Neural-Network-Based Set-Membership Fault Estimation for 2-D Systems Under Encoding-Decoding Mechanism

In this article, the simultaneous state and fault estimation problem is investigated for a class of nonlinear 2-D shift-varying systems, where the sensors and the estimator are connected via a communication network of limited bandwidth. With the purpose of relieving the communication burden and enha...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 34; číslo 2; s. 786 - 798
Hlavní autori: Zhu, Kaiqun, Wang, Zidong, Chen, Yun, Wei, Guoliang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this article, the simultaneous state and fault estimation problem is investigated for a class of nonlinear 2-D shift-varying systems, where the sensors and the estimator are connected via a communication network of limited bandwidth. With the purpose of relieving the communication burden and enhancing the transmission security, a new encoding-decoding mechanism is put forward so as to encode the transmitted data with a finite number of bits. The aim of the addressed problem is to develop a neural-network (NN)-based set-membership estimator for jointly estimating the system states and the faults, where the estimation errors are guaranteed to reside within an optimized ellipsoidal set. With the aid of the mathematical induction technique and certain convex optimization approaches, sufficient conditions are derived for the existence of the desired set-membership estimator, and the estimator gains and the NN tuning scalars are then presented in terms of the solutions to a set of optimization problems subject to ellipsoidal constraints. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed estimator design method.
AbstractList In this article, the simultaneous state and fault estimation problem is investigated for a class of nonlinear 2-D shift-varying systems, where the sensors and the estimator are connected via a communication network of limited bandwidth. With the purpose of relieving the communication burden and enhancing the transmission security, a new encoding-decoding mechanism is put forward so as to encode the transmitted data with a finite number of bits. The aim of the addressed problem is to develop a neural-network (NN)-based set-membership estimator for jointly estimating the system states and the faults, where the estimation errors are guaranteed to reside within an optimized ellipsoidal set. With the aid of the mathematical induction technique and certain convex optimization approaches, sufficient conditions are derived for the existence of the desired set-membership estimator, and the estimator gains and the NN tuning scalars are then presented in terms of the solutions to a set of optimization problems subject to ellipsoidal constraints. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed estimator design method.In this article, the simultaneous state and fault estimation problem is investigated for a class of nonlinear 2-D shift-varying systems, where the sensors and the estimator are connected via a communication network of limited bandwidth. With the purpose of relieving the communication burden and enhancing the transmission security, a new encoding-decoding mechanism is put forward so as to encode the transmitted data with a finite number of bits. The aim of the addressed problem is to develop a neural-network (NN)-based set-membership estimator for jointly estimating the system states and the faults, where the estimation errors are guaranteed to reside within an optimized ellipsoidal set. With the aid of the mathematical induction technique and certain convex optimization approaches, sufficient conditions are derived for the existence of the desired set-membership estimator, and the estimator gains and the NN tuning scalars are then presented in terms of the solutions to a set of optimization problems subject to ellipsoidal constraints. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed estimator design method.
In this article, the simultaneous state and fault estimation problem is investigated for a class of nonlinear 2-D shift-varying systems, where the sensors and the estimator are connected via a communication network of limited bandwidth. With the purpose of relieving the communication burden and enhancing the transmission security, a new encoding–decoding mechanism is put forward so as to encode the transmitted data with a finite number of bits. The aim of the addressed problem is to develop a neural-network (NN)-based set-membership estimator for jointly estimating the system states and the faults, where the estimation errors are guaranteed to reside within an optimized ellipsoidal set. With the aid of the mathematical induction technique and certain convex optimization approaches, sufficient conditions are derived for the existence of the desired set-membership estimator, and the estimator gains and the NN tuning scalars are then presented in terms of the solutions to a set of optimization problems subject to ellipsoidal constraints. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed estimator design method.
