Self-Distillation: Towards Efficient and Compact Neural Networks

Remarkable achievements have been obtained by deep neural networks in the last several years. However, the breakthrough in neural networks accuracy is always accompanied by explosive growth of computation and parameters, which leads to a severe limitation of model deployment. In this paper, we propo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 44; číslo 8; s. 4388 - 4403
Hlavní autoři: Zhang, Linfeng, Bao, Chenglong, Ma, Kaisheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Remarkable achievements have been obtained by deep neural networks in the last several years. However, the breakthrough in neural networks accuracy is always accompanied by explosive growth of computation and parameters, which leads to a severe limitation of model deployment. In this paper, we propose a novel knowledge distillation technique named self-distillation to address this problem. Self-distillation attaches several attention modules and shallow classifiers at different depths of neural networks and distills knowledge from the deepest classifier to the shallower classifiers. Different from the conventional knowledge distillation methods where the knowledge of the teacher model is transferred to another student model, self-distillation can be considered as knowledge transfer in the same model - from the deeper layers to the shallow layers. Moreover, the additional classifiers in self-distillation allow the neural network to work in a dynamic manner, which leads to a much higher acceleration. Experiments demonstrate that self-distillation has consistent and significant effectiveness on various neural networks and datasets. On average, 3.49 and 2.32 percent accuracy boost are observed on CIFAR100 and ImageNet. Besides, experiments show that self-distillation can be combined with other model compression methods, including knowledge distillation, pruning and lightweight model design.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
1939-3539
DOI:10.1109/TPAMI.2021.3067100