 19820101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1996-9732 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0007340 issn: 0273-1223 databaseCode: 7X7 dateStart: 19820101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-9732 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0007340 issn: 0273-1223 databaseCode: BENPR dateStart: 19820101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_09EEfRE9P148lgoIi5dI2TZNH79jjBFkPv9i3krSJFLQ9tl0__ntnku56Phy--FJoGdo0M8n8Jpn8BuAZuoja1TZP0trzRCjHE61Lkyj09q7wlquw0f75bblcqtVKn10o9UU5YZEeOHbcIW98xm1ZuMZbUede16VDWIA4gitrnaPZF1HPNpia5uAyF3F1pcRWoAeMKe9ZKuXhj4FSKDOBd-IvZxQ4-y8HmsHhnNyGWxNSZK9jC-_AFdftw80L_IH7cLD4c0wNRadxOtyFb286NrTjhk1VbpIvgV0a0SVbti_enb7M2PCLTv0FmmZGi7HseMOIw7VvHBt7dh7S9ByLLo8ZMtfWsP5nG4swkQzOBuse33wPPp0sPh6fJlNhhaTOdTEm0klnZWa4pPCQ1taU5cY2ShQ-s8LgqG5wBkXXjcEMFz7TRWEMIqdMp0YjqDmAva7v3ANgEpXQCO4zU3gMnlJrjTLeeKU0z1XtZ_Bq28NVPbGOU_GLrxVGH6SPCvVRkT7wTszg-U76PLJtXCJ3RMrayRBHdniAllNNllP9y3Jm8HSr6grHFG2UmM71m6HK0aBkjsBFzuB-tIHdp3JN1pXKh_-jCY_gBv1STP99DHvjeuOewPX6-9gO6zlcLVdluKo5XDtaLM_ez4OZzylD9cNvG0n_ow |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+electro-generated+Ni%28OH%29+2+synergistic+with+Cu+cathode+to+promote+direct+ammonia+oxidation+to+nitrogen&rft.jtitle=Water+science+and+technology&rft.au=Xue%2C+Yuzhou&rft.au=Wang%2C+Xuanxuan&rft.au=Liu%2C+Qing&rft.au=Feng%2C+Mengru&rft.date=2024-07-01&rft.issn=0273-1223&rft.volume=90&rft.issue=1&rft.spage=225&rft_id=info:doi/10.2166%2Fwst.2024.214&rft_id=info%3Apmid%2F39007316&rft.externalDocID=39007316 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1223&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1223&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1223&client=summon |