Author Zhu, Kaiqun
Chen, Yun
Wei, Guoliang
Wang, Zidong
Author_xml – sequence: 1
  givenname: Kaiqun
  orcidid: 0000-0002-0658-0806
  surname: Zhu
  fullname: Zhu, Kaiqun
  email: zkqun@163.com
  organization: Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
– sequence: 2
  givenname: Zidong
  orcidid: 0000-0002-9576-7401
  surname: Wang
  fullname: Wang, Zidong
  email: zidong.wang@brunel.ac.uk
  organization: Department of Computer Science, Brunel University London, Uxbridge, U.K
– sequence: 3
  givenname: Yun
  orcidid: 0000-0002-9934-9979
  surname: Chen
  fullname: Chen, Yun
  email: yunchen@hdu.edu.cn
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China
– sequence: 4
  givenname: Guoliang
  orcidid: 0000-0003-2928-4142
  surname: Wei
  fullname: Wei, Guoliang
  email: guoliang.wei@usst.edu.cn
  organization: College of Science, University of Shanghai for Science and Technology, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34383656$$D View this record in MEDLINE/PubMed
BookMark eNp9kT9v2zAQxYkgRZK6-QItUBDo0oUO_4iUOLaJ0xZwnMEJ0I2gpFPDVCIdkkKRb185dj1kKIfjDb93d3jvLTr2wQNC7xmdM0b1xd1qtVzPOeVsLthUeXmEzjhTnHBRVceHvvx5is5TeqTTU1SqQp-gU1GISiipzlC3gjHanqwg_wnxN_lqE7R4DZncwFBDTA9ug6_t2Ge8SNkNNrvgcRci5uQKr59ThiHhe99CxAvfhNb5X-QKdg2-gebBepeGd-hNZ_sE5_t_hu6vF3eX38ny9tuPyy9L0ggtM5GC17wFCkorarUuWFN0Ba8FaAkdr6SmQmqrQAqry0nSKNBVXZVtZ0UNpZihz7u5mxieRkjZDC410PfWQxiT4VKxQlOltuinV-hjGKOfrjO8LEUhpZi2zdDHPTXWA7RmEycP4rP55-AE8B3QxJBShO6AMGq2SZmXpMw2KbNPahJVr0SNyy_W5mhd_3_ph53UAcBhl5aMC0rFX4o4nt0
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TSMC_2023_3281720
crossref_primary_10_1016_j_inffus_2025_103103
crossref_primary_10_1109_TNNLS_2025_3556370
crossref_primary_10_1002_acs_3600
crossref_primary_10_1002_acs_3689
crossref_primary_10_1016_j_neucom_2025_130580
crossref_primary_10_1016_j_knosys_2023_111205
crossref_primary_10_1109_TCSII_2022_3194530
crossref_primary_10_1109_TCSII_2024_3355504
crossref_primary_10_1109_TNSE_2023_3237639
crossref_primary_10_1016_j_isatra_2025_02_035
crossref_primary_10_1109_TCYB_2021_3110587
crossref_primary_10_1109_TSG_2025_3525558
crossref_primary_10_1080_00207721_2023_2180336
crossref_primary_10_1016_j_neucom_2023_126877
crossref_primary_10_1109_TNSE_2021_3137320
crossref_primary_10_1155_2022_7466780
crossref_primary_10_1109_TSIPN_2025_3587394
crossref_primary_10_1177_01423312231174545
crossref_primary_10_1109_TSMC_2024_3354883
crossref_primary_10_1080_00207721_2024_2353186
crossref_primary_10_1109_JAS_2023_123534
crossref_primary_10_1080_00207721_2023_2177899
crossref_primary_10_1016_j_nahs_2023_101445
crossref_primary_10_1109_TAC_2023_3307951
crossref_primary_10_1016_j_ins_2022_11_039
crossref_primary_10_1016_j_neucom_2024_127448
crossref_primary_10_1016_j_ins_2024_120251
crossref_primary_10_1109_TNNLS_2024_3487760
crossref_primary_10_1109_TASE_2024_3401740
crossref_primary_10_1109_TNSE_2025_3542177
crossref_primary_10_1080_21642583_2024_2334304
crossref_primary_10_1109_TNNLS_2024_3389873
crossref_primary_10_1109_TII_2024_3431022
crossref_primary_10_1016_j_neucom_2021_11_033
crossref_primary_10_1109_TSIPN_2023_3277278
Cites_doi 10.1109/TFUZZ.2017.2730826
10.1016/j.nahs.2020.100887
10.1007/978-0-8176-4606-6
10.1016/j.jfranklin.2017.07.021
10.1016/j.automatica.2018.10.029
10.1080/00207721.2021.1872118
10.1016/j.automatica.2020.108865
10.1007/s12555-019-1000-x
10.1109/TNNLS.2019.2946290
10.1109/ISIE.2013.6563623
10.1016/j.neunet.2019.09.006
10.1080/00207721.2020.1768453
10.1109/TCYB.2019.2917179
10.1080/00207721.2020.1794080
10.1080/00207721.2014.973466
10.1109/TAC.2020.2996579
10.1109/TCSI.2011.2151110
10.1109/TNNLS.2019.2927554
10.1080/00207721.2020.1814898
10.1109/TCYB.2020.3026001
10.1109/TCYB.2019.2923011
10.1016/j.automatica.2016.03.006
10.1109/ACC.2013.6579949
10.1109/TAC.2018.2831176
10.1109/TSMC.2018.2794414
10.1109/TCSII.2017.2723425
10.1016/j.automatica.2019.108714
10.1109/TCYB.2020.3025251
10.1137/1.9781611970777
10.1109/TIE.2015.2392720
10.1109/TCYB.2020.3021982
10.1109/TAC.2020.2968975
10.1080/03081079.2014.973733
10.1049/iet-cta.2017.0653
10.1109/TNNLS.2020.3015376
10.1109/TSMC.2018.2876497
10.1109/TCYB.2020.3004187
10.1109/TCYB.2020.3021194
10.1109/TNNLS.2020.2995708
10.1109/TAES.2006.1642572
10.1016/0893-6080(89)90020-8
10.1109/TNN.2008.2004373
10.1080/00207721.2021.1917721
10.1109/JAS.2021.1003826
10.1109/TCNS.2021.3049361
10.1016/j.inffus.2019.07.008
10.1109/TAC.2010.2052384
10.1109/TSMC.2018.2874508
10.1109/TII.2019.2893845
10.1016/j.isatra.2016.11.005
10.1109/TAC.2017.2697210
10.1016/j.automatica.2018.09.013
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3102127
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 798
ExternalDocumentID 34383656
10_1109_TNNLS_2021_3102127
9512300
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61873148; 61873169; 61933007; 61973102
  funderid: 10.13039/501100001809
– fundername: Alexander von Humboldt Foundation of Germany
  funderid: 10.13039/100005156
– fundername: Royal Society of the U.K.
  funderid: 10.13039/501100000288
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c395t-532b2de0e6960a9941c4f42b3e95ef28590359a6e53a97395c6e98b87dfa3be73
IEDL.DBID RIE
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732401600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 22:34:47 EDT 2025
Sun Jun 29 13:21:59 EDT 2025
Thu Jan 02 22:52:03 EST 2025
Sat Nov 29 01:40:14 EST 2025
Tue Nov 18 20:47:34 EST 2025
Wed Aug 27 02:48:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-532b2de0e6960a9941c4f42b3e95ef28590359a6e53a97395c6e98b87dfa3be73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9934-9979
0000-0002-9576-7401
0000-0002-0658-0806
0000-0003-2928-4142
OpenAccessLink http://bura.brunel.ac.uk/bitstream/2438/24632/3/FullText.pdf
PMID 34383656
PQID 2773455390
PQPubID 85436
PageCount 13
ParticipantIDs pubmed_primary_34383656
proquest_journals_2773455390
proquest_miscellaneous_2561490667
ieee_primary_9512300
crossref_primary_10_1109_TNNLS_2021_3102127
crossref_citationtrail_10_1109_TNNLS_2021_3102127
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
Blanchini (ref4) 2008
ref8
ref7
ref9
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Zhu (ref50) 2021
ref28
ref27
ref29
References_xml – ident: ref12
  doi: 10.1109/TFUZZ.2017.2730826
– ident: ref38
  doi: 10.1016/j.nahs.2020.100887
– volume-title: Set-Theoretic Methods in Control
  year: 2008
  ident: ref4
  doi: 10.1007/978-0-8176-4606-6
– ident: ref42
  doi: 10.1016/j.jfranklin.2017.07.021
– ident: ref46
  doi: 10.1016/j.automatica.2018.10.029
– ident: ref20
  doi: 10.1080/00207721.2021.1872118
– ident: ref36
  doi: 10.1016/j.automatica.2020.108865
– ident: ref37
  doi: 10.1007/s12555-019-1000-x
– ident: ref30
  doi: 10.1109/TNNLS.2019.2946290
– ident: ref43
  doi: 10.1109/ISIE.2013.6563623
– ident: ref24
  doi: 10.1016/j.neunet.2019.09.006
– ident: ref18
  doi: 10.1080/00207721.2020.1768453
– ident: ref10
  doi: 10.1109/TCYB.2019.2917179
– ident: ref28
  doi: 10.1080/00207721.2020.1794080
– ident: ref3
  doi: 10.1080/00207721.2014.973466
– ident: ref23
  doi: 10.1109/TAC.2020.2996579
– ident: ref34
  doi: 10.1109/TCSI.2011.2151110
– ident: ref14
  doi: 10.1109/TNNLS.2019.2927554
– ident: ref49
  doi: 10.1080/00207721.2020.1814898
– ident: ref16
  doi: 10.1109/TCYB.2020.3026001
– ident: ref45
  doi: 10.1109/TCYB.2019.2923011
– start-page: 1
  year: 2021
  ident: ref50
  article-title: On $\ell_{2}$ -$\ell_{\infty}$ output-feedback control scheduled by stochastic communication protocol for two-dimensional switched systems
  publication-title: Int. J. Syst. Sci.
– ident: ref2
  doi: 10.1016/j.automatica.2016.03.006
– ident: ref7
  doi: 10.1109/ACC.2013.6579949
– ident: ref41
  doi: 10.1109/TAC.2018.2831176
– ident: ref25
  doi: 10.1109/TSMC.2018.2794414
– ident: ref11
  doi: 10.1109/TCSII.2017.2723425
– ident: ref22
  doi: 10.1016/j.automatica.2019.108714
– ident: ref40
  doi: 10.1109/TCYB.2020.3025251
– ident: ref5
  doi: 10.1137/1.9781611970777
– ident: ref9
  doi: 10.1109/TIE.2015.2392720
– ident: ref21
  doi: 10.1109/TCYB.2020.3021982
– ident: ref52
  doi: 10.1109/TAC.2020.2968975
– ident: ref19
  doi: 10.1080/03081079.2014.973733
– ident: ref15
  doi: 10.1049/iet-cta.2017.0653
– ident: ref47
  doi: 10.1109/TNNLS.2020.3015376
– ident: ref8
  doi: 10.1109/TSMC.2018.2876497
– ident: ref31
  doi: 10.1109/TCYB.2020.3004187
– ident: ref33
  doi: 10.1109/TCYB.2020.3021194
– ident: ref32
  doi: 10.1109/TNNLS.2020.2995708
– ident: ref27
  doi: 10.1109/TAES.2006.1642572
– ident: ref13
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref35
  doi: 10.1109/TNN.2008.2004373
– ident: ref53
  doi: 10.1080/00207721.2021.1917721
– ident: ref51
  doi: 10.1109/JAS.2021.1003826
– ident: ref26
  doi: 10.1109/TCNS.2021.3049361
– ident: ref6
  doi: 10.1016/j.inffus.2019.07.008
– ident: ref17
  doi: 10.1109/TAC.2010.2052384
– ident: ref48
  doi: 10.1109/TSMC.2018.2874508
– ident: ref29
  doi: 10.1109/TII.2019.2893845
– ident: ref1
  doi: 10.1016/j.isatra.2016.11.005
– ident: ref39
  doi: 10.1109/TAC.2017.2697210
– ident: ref44
  doi: 10.1016/j.automatica.2018.09.013
SSID ssj0000605649
Score 2.571198
Snippet In this article, the simultaneous state and fault estimation problem is investigated for a class of nonlinear 2-D shift-varying systems, where the sensors and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 786
SubjectTerms 2-D systems
Artificial neural networks
Convexity
encoding–decoding mechanism (EDM)
Estimation
fault estimation
Neural networks
neural networks (NNs)
Optimization
Quantization (signal)
Scalars
Security
set-membership estimation (SME)
State estimation
Symmetric matrices
Task analysis
Tuning
Title Neural-Network-Based Set-Membership Fault Estimation for 2-D Systems Under Encoding-Decoding Mechanism
URI https://ieeexplore.ieee.org/document/9512300
https://www.ncbi.nlm.nih.gov/pubmed/34383656
https://www.proquest.com/docview/2773455390
https://www.proquest.com/docview/2561490667
Volume 34
WOSCitedRecordID wos000732401600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VCqFeKFAeC6UyEjcw3diOHR-B7opDGyG1oL1FTjyWKm2zqJvt76_HeYgDIHFzZOehzNgzY898H8D7LAgvCh-4DN5yZYLgznnHgzWNjauhVIk64ee5KctitbLf9-DjVAuDiCn5DD9RM53l-02zo62y0-gNRI85BugPjNF9rda0nzKPfrlO3q7ItOBCmtVYIzO3p1dleX4Zo0GRxSA1oZofwCNJMJ2aqKt_M0mJY-Xv7mYyO8vD__vgJ_B4cC_Z514fnsIets_gcKRuYMNMPoJAoBxuzcs-C5x_icbMs0vs-AUSRQjlcLGl2607toiLQF_fyKKDywQ_YwPMOUukSWzRNhuygPwM-wa7QKonvt7ePIcfy8XV1298oFzgjbR5x3MpauFxjjpGNs5alTUqKFFLtDkGArsjyD-nMZfO0hlfo9EWdWF8cLJGI1_Afrtp8RWweOFNbusiQ6WoViqzymvlpfaZC0WYQTb-9aoZ8MiJFmNdpbhkbqsktIqEVg1Cm8GH6Z5fPRrHP0cfkUimkYM0ZnA8CrcaJuy2EiaqZZ5LG7vfTd1xqtH5iWtxs4tjCDXVUlbwDF72SjE9e9Sl139-5xs4IJ76Pt37GPa72x2-hYfNXXe9vT2J-rwqTpI-3wMGU-0u
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBUEvFCiFhQJG4gZuE9t5-EjprorYjZC6oL1FTjyWKm2zqJvl9-NxHuIAlbglsuNEmbFnxp75PoD3sRNW5NZx6azmKnOCG2MNdzqrtV8NpQrUCT_mWVHkq5X-tgcfx1oYRAzJZ3hKl-Es327qHW2VnXlvwHvMPkC_l_ghoq5aa9xRibxnngZ_V8Sp4EJmq6FKJtJny6KYX_l4UMQ-TA245gfwQBJQZ0rk1X8YpcCy8m-HMxie2eH_ffJjeNQ7mOxTpxFPYA-bp3A4kDewfi4fgSNYDrPmRZcHzs-9ObPsClu-QCIJoSwuNjO7dcumfhnoKhyZd3GZ4BesBzpngTaJTZt6QzaQX2B3wRZIFcXX25tn8H02XX6-5D3pAq-lTlqeSFEJixGmPrYxWqu4Vk6JSqJO0BHcHYH-mRQTaTSd8tUp6rzKM-uMrDCTx7DfbBp8Aczf2CzRVR6jUlQtFWtlU2VlamPjcjeBePjrZd0jkhMxxroMkUmkyyC0koRW9kKbwIfxmZ8dHsedvY9IJGPPXhoTOBmEW_ZTdluKzCtmkkjtm9-NzX6y0QmKaXCz830IN1VTXvAEnndKMY496NLLv7_zLTy8XC7m5fxL8fUVHBBrfZf8fQL77e0OX8P9-ld7vb19E7T6N-zM740
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-Network-Based+Set-Membership+Fault+Estimation+for+2-D+Systems+Under+Encoding-Decoding+Mechanism&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhu%2C+Kaiqun&rft.au=Wang%2C+Zidong&rft.au=Chen%2C+Yun&rft.au=Wei%2C+Guoliang&rft.date=2023-02-01&rft.eissn=2162-2388&rft.volume=34&rft.issue=2&rft.spage=786&rft_id=info:doi/10.1109%2FTNNLS.2021.3102127&rft_id=info%3Apmid%2F34383656&rft.externalDocID=34383656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon