Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis

We consider the frequency domain form of proper orthogonal decomposition (POD), called spectral proper orthogonal decomposition (SPOD). Spectral POD is derived from a space–time POD problem for statistically stationary flows and leads to modes that each oscillate at a single frequency. This form of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics Vol. 847; pp. 821 - 867
Main Authors: Towne, Aaron, Schmidt, Oliver T., Colonius, Tim
Format: Journal Article
Language:English
Published: Cambridge, UK Cambridge University Press 25.07.2018
Subjects:
ISSN:0022-1120, 1469-7645
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the frequency domain form of proper orthogonal decomposition (POD), called spectral proper orthogonal decomposition (SPOD). Spectral POD is derived from a space–time POD problem for statistically stationary flows and leads to modes that each oscillate at a single frequency. This form of POD goes back to the original work of Lumley (Stochastic Tools in Turbulence, Academic Press, 1970), but has been overshadowed by a space-only form of POD since the 1990s. We clarify the relationship between these two forms of POD and show that SPOD modes represent structures that evolve coherently in space and time, while space-only POD modes in general do not. We also establish a relationship between SPOD and dynamic mode decomposition (DMD); we show that SPOD modes are in fact optimally averaged DMD modes obtained from an ensemble DMD problem for stationary flows. Accordingly, SPOD modes represent structures that are dynamic in the same sense as DMD modes but also optimally account for the statistical variability of turbulent flows. Finally, we establish a connection between SPOD and resolvent analysis. The key observation is that the resolvent-mode expansion coefficients must be regarded as statistical quantities to ensure convergent approximations of the flow statistics. When the expansion coefficients are uncorrelated, we show that SPOD and resolvent modes are identical. Our theoretical results and the overall utility of SPOD are demonstrated using two example problems: the complex Ginzburg–Landau equation and a turbulent jet.
AbstractList We consider the frequency domain form of proper orthogonal decomposition (POD), called spectral proper orthogonal decomposition (SPOD). Spectral POD is derived from a space–time POD problem for statistically stationary flows and leads to modes that each oscillate at a single frequency. This form of POD goes back to the original work of Lumley ( Stochastic Tools in Turbulence , Academic Press, 1970), but has been overshadowed by a space-only form of POD since the 1990s. We clarify the relationship between these two forms of POD and show that SPOD modes represent structures that evolve coherently in space and time, while space-only POD modes in general do not. We also establish a relationship between SPOD and dynamic mode decomposition (DMD); we show that SPOD modes are in fact optimally averaged DMD modes obtained from an ensemble DMD problem for stationary flows. Accordingly, SPOD modes represent structures that are dynamic in the same sense as DMD modes but also optimally account for the statistical variability of turbulent flows. Finally, we establish a connection between SPOD and resolvent analysis. The key observation is that the resolvent-mode expansion coefficients must be regarded as statistical quantities to ensure convergent approximations of the flow statistics. When the expansion coefficients are uncorrelated, we show that SPOD and resolvent modes are identical. Our theoretical results and the overall utility of SPOD are demonstrated using two example problems: the complex Ginzburg–Landau equation and a turbulent jet.
We consider the frequency domain form of proper orthogonal decomposition (POD), called spectral proper orthogonal decomposition (SPOD). Spectral POD is derived from a space–time POD problem for statistically stationary flows and leads to modes that each oscillate at a single frequency. This form of POD goes back to the original work of Lumley (Stochastic Tools in Turbulence, Academic Press, 1970), but has been overshadowed by a space-only form of POD since the 1990s. We clarify the relationship between these two forms of POD and show that SPOD modes represent structures that evolve coherently in space and time, while space-only POD modes in general do not. We also establish a relationship between SPOD and dynamic mode decomposition (DMD); we show that SPOD modes are in fact optimally averaged DMD modes obtained from an ensemble DMD problem for stationary flows. Accordingly, SPOD modes represent structures that are dynamic in the same sense as DMD modes but also optimally account for the statistical variability of turbulent flows. Finally, we establish a connection between SPOD and resolvent analysis. The key observation is that the resolvent-mode expansion coefficients must be regarded as statistical quantities to ensure convergent approximations of the flow statistics. When the expansion coefficients are uncorrelated, we show that SPOD and resolvent modes are identical. Our theoretical results and the overall utility of SPOD are demonstrated using two example problems: the complex Ginzburg–Landau equation and a turbulent jet.
Author Colonius, Tim
Towne, Aaron
Schmidt, Oliver T.
Author_xml – sequence: 1
  givenname: Aaron
  orcidid: 0000-0002-7315-5375
  surname: Towne
  fullname: Towne, Aaron
  email: atowne@stanford.edu
  organization: Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA
– sequence: 2
  givenname: Oliver T.
  orcidid: 0000-0002-7097-0235
  surname: Schmidt
  fullname: Schmidt, Oliver T.
  organization: California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 3
  givenname: Tim
  surname: Colonius
  fullname: Colonius, Tim
  organization: California Institute of Technology, Pasadena, CA 91125, USA
BackLink https://www.osti.gov/biblio/1538911$$D View this record in Osti.gov
BookMark eNp1kF1LwzAUhoMouKl3_oCit3bmJG3XXMrwCwZeqNchS0-3jDapSSbs35s5QZB5FXJ43uS8z5gcW2eRkEugE6AwvV23_YRRqCes5kdkBEUl8mlVlMdkRCljOQCjp2QcwppS4FRMR8S_DqijV102eDegz5yPK7d0Nk0a1K4fXDDROJsp22Qmhsxjp3aDsDJDFl3WbK3qjc561-CBiMfguk-0Md1Utw0mnJOTVnUBL37OM_L-cP82e8rnL4_Ps7t5rrkoY14qXrBSVKIRVPC2Bg66xYoJiliLtmRUpxaqAFgUQMtWM6gWQiuBixZ5pfgZudq_60I0MmgTUa-0szYVllDyWgAk6HoPpfofGwxRrt3Gp02DZIyKuuKMlYm62VPauxA8tnLwpld-K4HKnXqZ1MudepnUJ5z9wdPn39KSadP9F5r8hFS_8KZZ4u8qBwNfVcmaig
CitedBy_id crossref_primary_10_1017_jfm_2021_133
crossref_primary_10_1063_5_0082640
crossref_primary_10_1016_j_euromechflu_2020_06_012
crossref_primary_10_1016_j_jweia_2022_105142
crossref_primary_10_1038_s41598_024_69837_y
crossref_primary_10_1063_5_0265401
crossref_primary_10_1016_j_ast_2023_108427
crossref_primary_10_1007_s00348_023_03758_w
crossref_primary_10_1088_1361_6463_adfa2f
crossref_primary_10_3390_en13071660
crossref_primary_10_1016_j_jweia_2022_105149
crossref_primary_10_1134_S1063771024601717
crossref_primary_10_1016_j_compfluid_2020_104628
crossref_primary_10_4271_01_18_01_0002
crossref_primary_10_2514_1_J060895
crossref_primary_10_1007_s00348_023_03648_1
crossref_primary_10_1017_jfm_2020_321
crossref_primary_10_1109_TPAMI_2025_3576719
crossref_primary_10_1017_jfm_2020_445
crossref_primary_10_1017_jfm_2020_566
crossref_primary_10_1088_1361_6501_ab82be
crossref_primary_10_1017_jfm_2020_323
crossref_primary_10_1017_jfm_2021_263
crossref_primary_10_1016_j_jsv_2024_118786
crossref_primary_10_2514_1_J058462
crossref_primary_10_1063_5_0079587
crossref_primary_10_3390_en13092134
crossref_primary_10_1121_10_0003570
crossref_primary_10_1016_j_cpc_2025_109771
crossref_primary_10_1007_s00162_024_00703_3
crossref_primary_10_1016_j_ast_2022_108013
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104286
crossref_primary_10_1063_5_0230522
crossref_primary_10_1017_jfm_2020_435
crossref_primary_10_2514_1_J059685
crossref_primary_10_1088_1361_6501_ad3a85
crossref_primary_10_1016_j_compfluid_2019_01_020
crossref_primary_10_1016_j_ymssp_2025_112876
crossref_primary_10_1364_AO_489897
crossref_primary_10_3389_fcvm_2023_1221541
crossref_primary_10_3390_en17112782
crossref_primary_10_1016_j_ijheatfluidflow_2025_110070
crossref_primary_10_1017_jfm_2024_70
crossref_primary_10_2514_1_J065095
crossref_primary_10_1177_1475472X221150173
crossref_primary_10_1017_jfm_2021_232
crossref_primary_10_1016_j_jcp_2022_111495
crossref_primary_10_1017_jfm_2021_118
crossref_primary_10_3390_en15228415
crossref_primary_10_1016_j_proci_2022_07_115
crossref_primary_10_1007_s00348_018_2655_4
crossref_primary_10_2514_1_J065099
crossref_primary_10_1017_jfm_2024_71
crossref_primary_10_1007_s11071_020_06037_z
crossref_primary_10_1016_j_eswa_2022_117038
crossref_primary_10_1017_jfm_2020_105
crossref_primary_10_3390_en16207176
crossref_primary_10_1007_s00348_021_03170_2
crossref_primary_10_1017_jfm_2019_893
crossref_primary_10_1016_j_enconman_2021_115121
crossref_primary_10_1017_jfm_2025_48
crossref_primary_10_1017_jfm_2021_1017
crossref_primary_10_1017_jfm_2021_364
crossref_primary_10_1007_s00162_024_00704_2
crossref_primary_10_1007_s12650_024_01000_1
crossref_primary_10_1016_j_ijheatfluidflow_2025_110066
crossref_primary_10_1016_j_oceaneng_2025_121910
crossref_primary_10_1017_jfm_2022_1052
crossref_primary_10_1017_jfm_2019_522
crossref_primary_10_1017_jfm_2019_762
crossref_primary_10_2514_1_J060880
crossref_primary_10_1016_j_ast_2024_109809
crossref_primary_10_1017_jfm_2019_881
crossref_primary_10_1016_j_combustflame_2021_111695
crossref_primary_10_1121_10_0005727
crossref_primary_10_2514_1_J059425
crossref_primary_10_1063_5_0279823
crossref_primary_10_1063_5_0275588
crossref_primary_10_1017_jfm_2021_1123
crossref_primary_10_1007_s00162_024_00717_x
crossref_primary_10_1007_s42241_024_0030_x
crossref_primary_10_1017_jfm_2021_697
crossref_primary_10_1088_1742_6596_1522_1_012006
crossref_primary_10_1017_jfm_2021_337
crossref_primary_10_1016_j_renene_2022_01_042
crossref_primary_10_1016_j_jweia_2023_105506
crossref_primary_10_1063_5_0284085
crossref_primary_10_1016_j_euromechflu_2022_03_009
crossref_primary_10_1017_jfm_2022_133
crossref_primary_10_1017_jfm_2019_358
crossref_primary_10_1016_j_buildenv_2022_109047
crossref_primary_10_1051_jnwpu_20203810121
crossref_primary_10_1017_jfm_2022_376
crossref_primary_10_1017_jfm_2019_112
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104917
crossref_primary_10_1017_jfm_2018_675
crossref_primary_10_3389_fphy_2024_1492793
crossref_primary_10_5194_wes_10_1403_2025
crossref_primary_10_1016_j_oceaneng_2023_115714
crossref_primary_10_1088_1742_6596_1618_6_062070
crossref_primary_10_2514_1_B39592
crossref_primary_10_1007_s00162_021_00595_7
crossref_primary_10_3390_s22020657
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105272
crossref_primary_10_3390_math9141690
crossref_primary_10_1016_j_ast_2023_108118
crossref_primary_10_1007_s00348_024_03875_0
crossref_primary_10_1017_jfm_2022_390
crossref_primary_10_1063_5_0219956
crossref_primary_10_1063_5_0264361
crossref_primary_10_3390_en14248206
crossref_primary_10_2514_1_J060621
crossref_primary_10_1017_jfm_2020_999
crossref_primary_10_2514_1_J061832
crossref_primary_10_1016_j_ijheatfluidflow_2024_109605
crossref_primary_10_1017_jfm_2022_266
crossref_primary_10_1017_jfm_2021_351
crossref_primary_10_1016_j_ast_2024_109855
crossref_primary_10_2514_1_J064083
crossref_primary_10_1007_s00162_022_00626_x
crossref_primary_10_1063_5_0186871
crossref_primary_10_2514_1_A36221
crossref_primary_10_1016_j_jsv_2023_118085
crossref_primary_10_2514_1_J065055
crossref_primary_10_1017_jfm_2020_546
crossref_primary_10_1007_s00158_022_03383_x
crossref_primary_10_1017_jfm_2019_212
crossref_primary_10_1016_j_ast_2021_106908
crossref_primary_10_1017_jfm_2020_301
crossref_primary_10_1016_j_cpc_2024_109246
crossref_primary_10_1017_jfm_2021_681
crossref_primary_10_1017_jfm_2023_275
crossref_primary_10_2514_1_A36333
crossref_primary_10_1016_j_oceaneng_2023_114965
crossref_primary_10_1017_jfm_2023_171
crossref_primary_10_1016_j_ast_2023_108578
crossref_primary_10_1017_jfm_2021_448
crossref_primary_10_1017_jfm_2021_324
crossref_primary_10_1017_jfm_2021_445
crossref_primary_10_1017_jfm_2021_566
crossref_primary_10_3390_aerospace11070506
crossref_primary_10_1016_j_jweia_2023_105512
crossref_primary_10_1017_jfm_2024_198
crossref_primary_10_1063_5_0217519
crossref_primary_10_2514_1_J064097
crossref_primary_10_1017_jfm_2020_898
crossref_primary_10_1016_j_ijheatfluidflow_2022_109101
crossref_primary_10_1017_jfm_2019_200
crossref_primary_10_1017_jfm_2020_412
crossref_primary_10_1063_5_0257614
crossref_primary_10_3390_ijtpp7040037
crossref_primary_10_1017_jfm_2021_1073
crossref_primary_10_1007_s10494_024_00623_6
crossref_primary_10_1175_MWR_D_18_0337_1
crossref_primary_10_2514_1_J057889
crossref_primary_10_1016_j_jweia_2020_104213
crossref_primary_10_2514_1_J064066
crossref_primary_10_1103_PhysRevFluids_10_034609
crossref_primary_10_1016_j_cma_2025_118393
crossref_primary_10_1016_j_jcp_2023_111909
crossref_primary_10_2514_1_J064185
crossref_primary_10_1121_10_0009160
crossref_primary_10_1063_5_0028838
crossref_primary_10_1146_annurev_control_053018_023843
crossref_primary_10_3390_fractalfract5040181
crossref_primary_10_1007_s10546_019_00468_x
crossref_primary_10_1007_s00162_023_00670_1
crossref_primary_10_1007_s10494_023_00424_3
crossref_primary_10_1017_jfm_2023_376
crossref_primary_10_1016_j_jcp_2022_111744
crossref_primary_10_1016_j_ast_2024_108896
crossref_primary_10_2514_1_J064190
crossref_primary_10_1017_jfm_2025_10321
crossref_primary_10_1007_s00162_017_0444_y
crossref_primary_10_1063_5_0226443
crossref_primary_10_2514_1_J064198
crossref_primary_10_1155_2022_3269604
crossref_primary_10_1103_PhysRevFluids_7_014606
crossref_primary_10_1017_jfm_2024_174
crossref_primary_10_1016_j_oceaneng_2024_117197
crossref_primary_10_1017_jfm_2022_230
crossref_primary_10_1017_jfm_2022_9
crossref_primary_10_1017_jfm_2022_471
crossref_primary_10_1017_jfm_2022_102
crossref_primary_10_1017_jfm_2020_833
crossref_primary_10_1007_s00332_023_09994_y
crossref_primary_10_1017_jfm_2022_225
crossref_primary_10_2514_1_J058633
crossref_primary_10_2514_1_J059963
crossref_primary_10_1016_j_ijheatfluidflow_2020_108677
crossref_primary_10_1016_j_cpc_2024_109432
crossref_primary_10_1016_j_jcp_2024_112822
crossref_primary_10_1017_jfm_2021_671
crossref_primary_10_1061_JOEEDU_EEENG_7927
crossref_primary_10_1016_j_ast_2023_108281
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105266
crossref_primary_10_1017_jfm_2021_994
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105146
crossref_primary_10_1017_jfm_2021_1096
crossref_primary_10_1063_5_0065929
crossref_primary_10_1017_jfm_2024_288
crossref_primary_10_1017_jfm_2025_10536
crossref_primary_10_2514_1_J064167
crossref_primary_10_1016_j_compfluid_2024_106307
crossref_primary_10_1017_jfm_2025_10414
crossref_primary_10_1016_j_taml_2024_100497
crossref_primary_10_2514_1_J057870
crossref_primary_10_3390_pr10050812
crossref_primary_10_1017_jfm_2017_659
crossref_primary_10_1016_j_paerosci_2024_100996
crossref_primary_10_1007_s00348_018_2599_8
crossref_primary_10_1038_s41467_025_58880_6
crossref_primary_10_1017_jfm_2022_318
crossref_primary_10_1017_jfm_2023_234
crossref_primary_10_1016_j_ijheatfluidflow_2020_108662
crossref_primary_10_1017_jfm_2023_354
crossref_primary_10_1017_jfm_2023_111
crossref_primary_10_1016_j_cma_2022_115737
crossref_primary_10_1016_j_cja_2024_03_015
crossref_primary_10_1007_s00162_022_00617_y
crossref_primary_10_1017_jfm_2021_887
crossref_primary_10_1007_s00162_024_00700_6
crossref_primary_10_1103_PhysRevFluids_10_064611
crossref_primary_10_1017_jfm_2021_764
crossref_primary_10_1016_j_cma_2025_118382
crossref_primary_10_1016_j_jfluidstructs_2022_103515
crossref_primary_10_1017_jfm_2025_10423
crossref_primary_10_1017_jfm_2025_10544
crossref_primary_10_1017_jfm_2024_281
crossref_primary_10_1017_jfm_2024_280
crossref_primary_10_1038_s42005_020_00466_3
crossref_primary_10_1007_s10494_025_00662_7
crossref_primary_10_1016_j_cpc_2024_109459
crossref_primary_10_1017_jfm_2019_365
crossref_primary_10_1063_5_0212389
crossref_primary_10_1137_21M1401243
crossref_primary_10_1017_jfm_2023_127
crossref_primary_10_1061__ASCE_HY_1943_7900_0001856
crossref_primary_10_1007_s00348_020_2940_x
crossref_primary_10_1016_j_ifacol_2023_10_1075
crossref_primary_10_3390_su14063308
crossref_primary_10_1115_1_4065963
crossref_primary_10_1016_j_jfluidstructs_2025_104315
crossref_primary_10_1007_s10494_024_00546_2
crossref_primary_10_1063_5_0216830
crossref_primary_10_1007_s10546_021_00676_4
crossref_primary_10_1007_s00162_021_00588_6
crossref_primary_10_1063_5_0281770
crossref_primary_10_5802_crmeca_193
crossref_primary_10_1017_jfm_2019_196
crossref_primary_10_1017_jfm_2020_929
crossref_primary_10_1016_j_jcp_2025_114037
crossref_primary_10_1017_jfm_2020_802
crossref_primary_10_1177_1475472X221107359
crossref_primary_10_1017_jfm_2021_1142
crossref_primary_10_1007_s00348_024_03808_x
crossref_primary_10_1016_j_ast_2023_108198
crossref_primary_10_1016_j_ast_2025_110835
crossref_primary_10_3390_aerospace9110716
crossref_primary_10_1017_jfm_2024_376
crossref_primary_10_1177_1475472X231152608
crossref_primary_10_2514_1_J064036
crossref_primary_10_1063_5_0267115
crossref_primary_10_1088_1742_6596_1909_1_012009
crossref_primary_10_1111_mice_70025
crossref_primary_10_2514_1_B39078
crossref_primary_10_2514_1_J062093
crossref_primary_10_1017_jfm_2022_790
crossref_primary_10_1017_jfm_2022_661
crossref_primary_10_1016_j_ijheatfluidflow_2023_109224
crossref_primary_10_2514_1_J065119
crossref_primary_10_1007_s10409_024_24082_x
crossref_primary_10_1016_j_actaastro_2024_11_039
crossref_primary_10_1016_j_ijheatfluidflow_2023_109229
crossref_primary_10_1016_j_jfluidstructs_2021_103325
crossref_primary_10_1016_j_ces_2023_118881
crossref_primary_10_1063_1_5144978
crossref_primary_10_1007_s00162_024_00733_x
crossref_primary_10_1007_s00348_022_03449_y
crossref_primary_10_1007_s10494_023_00415_4
crossref_primary_10_1017_jfm_2021_1147
crossref_primary_10_1017_jfm_2020_918
crossref_primary_10_1017_jfm_2022_549
crossref_primary_10_1016_j_apacoust_2022_108777
crossref_primary_10_1007_s00162_022_00605_2
crossref_primary_10_1016_j_jcp_2023_111950
crossref_primary_10_1017_jfm_2023_680
crossref_primary_10_1007_s12650_022_00902_2
crossref_primary_10_1016_j_ast_2023_108286
crossref_primary_10_1016_j_oceaneng_2023_115521
crossref_primary_10_1016_j_combustflame_2024_113661
crossref_primary_10_1016_j_wavemoti_2021_102879
crossref_primary_10_1109_ACCESS_2020_3006483
crossref_primary_10_1016_j_jweia_2025_106013
crossref_primary_10_1016_j_advwatres_2024_104834
crossref_primary_10_1063_5_0271747
crossref_primary_10_1017_jfm_2021_834
crossref_primary_10_1063_5_0156942
crossref_primary_10_1016_j_ast_2024_109219
crossref_primary_10_1017_jfm_2021_718
crossref_primary_10_1017_jfm_2022_991
crossref_primary_10_1016_j_cpc_2024_109406
crossref_primary_10_1016_j_ijheatfluidflow_2023_109114
crossref_primary_10_1088_2515_7639_ab291e
crossref_primary_10_1016_j_compfluid_2025_106797
crossref_primary_10_5194_os_21_807_2025
crossref_primary_10_1016_j_flowmeasinst_2023_102483
crossref_primary_10_1017_jfm_2019_176
crossref_primary_10_1017_jfm_2022_996
crossref_primary_10_1017_jfm_2023_435
crossref_primary_10_1017_jfm_2020_707
crossref_primary_10_1017_jfm_2023_313
crossref_primary_10_1098_rspa_2024_0888
crossref_primary_10_3390_fluids8060184
crossref_primary_10_1016_j_ijheatfluidflow_2019_108524
crossref_primary_10_1017_jfm_2023_431
crossref_primary_10_1063_5_0267374
crossref_primary_10_2514_1_J058809
crossref_primary_10_1016_j_epsr_2025_111867
crossref_primary_10_1061_JAEEEZ_ASENG_6032
crossref_primary_10_1017_jfm_2024_356
crossref_primary_10_1007_s00348_020_03057_8
crossref_primary_10_3390_aerospace11040291
crossref_primary_10_1002_fld_4815
crossref_primary_10_3390_rs16214110
crossref_primary_10_1016_j_jfluidstructs_2021_103428
crossref_primary_10_1103_PhysRevFluids_6_084804
crossref_primary_10_1016_j_jsv_2023_117846
crossref_primary_10_1017_jfm_2022_647
crossref_primary_10_1016_j_jsv_2023_117724
crossref_primary_10_1017_jfm_2020_817
crossref_primary_10_1121_10_0036640
crossref_primary_10_1017_jfm_2023_565
crossref_primary_10_1016_j_jcp_2022_111672
crossref_primary_10_1017_jfm_2022_769
crossref_primary_10_1016_j_jsv_2023_117840
crossref_primary_10_1017_jfm_2023_321
crossref_primary_10_1063_5_0278133
crossref_primary_10_1017_jfm_2025_10276
crossref_primary_10_1007_s10665_024_10340_8
crossref_primary_10_1016_j_combustflame_2025_114298
crossref_primary_10_1007_s00162_023_00649_y
crossref_primary_10_1007_s10409_021_01092_0
crossref_primary_10_1016_j_buildenv_2025_113500
crossref_primary_10_1017_jfm_2024_100
crossref_primary_10_3390_app14188455
crossref_primary_10_1016_j_rineng_2024_102070
crossref_primary_10_1016_j_applthermaleng_2025_127506
crossref_primary_10_1017_jfm_2023_539
crossref_primary_10_1017_jfm_2025_269
crossref_primary_10_1017_jfm_2022_610
crossref_primary_10_2514_1_J062159
crossref_primary_10_1016_j_ijheatfluidflow_2024_109374
crossref_primary_10_1007_s00348_024_03835_8
crossref_primary_10_1016_j_ijheatfluidflow_2025_109892
crossref_primary_10_1016_j_jsv_2025_119352
crossref_primary_10_1017_jfm_2023_530
crossref_primary_10_1146_annurev_fluid_010719_060244
crossref_primary_10_1017_aer_2023_115
crossref_primary_10_1017_jfm_2021_822
crossref_primary_10_3390_fluids6110384
crossref_primary_10_1017_jfm_2020_1175
crossref_primary_10_2514_1_J061087
crossref_primary_10_1017_jfm_2019_1063
crossref_primary_10_1016_j_renene_2021_09_025
crossref_primary_10_2514_1_J057938
crossref_primary_10_1007_s10546_025_00922_z
crossref_primary_10_2514_1_G004339
crossref_primary_10_2514_1_J065318
crossref_primary_10_1017_jfm_2023_1012
crossref_primary_10_1007_s11071_024_09554_3
crossref_primary_10_1017_jfm_2023_423
crossref_primary_10_1016_j_apacoust_2022_108739
crossref_primary_10_1017_jfm_2025_10170
crossref_primary_10_1063_5_0284948
crossref_primary_10_1098_rspa_2024_0658
crossref_primary_10_1017_jfm_2023_783
crossref_primary_10_1017_jfm_2021_18
crossref_primary_10_1063_5_0223207
crossref_primary_10_1017_jfm_2024_209
crossref_primary_10_1017_jfm_2025_10496
crossref_primary_10_1016_j_cma_2023_116038
crossref_primary_10_1007_s00162_022_00609_y
crossref_primary_10_1017_jfm_2024_449
crossref_primary_10_1061_JAEEEZ_ASENG_5154
crossref_primary_10_1017_jfm_2023_1027
crossref_primary_10_2514_1_J061176
crossref_primary_10_1017_jfm_2020_1168
crossref_primary_10_1007_s00348_019_2783_5
crossref_primary_10_1016_j_oceaneng_2025_122463
crossref_primary_10_2514_1_J064436
crossref_primary_10_1016_j_buildenv_2021_108379
crossref_primary_10_1016_j_combustflame_2022_112179
crossref_primary_10_1017_jfm_2020_34
crossref_primary_10_1016_j_ijheatfluidflow_2025_109872
crossref_primary_10_1016_j_ijheatfluidflow_2024_109353
crossref_primary_10_1016_j_ijhydene_2024_01_009
crossref_primary_10_1016_j_scs_2024_105843
crossref_primary_10_1016_j_ijheatfluidflow_2025_109990
crossref_primary_10_3390_fluids6090332
crossref_primary_10_1088_1361_6501_acaffe
crossref_primary_10_1017_jfm_2024_314
crossref_primary_10_1017_jfm_2023_1035
crossref_primary_10_1155_2022_5440457
crossref_primary_10_1017_jfm_2023_1037
crossref_primary_10_1017_jfm_2024_551
crossref_primary_10_1186_s42774_023_00148_y
crossref_primary_10_1002_we_2592
crossref_primary_10_1016_j_engstruct_2021_112691
crossref_primary_10_3390_ijtpp6020011
crossref_primary_10_1017_jfm_2019_48
crossref_primary_10_1016_j_ast_2025_110770
crossref_primary_10_1017_jfm_2022_603
crossref_primary_10_1371_journal_pone_0289637
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118972
crossref_primary_10_1017_jfm_2023_641
crossref_primary_10_1177_17568277231209133
crossref_primary_10_1016_j_jsv_2025_119102
crossref_primary_10_1017_jfm_2025_235
crossref_primary_10_1103_PhysRevFluids_6_094401
crossref_primary_10_1063_5_0258100
crossref_primary_10_1088_1742_6596_2753_1_012021
crossref_primary_10_1088_1742_6596_2753_1_012020
crossref_primary_10_1016_j_ast_2024_109278
crossref_primary_10_1016_j_proci_2020_08_059
crossref_primary_10_1063_5_0221343
crossref_primary_10_1017_jfm_2024_300
crossref_primary_10_2514_1_J062362
crossref_primary_10_1016_j_fuel_2019_05_107
crossref_primary_10_1063_5_0269360
crossref_primary_10_1007_s00162_024_00688_z
crossref_primary_10_1016_j_powtec_2021_11_038
crossref_primary_10_1007_s00162_019_00513_y
crossref_primary_10_1007_s00162_024_00699_w
crossref_primary_10_1016_j_combustflame_2023_112999
crossref_primary_10_2514_1_J063327
crossref_primary_10_2514_1_J064779
crossref_primary_10_1007_s10494_021_00297_4
crossref_primary_10_1115_1_4069491
crossref_primary_10_1016_j_expthermflusci_2023_111113
crossref_primary_10_1016_j_ast_2020_106276
crossref_primary_10_1016_j_jfluidstructs_2025_104283
crossref_primary_10_1016_j_compfluid_2022_105761
crossref_primary_10_1016_j_oceaneng_2023_116003
crossref_primary_10_1109_TIP_2024_3468894
crossref_primary_10_1017_jfm_2019_903
crossref_primary_10_1017_jfm_2024_532
crossref_primary_10_1007_s11071_020_05833_x
crossref_primary_10_1017_jfm_2025_10246
crossref_primary_10_1063_5_0060489
crossref_primary_10_2514_1_J064308
crossref_primary_10_1017_jfm_2021_908
crossref_primary_10_1016_j_buildenv_2024_112466
crossref_primary_10_1017_jfm_2023_867
crossref_primary_10_2514_1_J062247
crossref_primary_10_3390_fluids10040084
crossref_primary_10_1016_j_oceaneng_2025_122356
crossref_primary_10_1017_jfm_2019_27
crossref_primary_10_1063_5_0292129
crossref_primary_10_1007_s00348_022_03395_9
crossref_primary_10_1016_j_jcp_2024_112866
crossref_primary_10_1017_jfm_2025_10490
crossref_primary_10_1098_rsta_2021_0199
crossref_primary_10_1103_PhysRevFluids_10_024602
crossref_primary_10_1103_PhysRevFluids_8_064612
crossref_primary_10_1016_j_ast_2022_107997
crossref_primary_10_1137_20M1338058
crossref_primary_10_3390_math10152639
crossref_primary_10_1007_s00162_024_00689_y
crossref_primary_10_1017_jfm_2025_10456
crossref_primary_10_1016_j_combustflame_2022_112016
crossref_primary_10_1007_s00348_023_03707_7
crossref_primary_10_2514_1_J063543
crossref_primary_10_2514_1_J064996
crossref_primary_10_1017_jfm_2023_1065
crossref_primary_10_1017_jfm_2023_713
crossref_primary_10_1016_j_combustflame_2023_112652
crossref_primary_10_1017_jfm_2023_1067
crossref_primary_10_1017_jfm_2023_952
crossref_primary_10_1007_s10494_023_00423_4
crossref_primary_10_1016_j_combustflame_2020_10_033
crossref_primary_10_1016_j_taml_2025_100619
crossref_primary_10_1063_5_0054701
crossref_primary_10_1016_j_ijhydene_2024_02_074
crossref_primary_10_1016_j_jfluidstructs_2021_103390
crossref_primary_10_3390_fluids7070251
crossref_primary_10_1002_asl_1279
crossref_primary_10_1088_1755_1315_774_1_012097
crossref_primary_10_1017_jfm_2025_10229
crossref_primary_10_1007_s00162_025_00760_2
crossref_primary_10_1016_j_ces_2024_120048
crossref_primary_10_1016_j_expthermflusci_2023_111021
crossref_primary_10_1007_s10546_022_00724_7
crossref_primary_10_1016_j_euromechflu_2025_204341
crossref_primary_10_1016_j_jweia_2021_104858
crossref_primary_10_1109_TGRS_2022_3203512
crossref_primary_10_1063_5_0270253
crossref_primary_10_1017_flo_2023_26
crossref_primary_10_1121_10_0006453
crossref_primary_10_1016_j_ast_2022_107455
crossref_primary_10_1016_j_expthermflusci_2021_110457
crossref_primary_10_1063_5_0253810
crossref_primary_10_1007_s00348_021_03235_2
crossref_primary_10_1016_j_cma_2024_117340
crossref_primary_10_1016_j_euromechflu_2022_12_005
crossref_primary_10_1103_PhysRevFluids_7_084603
crossref_primary_10_1016_j_expthermflusci_2021_110570
crossref_primary_10_1017_jfm_2020_294
crossref_primary_10_1063_5_0281176
crossref_primary_10_1017_jfm_2019_711
crossref_primary_10_1007_s00193_024_01192_3
crossref_primary_10_1017_jfm_2023_815
crossref_primary_10_1007_s00348_023_03683_y
crossref_primary_10_1007_s00348_022_03419_4
crossref_primary_10_1016_j_jcp_2023_112433
crossref_primary_10_2514_1_J059152
crossref_primary_10_1016_j_jaecs_2025_100319
crossref_primary_10_1080_10618562_2018_1511049
crossref_primary_10_1063_5_0263872
crossref_primary_10_1016_j_jfluidstructs_2018_06_014
crossref_primary_10_1017_jfm_2021_91
crossref_primary_10_1017_jfm_2021_93
crossref_primary_10_2514_1_J059049
crossref_primary_10_2514_1_J059046
crossref_primary_10_1007_s10494_023_00508_0
crossref_primary_10_1080_01457632_2023_2191434
crossref_primary_10_1007_s42286_024_00092_4
crossref_primary_10_1017_jfm_2023_1097
crossref_primary_10_1080_19942060_2022_2089733
crossref_primary_10_2514_1_J062203
crossref_primary_10_1063_5_0252983
crossref_primary_10_3390_machines13060518
crossref_primary_10_1007_s00348_022_03542_2
crossref_primary_10_1017_jfm_2023_1091
crossref_primary_10_1016_j_oceaneng_2022_112979
crossref_primary_10_1063_5_0271269
crossref_primary_10_1016_j_paerosci_2023_100918
crossref_primary_10_1016_j_proci_2024_105333
crossref_primary_10_1016_j_paerosci_2025_101130
crossref_primary_10_1061__ASCE_EM_1943_7889_0001904
crossref_primary_10_3390_a17040133
crossref_primary_10_1088_1873_7005_ade338
crossref_primary_10_3390_app15031180
crossref_primary_10_1007_s00162_022_00630_1
crossref_primary_10_2514_1_J062534
crossref_primary_10_1063_5_0266901
crossref_primary_10_1364_AO_402011
crossref_primary_10_1016_j_physd_2025_134650
crossref_primary_10_1103_PhysRevE_111_025105
crossref_primary_10_1017_jfm_2024_1236
crossref_primary_10_1063_5_0238087
crossref_primary_10_1016_j_euromechflu_2020_01_006
crossref_primary_10_1016_j_compfluid_2022_105544
crossref_primary_10_1007_s00348_019_2749_7
crossref_primary_10_1007_s10409_020_00970_3
crossref_primary_10_1063_5_0282030
crossref_primary_10_3390_s25113529
crossref_primary_10_1016_j_buildenv_2022_109471
crossref_primary_10_1016_j_expthermflusci_2025_111541
crossref_primary_10_1063_5_0206385
crossref_primary_10_2514_1_J062304
crossref_primary_10_2514_1_J064967
crossref_primary_10_1177_1475472X18812798
crossref_primary_10_1016_j_jcp_2024_113695
crossref_primary_10_1016_j_ast_2022_107377
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104875
crossref_primary_10_1080_14685248_2024_2330056
crossref_primary_10_1177_1475472X241306337
crossref_primary_10_2514_1_J059599
crossref_primary_10_1016_j_jsv_2021_115996
crossref_primary_10_2514_1_J059112
crossref_primary_10_1016_j_ast_2025_110140
crossref_primary_10_2514_1_J059117
crossref_primary_10_1017_jfm_2021_183
crossref_primary_10_1016_j_jcp_2025_113968
crossref_primary_10_1016_j_compfluid_2022_105484
crossref_primary_10_1016_j_cpc_2018_11_009
crossref_primary_10_1007_s00162_024_00694_1
crossref_primary_10_1177_14680874241295358
crossref_primary_10_1016_j_cma_2023_116584
crossref_primary_10_1016_j_paerosci_2021_100725
crossref_primary_10_1017_jfm_2019_747
crossref_primary_10_1103_PhysRevE_104_015206
crossref_primary_10_2514_1_J062886
crossref_primary_10_2514_1_J065914
crossref_primary_10_1017_jfm_2020_1090
crossref_primary_10_1371_journal_pone_0205330
crossref_primary_10_2514_1_J060341
crossref_primary_10_1016_j_fuel_2025_136880
crossref_primary_10_1007_s00348_025_04038_5
crossref_primary_10_1016_j_cma_2025_117921
crossref_primary_10_1016_j_combustflame_2025_114231
crossref_primary_10_1063_5_0273128
crossref_primary_10_1115_1_4069307
crossref_primary_10_3390_aerospace11060453
crossref_primary_10_1121_10_0006234
crossref_primary_10_1016_j_fuel_2024_134016
crossref_primary_10_1016_j_ast_2022_107471
crossref_primary_10_1016_j_jfluidstructs_2019_102858
crossref_primary_10_1017_jfm_2025_10294
crossref_primary_10_3390_en16176182
crossref_primary_10_1017_jfm_2020_275
crossref_primary_10_1115_1_4069421
crossref_primary_10_1103_PhysRevFluids_7_103901
crossref_primary_10_1017_jfm_2019_854
crossref_primary_10_2514_1_J062733
crossref_primary_10_1103_sjh2_51fm
crossref_primary_10_2514_1_J060794
crossref_primary_10_1017_jfm_2020_78
crossref_primary_10_2514_1_J058480
crossref_primary_10_1016_j_jcp_2024_113549
crossref_primary_10_2514_1_J061647
crossref_primary_10_1007_s00162_024_00695_0
crossref_primary_10_1016_j_jsv_2020_115331
crossref_primary_10_1063_5_0215162
crossref_primary_10_1016_j_ijpvp_2024_105172
crossref_primary_10_1016_j_jweia_2022_105295
crossref_primary_10_1007_s00162_024_00706_0
crossref_primary_10_1016_j_compfluid_2023_105883
crossref_primary_10_1007_s00162_020_00529_9
crossref_primary_10_1007_s11071_022_07954_x
crossref_primary_10_2514_1_J058499
crossref_primary_10_1016_j_fuel_2023_129856
crossref_primary_10_1007_s00162_025_00739_z
crossref_primary_10_1017_jfm_2021_292
crossref_primary_10_1017_jfm_2025_10190
Cites_doi 10.1007/s00332-012-9130-9
10.1061/(ASCE)0733-9399(2005)131:4(325)
10.1017/jfm.2013.286
10.1063/1.4902436
10.1063/1.4974746
10.2514/1.31074
10.1017/jfm.2016.331
10.1017/jfm.2016.862
10.1017/CBO9780511919701
10.1109/TAU.1967.1161901
10.1103/PhysRevFluids.1.032402
10.1007/s00348-012-1354-9
10.1063/1.4946886
10.1017/jfm.2016.103
10.2514/6.2017-3173
10.1016/S0370-1573(97)00017-3
10.1007/978-94-009-9565-9_43
10.1017/jfm.2016.678
10.1142/S0218127405012429
10.1017/S002211201000176X
10.1007/s11071-005-2824-x
10.1175/1520-0469(2001)058<2771:ALDAOT>2.0.CO;2
10.1017/S0022112000001087
10.1017/jfm.2016.339
10.1063/1.858894
10.1017/S0022112008001833
10.2514/6.2014-3257
10.2514/6.2015-2535
10.1017/S0022112099005200
10.1146/annurev.fl.25.010193.002543
10.1007/BF00849105
10.2514/1.J056060
10.1016/j.ijheatfluidflow.2004.02.005
10.1115/1.3077635
10.1017/jfm.2012.540
10.1007/978-3-319-29130-7_16
10.1098/rspa.1991.0132
10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2
10.1017/S0022112006001613
10.1063/1.4876195
10.1017/S0022112088001818
10.1007/s00162-013-0293-2
10.1017/S0022112097005089
10.1007/978-1-4613-0185-1
10.1007/978-3-319-41217-7_2
10.2514/6.2016-2935
10.1017/S0022112009992059
10.1016/j.jsv.2011.04.007
10.1017/jfm.2016.682
10.1016/j.ijheatfluidflow.2016.10.010
10.1017/jfm.2013.660
10.1103/PhysRevFluids.2.124402
10.1090/qam/910462
10.1146/annurev-fluid-010816-060042
10.1007/BF01387235
10.1017/jfm.2012.610
10.1137/S1064827594276424
10.1017/S0022112010001217
10.2514/6.2016-3050
10.1016/S0142-727X(00)00021-7
10.1006/jsvi.2001.4041
10.1126/science.261.5121.578
10.3934/jcd.2014.1.391
10.1017/jfm.2017.407
10.1017/S0022112003006694
10.1017/jfm.2018.476
10.2514/6.2017-3379
10.1017/jfm.2014.186
10.1017/jfm.2018.675
10.1017/CBO9780511840531
10.1017/S0022112089000741
10.2514/6.2017-3706
10.2514/1.23465
10.1017/jfm.2012.272
10.1017/jfm.2011.401
10.1007/s00348-012-1266-8
10.1017/9781139174008
10.1115/1.4001478
10.1017/S0022112005004295
10.1017/jfm.2011.195
10.1017/S002211200000848X
10.2514/6.2015-2217
10.1007/BF00271473
10.2514/1.J055084
ContentType Journal Article
Copyright 2018 Cambridge University Press
Copyright_xml – notice: 2018 Cambridge University Press
CorporateAuthor Stanford Univ., CA (United States)
CorporateAuthor_xml – name: Stanford Univ., CA (United States)
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
OTOTI
DOI 10.1017/jfm.2018.283
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
OSTI.GOV
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Research Library Prep


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
Statistics
DocumentTitleAlternate Spectral POD, DMD and resolvent analysis
A. Towne, O. T. Schmidt and T. Colonius
EISSN 1469-7645
EndPage 867
ExternalDocumentID 1538911
10_1017_jfm_2018_283
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVKB
ABVZP
ABXAU
ABZCX
ACBEA
ACBMC
ACDLN
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEUYN
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WYP
ZE2
ZMEZD
ZYDXJ
~02
AAYXX
ABUFD
ABXHF
ADMLS
AFFHD
AKMAY
CITATION
PHGZM
PHGZT
PQGLB
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
AAEED
ABBJB
ABTRL
ACCHT
ACQFJ
ACREK
ACUYZ
ACWGA
ADGEJ
ADOCW
AFKSM
AGOOT
AIAFM
OTOTI
WXY
ZJOSE
ID FETCH-LOGICAL-c395t-5a3425969d9093f8131cfe6290ee89f520c001a411b4105fc216b9ca9ebfe36a3
IEDL.DBID BENPR
ISICitedReferencesCount 1124
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000434255400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1120
IngestDate Fri May 19 02:17:13 EDT 2023
Sat Aug 16 10:11:57 EDT 2025
Tue Nov 18 19:37:54 EST 2025
Sat Nov 29 04:24:17 EST 2025
Tue Jan 21 06:24:54 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords computational methods
turbulent flows
low-dimensional models
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-5a3425969d9093f8131cfe6290ee89f520c001a411b4105fc216b9ca9ebfe36a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE National Nuclear Security Administration (NNSA)
NA0002373
ORCID 0000-0002-7315-5375
0000-0002-7097-0235
0000000273155375
0000000270970235
PQID 2209863225
PQPubID 34769
PageCount 47
ParticipantIDs osti_scitechconnect_1538911
proquest_journals_2209863225
crossref_primary_10_1017_jfm_2018_283
crossref_citationtrail_10_1017_jfm_2018_283
cambridge_journals_10_1017_jfm_2018_283
PublicationCentury 2000
PublicationDate 2018-07-25
PublicationDateYYYYMMDD 2018-07-25
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-25
  day: 25
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
– name: United States
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2018
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2000; 418
1993; 25
2017; 2
2013; 728
2013; 27
2005; 131
1988; 192
2017; 49
2004; 25
2000; 414
2005; 534
2014; 26
1991; 435
2010; 63
2012; 53
1993; 5
2012; 52
2014; 1
1965; 1
1987; 45
2013; 719
2011; 689
2013; 716
2017a; 825
1997; 340
1997; 18
2009; 641
2016; 792
2016; 798
1967; 15
1989; 37
2012; 22
2001; 58
2006; 565
2011; 681
2004; 189
2017; 812
2017; 813
1991; 2
2016; 809
2009; 62
2002; 252
1999; 391
2000; 21
2005; 41
2016b; 798
2012; 707
1993; 261
2017; 29
2017a; 55
2003; 497
1996; 53
2011; 330
2016; 1
2014; 748
1989; 200
2010; 658
2000; 78
2010; 656
2017; 55
2016b; 62
1997; 287
2008; 46
2008; 611
2005; 15
2016; 28
2007; 45
2014; 742
1994; 53
S0022112018002835_r22
S0022112018002835_r21
S0022112018002835_r20
S0022112018002835_r26
S0022112018002835_r24
S0022112018002835_r23
S0022112018002835_r29
S0022112018002835_r28
S0022112018002835_r27
Lumley (S0022112018002835_r52) 1967
Tu (S0022112018002835_r94) 2014; 1
S0022112018002835_r11
S0022112018002835_r10
S0022112018002835_r98
S0022112018002835_r97
S0022112018002835_r96
S0022112018002835_r15
S0022112018002835_r14
S0022112018002835_r13
S0022112018002835_r12
S0022112018002835_r18
S0022112018002835_r17
S0022112018002835_r16
Chatterjee (S0022112018002835_r19) 2000; 78
S0022112018002835_r91
S0022112018002835_r95
S0022112018002835_r93
S0022112018002835_r92
S0022112018002835_r88
S0022112018002835_r87
S0022112018002835_r85
S0022112018002835_r89
Schmid (S0022112018002835_r71) 2008
S0022112018002835_r80
S0022112018002835_r84
S0022112018002835_r83
S0022112018002835_r82
S0022112018002835_r81
S0022112018002835_r77
S0022112018002835_r76
S0022112018002835_r75
S0022112018002835_r74
Lumley (S0022112018002835_r53) 1970
S0022112018002835_r79
S0022112018002835_r78
Landahl (S0022112018002835_r50) 1992
George (S0022112018002835_r32) 1988
S0022112018002835_r73
S0022112018002835_r72
S0022112018002835_r70
S0022112018002835_r65
S0022112018002835_r1
S0022112018002835_r64
S0022112018002835_r63
S0022112018002835_r2
S0022112018002835_r69
S0022112018002835_r68
S0022112018002835_r67
Bendat (S0022112018002835_r8) 2000
S0022112018002835_r62
S0022112018002835_r61
S0022112018002835_r60
S0022112018002835_r55
S0022112018002835_r54
Glauser (S0022112018002835_r35) 1987
S0022112018002835_r59
S0022112018002835_r58
S0022112018002835_r57
S0022112018002835_r56
Rowley (S0022112018002835_r66) 2004; 189
S0022112018002835_r7
S0022112018002835_r9
S0022112018002835_r51
S0022112018002835_r3
S0022112018002835_r4
S0022112018002835_r5
S0022112018002835_r6
S0022112018002835_r44
S0022112018002835_r43
Jovanović (S0022112018002835_r48) 2001; 5
S0022112018002835_r42
S0022112018002835_r41
S0022112018002835_r47
Sirovich (S0022112018002835_r86) 1989; 37
S0022112018002835_r46
S0022112018002835_r45
S0022112018002835_r49
S0022112018002835_r40
S0022112018002835_r33
S0022112018002835_r31
S0022112018002835_r30
S0022112018002835_r37
S0022112018002835_r36
S0022112018002835_r34
Cordier (S0022112018002835_r25) 2008
S0022112018002835_r39
S0022112018002835_r38
Towne (S0022112018002835_r90) 2016
References_xml – volume: 681
  start-page: 241
  year: 2011
  end-page: 260
  article-title: H2 optimal actuator and sensor placement in the linearised complex Ginzburg–Landau system
  publication-title: J. Fluid Mech.
– volume: 1
  start-page: 215
  issue: 3
  year: 1965
  end-page: 234
  article-title: On the energy transfer to small disturbances in fluid flow (Part I)
  publication-title: Acta Mech.
– volume: 26
  issue: 5
  year: 2014
  article-title: A low-order decomposition of turbulent channel flow via resolvent analysis and convex optimization
  publication-title: Phys. Fluids
– volume: 25
  start-page: 539
  issue: 1
  year: 1993
  end-page: 575
  article-title: The proper orthogonal decomposition in the analysis of turbulent flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 707
  start-page: 205
  year: 2012
  end-page: 240
  article-title: Model-based design of transverse wall oscillations for turbulent drag reduction
  publication-title: J. Fluid Mech.
– volume: 1
  start-page: 391
  issue: 2
  year: 2014
  end-page: 421
  article-title: On dynamic mode decomposition: theory and applications
  publication-title: J. Comput. Dyn.
– volume: 53
  start-page: 1203
  issue: 5
  year: 2012
  end-page: 1220
  article-title: Analysis of time-resolved PIV measurements of a confined turbulent jet using POD and Koopman modes
  publication-title: Exp. Fluids
– volume: 658
  start-page: 336
  year: 2010
  end-page: 382
  article-title: A critical-layer framework for turbulent pipe flow
  publication-title: J. Fluid Mech.
– volume: 261
  start-page: 578
  issue: 5121
  year: 1993
  end-page: 584
  article-title: Hydrodynamic stability without eigenvalues
  publication-title: Science
– volume: 792
  start-page: 798
  year: 2016
  end-page: 828
  article-title: Spectral proper orthogonal decomposition
  publication-title: J. Fluid Mech.
– volume: 53
  start-page: 2025
  issue: 14
  year: 1996
  end-page: 2040
  article-title: Generalized stability theory. Part I: autonomous operators
  publication-title: J. Atmos. Sci.
– volume: 611
  start-page: 175
  year: 2008
  end-page: 204
  article-title: The near pressure field of co-axial subsonic jets
  publication-title: J. Fluid Mech.
– volume: 689
  start-page: 97
  year: 2011
  end-page: 128
  article-title: Instability wave models for the near-field fluctuations of turbulent jets
  publication-title: J. Fluid Mech.
– volume: 62
  issue: 2
  year: 2009
  article-title: Input–output analysis and control design applied to a linear model of spatially developing flows
  publication-title: Appl. Mech. Rev.
– volume: 435
  start-page: 109
  year: 1991
  end-page: 128
  article-title: Instability of flows in spatially developing media
  publication-title: Proc. R. Soc. Lond. A
– volume: 330
  start-page: 4474
  issue: 18
  year: 2011
  end-page: 4492
  article-title: Jittering wave-packet models for subsonic jet noise
  publication-title: J. Sound Vib.
– volume: 78
  start-page: 808
  issue: 7
  year: 2000
  end-page: 817
  article-title: An introduction to the proper orthogonal decomposition
  publication-title: Curr. Sci.
– volume: 26
  issue: 12
  year: 2014
  article-title: The energetic motions in turbulent pipe flow
  publication-title: Phys. Fluids
– volume: 49
  start-page: 387
  year: 2017
  end-page: 417
  article-title: Model reduction for flow analysis and control
  publication-title: Annu. Rev. Fluid Mech.
– volume: 46
  start-page: 1118
  issue: 5
  year: 2008
  article-title: Three-component vectorial proper orthogonal decomposition of axisymmetric wake behind a disk
  publication-title: AIAA J.
– volume: 719
  start-page: 406
  year: 2013
  end-page: 430
  article-title: Stochastic dynamics and model reduction of amplifier flows: the backward facing step flow
  publication-title: J. Fluid Mech.
– volume: 565
  start-page: 197
  year: 2006
  end-page: 226
  article-title: Instability waves in a subsonic round jet detected using a near-field phased microphone array
  publication-title: J. Fluid Mech.
– volume: 252
  start-page: 527
  issue: 3
  year: 2002
  end-page: 544
  article-title: Proper orthogonal decomposition and its applications. Part I: theory
  publication-title: J. Sound Vib.
– volume: 798
  start-page: 485
  year: 2016
  end-page: 504
  article-title: Conditions for validity of mean flow stability analysis
  publication-title: J. Fluid Mech.
– volume: 287
  start-page: 337
  issue: 4
  year: 1997
  end-page: 384
  article-title: Low-dimensional models of coherent structures in turbulence
  publication-title: Phys. Rep.
– volume: 41
  start-page: 309
  issue: 1
  year: 2005
  end-page: 325
  article-title: Spectral properties of dynamical systems, model reduction and decompositions
  publication-title: Nonlinear Dyn.
– volume: 28
  issue: 4
  year: 2016
  article-title: Input–output analysis of high-speed axisymmetric isothermal jet noise
  publication-title: Phys. Fluids
– volume: 52
  start-page: 1567
  issue: 6
  year: 2012
  end-page: 1579
  article-title: Decomposition of time-resolved tomographic PIV
  publication-title: Exp. Fluids
– volume: 340
  start-page: 1
  year: 1997
  end-page: 33
  article-title: The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet
  publication-title: J. Fluid Mech.
– volume: 497
  start-page: 335
  year: 2003
  end-page: 363
  article-title: A hierarchy of low-dimensional models for the transient and post-transient cylinder wake
  publication-title: J. Fluid Mech.
– volume: 742
  start-page: 71
  year: 2014
  end-page: 95
  article-title: Wavepacket models for supersonic jet noise
  publication-title: J. Fluid Mech.
– volume: 15
  start-page: 70
  issue: 2
  year: 1967
  end-page: 73
  article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms
  publication-title: IEEE Trans. Audio Electroacoust.
– volume: 25
  start-page: 351
  issue: 3
  year: 2004
  end-page: 363
  article-title: Low-dimensional analysis, using POD, for two mixing layer–wake interactions
  publication-title: Intl J. Heat Fluid Flow
– volume: 2
  start-page: 339
  issue: 5
  year: 1991
  end-page: 352
  article-title: On the hidden beauty of the proper orthogonal decomposition
  publication-title: Theoret. Comput. Fluid Dyn.
– volume: 641
  start-page: 115
  year: 2009
  end-page: 127
  article-title: Spectral analysis of nonlinear flows
  publication-title: J. Fluid Mech.
– volume: 809
  start-page: 843
  year: 2016
  end-page: 872
  article-title: Recursive dynamic mode decomposition of transient and post-transient wake flows
  publication-title: J. Fluid Mech.
– volume: 45
  start-page: 181
  issue: 1
  year: 2007
  end-page: 190
  article-title: Proportional closed-loop feedback control of flow separation
  publication-title: AIAA J.
– volume: 418
  start-page: 137
  year: 2000
  end-page: 166
  article-title: Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition
  publication-title: J. Fluid Mech.
– volume: 189
  start-page: 115
  issue: 1
  year: 2004
  end-page: 129
  article-title: Model reduction for compressible flows using POD and Galerkin projection
  publication-title: Physica D
– volume: 37
  start-page: 126
  issue: 1
  year: 1989
  end-page: 145
  article-title: Chaotic dynamics of coherent structures
  publication-title: Physica D
– volume: 22
  start-page: 887
  issue: 6
  year: 2012
  end-page: 915
  article-title: Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses
  publication-title: J. Nonlinear Sci.
– volume: 1
  issue: 3
  year: 2016
  article-title: Correspondence between Koopman mode decomposition, resolvent mode decomposition, and invariant solutions of the Navier–Stokes equations
  publication-title: Phys. Rev. Fluids
– volume: 5
  start-page: 2600
  issue: 11
  year: 1993
  end-page: 2609
  article-title: Stochastic forcing of the linearized Navier–Stokes equations
  publication-title: Phys. Fluids
– volume: 200
  start-page: 471
  year: 1989
  end-page: 509
  article-title: Characteristic-eddy decomposition of turbulence in a channel
  publication-title: J. Fluid Mech.
– volume: 55
  start-page: 1164
  issue: 4
  year: 2017a
  end-page: 1184
  article-title: Unstructured large-eddy simulations of supersonic jets
  publication-title: AIAA J.
– volume: 53
  start-page: 283
  issue: 3
  year: 1994
  end-page: 290
  article-title: The application of classical POD and snapshot POD in a turbulent shear layer with periodic structures
  publication-title: Appl. Sci. Res.
– volume: 825
  start-page: 1153
  year: 2017a
  end-page: 1181
  article-title: Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability
  publication-title: J. Fluid Mech.
– volume: 29
  issue: 2
  year: 2017
  article-title: Lumley decomposition of turbulent boundary layer at high Reynolds numbers
  publication-title: Phys. Fluids
– volume: 62
  start-page: 24
  year: 2016b
  end-page: 32
  article-title: Modeling of coherent structures in a turbulent jet as global linear instability wavepackets: theory and experiment
  publication-title: Intl J. Heat Fluid Flow
– volume: 27
  start-page: 787
  issue: 6
  year: 2013
  end-page: 815
  article-title: POD-spectral decomposition for fluid flow analysis and model reduction
  publication-title: Theoret. Comput. Fluid Dyn.
– volume: 798
  year: 2016b
  article-title: A reduced-order model of three-dimensional unsteady flow in a cavity based on the resolvent operator
  publication-title: J. Fluid Mech.
– volume: 813
  start-page: 346
  year: 2017
  end-page: 381
  article-title: Transition to bluff-body dynamics in the wake of vertical-axis wind turbines
  publication-title: J. Fluid Mech.
– volume: 391
  start-page: 91
  year: 1999
  end-page: 122
  article-title: Examination of large-scale structures in a turbulent plane mixing layer. Part 1. Proper orthogonal decomposition
  publication-title: J. Fluid Mech.
– volume: 45
  start-page: 561
  issue: 3
  year: 1987
  end-page: 571
  article-title: Turbulence and the dynamics of coherent structures. I. Coherent structures
  publication-title: Q. Appl. Maths
– volume: 2
  year: 2017
  article-title: Study of dynamics in unsteady flows using Koopman mode decomposition
  publication-title: Phys. Rev. Fluids
– volume: 15
  start-page: 997
  issue: 03
  year: 2005
  end-page: 1013
  article-title: Model reduction for fluids, using balanced proper orthogonal decomposition
  publication-title: Intl J. Bifurcation Chaos
– volume: 748
  start-page: 399
  year: 2014
  end-page: 415
  article-title: Coherence decay and its impact on sound radiation by wavepackets
  publication-title: J. Fluid Mech.
– volume: 58
  start-page: 2771
  issue: 18
  year: 2001
  end-page: 2789
  article-title: Accurate low-dimensional approximation of the linear dynamics of fluid flow
  publication-title: J. Atmos. Sci.
– volume: 55
  start-page: 4013
  issue: 12
  year: 2017
  end-page: 4041
  article-title: Modal analysis of fluid flows: An overview
  publication-title: AIAA J.
– volume: 414
  start-page: 145
  year: 2000
  end-page: 194
  article-title: Coherent structure in the turbulent planar jet. Part 1. Extraction of proper orthogonal decomposition eigenmodes and their self-similarity
  publication-title: J. Fluid Mech.
– volume: 18
  start-page: 1
  issue: 1
  year: 1997
  end-page: 22
  article-title: The Matlab ODE suite
  publication-title: SIAM J. Sci. Comput.
– volume: 192
  start-page: 115
  year: 1988
  end-page: 173
  article-title: The dynamics of coherent structures in the wall region of a turbulent boundary layer
  publication-title: J. Fluid Mech.
– volume: 656
  start-page: 5
  year: 2010
  end-page: 28
  article-title: Dynamic mode decomposition of numerical and experimental data
  publication-title: J. Fluid Mech.
– volume: 63
  issue: 3
  year: 2010
  article-title: Dynamics and control of global instabilities in open-flows: a linearized approach
  publication-title: Appl. Mech. Rev.
– volume: 21
  start-page: 359
  issue: 3
  year: 2000
  end-page: 364
  article-title: Pressure velocity coupling in a subsonic round jet
  publication-title: Intl J. Heat Fluid Flow
– volume: 534
  start-page: 145
  year: 2005
  end-page: 183
  article-title: Componentwise energy amplification in channel flows
  publication-title: J. Fluid Mech.
– volume: 728
  start-page: 196
  year: 2013
  end-page: 238
  article-title: On coherent structure in wall turbulence
  publication-title: J. Fluid Mech.
– volume: 716
  start-page: 189
  year: 2013
  end-page: 202
  article-title: The preferred mode of incompressible jets: linear frequency response analysis
  publication-title: J. Fluid Mech.
– volume: 131
  start-page: 325
  issue: 4
  year: 2005
  end-page: 339
  article-title: Proper orthogonal decomposition-based modeling, analysis, and simulation of dynamic wind load effects on structures
  publication-title: J. Engng Mech.
– volume: 812
  start-page: 636
  year: 2017
  end-page: 680
  article-title: Colour of turbulence
  publication-title: J. Fluid Mech.
– volume: 37
  start-page: 126
  year: 1989
  ident: S0022112018002835_r86
  article-title: Chaotic dynamics of coherent structures
  publication-title: Physica D
– ident: S0022112018002835_r21
  doi: 10.1007/s00332-012-9130-9
– ident: S0022112018002835_r22
  doi: 10.1061/(ASCE)0733-9399(2005)131:4(325)
– ident: S0022112018002835_r80
  doi: 10.1017/jfm.2013.286
– ident: S0022112018002835_r41
  doi: 10.1063/1.4902436
– ident: S0022112018002835_r95
  doi: 10.1063/1.4974746
– volume-title: Bull. Am. Phys. Soc., 61st APS meeting
  year: 2008
  ident: S0022112018002835_r71
– ident: S0022112018002835_r96
  doi: 10.2514/1.31074
– ident: S0022112018002835_r9
  doi: 10.1017/jfm.2016.331
– ident: S0022112018002835_r2
  doi: 10.1017/jfm.2016.862
– ident: S0022112018002835_r43
  doi: 10.1017/CBO9780511919701
– ident: S0022112018002835_r97
  doi: 10.1109/TAU.1967.1161901
– volume-title: International Seminar on Wall Turbulence
  year: 1988
  ident: S0022112018002835_r32
– ident: S0022112018002835_r81
  doi: 10.1103/PhysRevFluids.1.032402
– ident: S0022112018002835_r76
  doi: 10.1007/s00348-012-1354-9
– ident: S0022112018002835_r46
  doi: 10.1063/1.4946886
– ident: S0022112018002835_r82
  doi: 10.1017/jfm.2016.103
– ident: S0022112018002835_r1
  doi: 10.2514/6.2017-3173
– ident: S0022112018002835_r44
  doi: 10.1016/S0370-1573(97)00017-3
– ident: S0022112018002835_r73
– volume: 78
  start-page: 808
  year: 2000
  ident: S0022112018002835_r19
  article-title: An introduction to the proper orthogonal decomposition
  publication-title: Curr. Sci.
– ident: S0022112018002835_r34
  doi: 10.1007/978-94-009-9565-9_43
– ident: S0022112018002835_r61
  doi: 10.1017/jfm.2016.678
– ident: S0022112018002835_r65
  doi: 10.1142/S0218127405012429
– ident: S0022112018002835_r54
  doi: 10.1017/S002211201000176X
– ident: S0022112018002835_r55
  doi: 10.1007/s11071-005-2824-x
– ident: S0022112018002835_r30
  doi: 10.1175/1520-0469(2001)058<2771:ALDAOT>2.0.CO;2
– ident: S0022112018002835_r24
  doi: 10.1017/S0022112000001087
– ident: S0022112018002835_r37
  doi: 10.1017/jfm.2016.339
– ident: S0022112018002835_r28
  doi: 10.1063/1.858894
– ident: S0022112018002835_r89
  doi: 10.1017/S0022112008001833
– ident: S0022112018002835_r59
  doi: 10.2514/6.2014-3257
– ident: S0022112018002835_r13
  doi: 10.2514/6.2015-2535
– ident: S0022112018002835_r26
  doi: 10.1017/S0022112099005200
– ident: S0022112018002835_r10
  doi: 10.1146/annurev.fl.25.010193.002543
– ident: S0022112018002835_r42
  doi: 10.1007/BF00849105
– ident: S0022112018002835_r88
  doi: 10.2514/1.J056060
– ident: S0022112018002835_r11
  doi: 10.1016/j.ijheatfluidflow.2004.02.005
– ident: S0022112018002835_r7
  doi: 10.1115/1.3077635
– volume-title: Random Data: Analysis and Measurement Procedures
  year: 2000
  ident: S0022112018002835_r8
– ident: S0022112018002835_r31
  doi: 10.1017/jfm.2012.540
– volume-title: Lecture Series 2002-04, 2003-03 and 2008-01 on Post-Processing of Experimental and Numerical Data
  year: 2008
  ident: S0022112018002835_r25
– ident: S0022112018002835_r36
  doi: 10.1007/978-3-319-29130-7_16
– ident: S0022112018002835_r45
  doi: 10.1098/rspa.1991.0132
– ident: S0022112018002835_r29
  doi: 10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2
– ident: S0022112018002835_r87
  doi: 10.1017/S0022112006001613
– ident: S0022112018002835_r57
  doi: 10.1063/1.4876195
– volume: 5
  start-page: 4944
  volume-title: Decision and Control, 2001. Proceedings of the 40th IEEE Conference
  year: 2001
  ident: S0022112018002835_r48
– ident: S0022112018002835_r6
  doi: 10.1017/S0022112088001818
– ident: S0022112018002835_r16
  doi: 10.1007/s00162-013-0293-2
– ident: S0022112018002835_r4
  doi: 10.1017/S0022112097005089
– ident: S0022112018002835_r70
  doi: 10.1007/978-1-4613-0185-1
– ident: S0022112018002835_r33
  doi: 10.1007/978-3-319-41217-7_2
– ident: S0022112018002835_r77
  doi: 10.2514/6.2016-2935
– ident: S0022112018002835_r68
  doi: 10.1017/S0022112009992059
– ident: S0022112018002835_r18
  doi: 10.1016/j.jsv.2011.04.007
– ident: S0022112018002835_r98
  doi: 10.1017/jfm.2016.682
– ident: S0022112018002835_r78
  doi: 10.1016/j.ijheatfluidflow.2016.10.010
– ident: S0022112018002835_r83
  doi: 10.1017/jfm.2013.660
– ident: S0022112018002835_r3
  doi: 10.1103/PhysRevFluids.2.124402
– ident: S0022112018002835_r40
– ident: S0022112018002835_r85
  doi: 10.1090/qam/910462
– ident: S0022112018002835_r67
  doi: 10.1146/annurev-fluid-010816-060042
– ident: S0022112018002835_r23
  doi: 10.1007/BF01387235
– ident: S0022112018002835_r27
  doi: 10.1017/jfm.2012.610
– start-page: 134
  volume-title: Coherent Structures in the Axisymmetric Turbulent Jet Mixing Layer
  year: 1987
  ident: S0022112018002835_r35
– ident: S0022112018002835_r79
  doi: 10.1137/S1064827594276424
– ident: S0022112018002835_r69
  doi: 10.1017/S0022112010001217
– ident: S0022112018002835_r14
  doi: 10.2514/6.2016-3050
– ident: S0022112018002835_r62
  doi: 10.1016/S0142-727X(00)00021-7
– ident: S0022112018002835_r51
  doi: 10.1006/jsvi.2001.4041
– ident: S0022112018002835_r93
  doi: 10.1126/science.261.5121.578
– volume: 1
  start-page: 391
  year: 2014
  ident: S0022112018002835_r94
  article-title: On dynamic mode decomposition: theory and applications
  publication-title: J. Comput. Dyn.
  doi: 10.3934/jcd.2014.1.391
– ident: S0022112018002835_r74
  doi: 10.1017/jfm.2017.407
– ident: S0022112018002835_r60
  doi: 10.1017/S0022112003006694
– ident: S0022112018002835_r15
  doi: 10.1017/jfm.2018.476
– volume-title: Stochastic Tools in Turbulence
  year: 1970
  ident: S0022112018002835_r53
– volume-title: Annual Research Briefs
  year: 2016
  ident: S0022112018002835_r90
– ident: S0022112018002835_r47
  doi: 10.2514/6.2017-3379
– volume: 189
  start-page: 115
  year: 2004
  ident: S0022112018002835_r66
  article-title: Model reduction for compressible flows using POD and Galerkin projection
  publication-title: Physica D
– ident: S0022112018002835_r17
  doi: 10.1017/jfm.2014.186
– ident: S0022112018002835_r75
  doi: 10.1017/jfm.2018.675
– ident: S0022112018002835_r64
  doi: 10.1017/CBO9780511840531
– ident: S0022112018002835_r58
  doi: 10.1017/S0022112089000741
– ident: S0022112018002835_r91
  doi: 10.2514/6.2017-3706
– ident: S0022112018002835_r63
  doi: 10.2514/1.23465
– ident: S0022112018002835_r56
  doi: 10.1017/jfm.2012.272
– ident: S0022112018002835_r39
  doi: 10.1017/jfm.2011.401
– ident: S0022112018002835_r72
  doi: 10.1007/s00348-012-1266-8
– volume-title: Turbulence and Random Processes in Fluid Mechanics
  year: 1992
  ident: S0022112018002835_r50
  doi: 10.1017/9781139174008
– ident: S0022112018002835_r84
  doi: 10.1115/1.4001478
– ident: S0022112018002835_r49
  doi: 10.1017/S0022112005004295
– ident: S0022112018002835_r20
  doi: 10.1017/jfm.2011.195
– ident: S0022112018002835_r38
  doi: 10.1017/S002211200000848X
– ident: S0022112018002835_r92
  doi: 10.2514/6.2015-2217
– ident: S0022112018002835_r5
  doi: 10.1007/BF00271473
– start-page: 166
  volume-title: Atmospheric Turbulence and Radio Propagation
  year: 1967
  ident: S0022112018002835_r52
– ident: S0022112018002835_r12
  doi: 10.2514/1.J055084
SSID ssj0013097
Score 2.7125154
Snippet We consider the frequency domain form of proper orthogonal decomposition (POD), called spectral proper orthogonal decomposition (SPOD). Spectral POD is derived...
SourceID osti
proquest
crossref
cambridge
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 821
SubjectTerms Coefficients
Decomposition
Fluid dynamics
JFM Papers
Landau-Ginzburg equations
Mechanics
Modes
Physics
Proper Orthogonal Decomposition
Spectra
Statistical analysis
Statistical methods
Statistics
Steady flow
Thermal expansion
Turbulence
Turbulent jets
Title Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
URI https://www.cambridge.org/core/product/identifier/S0022112018002835/type/journal_article
https://www.proquest.com/docview/2209863225
https://www.osti.gov/biblio/1538911
Volume 847
WOSCitedRecordID wos000434255400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: PCBAR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61W5DKgZaliKUP-QDigEITO07iEwLUigvbFQ-p4hI5fpRFkCzZgNR_35mN0wVBuXCxlMRRLM0z48_fADzWtvBkiRGqD_6gKGejQkodSZvqwmP88aJvNpFPp8X5uZqFgtsywCoHn7hy1LYxVCM_5jxWRUbq92LxPaKuUbS7GlpobMIWMZWlI9h6dTKdvVvvI8QqH_jCMbOIA_SdSKO_eDqInhTPOVEGrokVfgtQowYN7Q83vYo9pzv_u-pduBuyTvayV5N7sOHqMeyEDJQF-16O4c4v9IRjuL2Chxq8v005aU_pfB9a6llPBRK2oEp-y2jrp7mglJ5ZRxj1AARjurZs3i1ZOyDuPs8XrGuYvaz1t7lh1IbnL6-0Dg2CcJh41VOm7MHH05MPr99EoXVDZISSXSS1QGegMmVVrIQvEpEY7zKuYucK5SWPDUpHp0lSEc7UG55klTJauco7kWnxAEZ1U7uHwBJl0AXbShgtU69VpXKZ5j7nVjhMjuwEnl7LrgwGuCx78FpeopRLknKJUp7As0GypQkM6NSI4-sNs59cz170zB83zNsnJSkxYyHaXUP4JNOVFEkwkEzgYFCM9eLWWvHo34_3YZs-Q7VkLg9g1LU_3CHcMj9R5O1RUPYj2HzLz1bjjMb8PY4z-ekKiWkNQA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9RAFD7BVQM-iC4SV1DnQeKDqbTTTtt5MMaoBAJsSMSEt3E6F1kj7dqtGv6Uv9Fzti2rUXzjwce200va79w633wH4Im2uSdLDBA-WKBIZ4NcCB0Im-jcY_zxcdtsIhuP85MTebQEP_q1MESr7H3i3FHbytA_8m3OQ5mnBL-X0y8BdY2i2dW-hUYLi313_h1LttmLvTf4fbc433l7_Ho36LoKBCaWogmEjhGnMpVWYjXv8yiOjHcpl6FzufSChwZdt06iqCAKpDc8SgtptHSFd3GqY7zuNbieYCVEdnXIjxazFqHMenVyzGPCjmhPEtWfPC17j_LnnAQKFzIOv4XDQYVm_UdQmEe6ndX_7R3dgdtdTs1etUZwF5ZcOYTVLr9mnfeaDeHWL-KLQ7g5J78a3L9CGXcrWL0G9Ttae1rj9aY0T1EzmtiqPlLBwqwjBn5Hc2O6tGzSzFjd8wlPJ1PWVMyel_psYhg1GfrLKbVDcyeWKW61gjD34P2VvJ51GJRV6e4Di6TBAGOL2GiReC0LmYkk8xm3scPUz47g6QVWVOdeZqql5mUKUaUIVQpRNYJnPZKU6fTdqc3I50tGb12Mnra6JpeM2yBQKszHSFTYEPvKNIriJIbJEWz2QFw83AKFD_59-DEs7x4fHqiDvfH-BqzQLemvORebMGjqr-4h3DDf8PPXj-ZmxuDDVWP2JwBVY4M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral+proper+orthogonal+decomposition+and+its+relationship+to+dynamic+mode+decomposition+and+resolvent+analysis&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Towne%2C+Aaron&rft.au=Schmidt%2C+Oliver+T.&rft.au=Colonius%2C+Tim&rft.date=2018-07-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=847&rft.spage=821&rft.epage=867&rft_id=info:doi/10.1017%2Fjfm.2018.283&rft.externalDocID=10_1017_jfm_2018_283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon