Neural-Network-Based Set-Membership Fault Estimation for 2-D Systems Under Encoding-Decoding Mechanism
In this article, the simultaneous state and fault estimation problem is investigated for a class of nonlinear 2-D shift-varying systems, where the sensors and the estimator are connected via a communication network of limited bandwidth. With the purpose of relieving the communication burden and enha...
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 34; číslo 2; s. 786 - 798 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this article, the simultaneous state and fault estimation problem is investigated for a class of nonlinear 2-D shift-varying systems, where the sensors and the estimator are connected via a communication network of limited bandwidth. With the purpose of relieving the communication burden and enhancing the transmission security, a new encoding-decoding mechanism is put forward so as to encode the transmitted data with a finite number of bits. The aim of the addressed problem is to develop a neural-network (NN)-based set-membership estimator for jointly estimating the system states and the faults, where the estimation errors are guaranteed to reside within an optimized ellipsoidal set. With the aid of the mathematical induction technique and certain convex optimization approaches, sufficient conditions are derived for the existence of the desired set-membership estimator, and the estimator gains and the NN tuning scalars are then presented in terms of the solutions to a set of optimization problems subject to ellipsoidal constraints. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed estimator design method. |
|---|---|
| AbstractList | In this article, the simultaneous state and fault estimation problem is investigated for a class of nonlinear 2-D shift-varying systems, where the sensors and the estimator are connected via a communication network of limited bandwidth. With the purpose of relieving the communication burden and enhancing the transmission security, a new encoding-decoding mechanism is put forward so as to encode the transmitted data with a finite number of bits. The aim of the addressed problem is to develop a neural-network (NN)-based set-membership estimator for jointly estimating the system states and the faults, where the estimation errors are guaranteed to reside within an optimized ellipsoidal set. With the aid of the mathematical induction technique and certain convex optimization approaches, sufficient conditions are derived for the existence of the desired set-membership estimator, and the estimator gains and the NN tuning scalars are then presented in terms of the solutions to a set of optimization problems subject to ellipsoidal constraints. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed estimator design method.In this article, the simultaneous state and fault estimation problem is investigated for a class of nonlinear 2-D shift-varying systems, where the sensors and the estimator are connected via a communication network of limited bandwidth. With the purpose of relieving the communication burden and enhancing the transmission security, a new encoding-decoding mechanism is put forward so as to encode the transmitted data with a finite number of bits. The aim of the addressed problem is to develop a neural-network (NN)-based set-membership estimator for jointly estimating the system states and the faults, where the estimation errors are guaranteed to reside within an optimized ellipsoidal set. With the aid of the mathematical induction technique and certain convex optimization approaches, sufficient conditions are derived for the existence of the desired set-membership estimator, and the estimator gains and the NN tuning scalars are then presented in terms of the solutions to a set of optimization problems subject to ellipsoidal constraints. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed estimator design method. In this article, the simultaneous state and fault estimation problem is investigated for a class of nonlinear 2-D shift-varying systems, where the sensors and the estimator are connected via a communication network of limited bandwidth. With the purpose of relieving the communication burden and enhancing the transmission security, a new encoding–decoding mechanism is put forward so as to encode the transmitted data with a finite number of bits. The aim of the addressed problem is to develop a neural-network (NN)-based set-membership estimator for jointly estimating the system states and the faults, where the estimation errors are guaranteed to reside within an optimized ellipsoidal set. With the aid of the mathematical induction technique and certain convex optimization approaches, sufficient conditions are derived for the existence of the desired set-membership estimator, and the estimator gains and the NN tuning scalars are then presented in terms of the solutions to a set of optimization problems subject to ellipsoidal constraints. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed estimator design method. |
| Author | Zhu, Kaiqun Chen, Yun Wei, Guoliang Wang, Zidong |
| Author_xml | – sequence: 1 givenname: Kaiqun orcidid: 0000-0002-0658-0806 surname: Zhu fullname: Zhu, Kaiqun email: zkqun@163.com organization: Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China – sequence: 2 givenname: Zidong orcidid: 0000-0002-9576-7401 surname: Wang fullname: Wang, Zidong email: zidong.wang@brunel.ac.uk organization: Department of Computer Science, Brunel University London, Uxbridge, U.K – sequence: 3 givenname: Yun orcidid: 0000-0002-9934-9979 surname: Chen fullname: Chen, Yun email: yunchen@hdu.edu.cn organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China – sequence: 4 givenname: Guoliang orcidid: 0000-0003-2928-4142 surname: Wei fullname: Wei, Guoliang email: guoliang.wei@usst.edu.cn organization: College of Science, University of Shanghai for Science and Technology, Shanghai, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34383656$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kT9v2zAQxYkgRZK6-QItUBDo0oUO_4iUOLaJ0xZwnMEJ0I2gpFPDVCIdkkKRb185dj1kKIfjDb93d3jvLTr2wQNC7xmdM0b1xd1qtVzPOeVsLthUeXmEzjhTnHBRVceHvvx5is5TeqTTU1SqQp-gU1GISiipzlC3gjHanqwg_wnxN_lqE7R4DZncwFBDTA9ug6_t2Ge8SNkNNrvgcRci5uQKr59ThiHhe99CxAvfhNb5X-QKdg2-gebBepeGd-hNZ_sE5_t_hu6vF3eX38ny9tuPyy9L0ggtM5GC17wFCkorarUuWFN0Ba8FaAkdr6SmQmqrQAqry0nSKNBVXZVtZ0UNpZihz7u5mxieRkjZDC410PfWQxiT4VKxQlOltuinV-hjGKOfrjO8LEUhpZi2zdDHPTXWA7RmEycP4rP55-AE8B3QxJBShO6AMGq2SZmXpMw2KbNPahJVr0SNyy_W5mhd_3_ph53UAcBhl5aMC0rFX4o4nt0 |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1109_TSMC_2023_3281720 crossref_primary_10_1016_j_inffus_2025_103103 crossref_primary_10_1109_TNNLS_2025_3556370 crossref_primary_10_1002_acs_3600 crossref_primary_10_1002_acs_3689 crossref_primary_10_1016_j_neucom_2025_130580 crossref_primary_10_1016_j_knosys_2023_111205 crossref_primary_10_1109_TCSII_2022_3194530 crossref_primary_10_1109_TCSII_2024_3355504 crossref_primary_10_1109_TNSE_2023_3237639 crossref_primary_10_1016_j_isatra_2025_02_035 crossref_primary_10_1109_TCYB_2021_3110587 crossref_primary_10_1109_TSG_2025_3525558 crossref_primary_10_1080_00207721_2023_2180336 crossref_primary_10_1016_j_neucom_2023_126877 crossref_primary_10_1109_TNSE_2021_3137320 crossref_primary_10_1155_2022_7466780 crossref_primary_10_1109_TSIPN_2025_3587394 crossref_primary_10_1177_01423312231174545 crossref_primary_10_1109_TSMC_2024_3354883 crossref_primary_10_1080_00207721_2024_2353186 crossref_primary_10_1109_JAS_2023_123534 crossref_primary_10_1080_00207721_2023_2177899 crossref_primary_10_1016_j_nahs_2023_101445 crossref_primary_10_1109_TAC_2023_3307951 crossref_primary_10_1016_j_ins_2022_11_039 crossref_primary_10_1016_j_neucom_2024_127448 crossref_primary_10_1016_j_ins_2024_120251 crossref_primary_10_1109_TNNLS_2024_3487760 crossref_primary_10_1109_TASE_2024_3401740 crossref_primary_10_1109_TNSE_2025_3542177 crossref_primary_10_1080_21642583_2024_2334304 crossref_primary_10_1109_TNNLS_2024_3389873 crossref_primary_10_1109_TII_2024_3431022 crossref_primary_10_1016_j_neucom_2021_11_033 crossref_primary_10_1109_TSIPN_2023_3277278 |
| Cites_doi | 10.1109/TFUZZ.2017.2730826 10.1016/j.nahs.2020.100887 10.1007/978-0-8176-4606-6 10.1016/j.jfranklin.2017.07.021 10.1016/j.automatica.2018.10.029 10.1080/00207721.2021.1872118 10.1016/j.automatica.2020.108865 10.1007/s12555-019-1000-x 10.1109/TNNLS.2019.2946290 10.1109/ISIE.2013.6563623 10.1016/j.neunet.2019.09.006 10.1080/00207721.2020.1768453 10.1109/TCYB.2019.2917179 10.1080/00207721.2020.1794080 10.1080/00207721.2014.973466 10.1109/TAC.2020.2996579 10.1109/TCSI.2011.2151110 10.1109/TNNLS.2019.2927554 10.1080/00207721.2020.1814898 10.1109/TCYB.2020.3026001 10.1109/TCYB.2019.2923011 10.1016/j.automatica.2016.03.006 10.1109/ACC.2013.6579949 10.1109/TAC.2018.2831176 10.1109/TSMC.2018.2794414 10.1109/TCSII.2017.2723425 10.1016/j.automatica.2019.108714 10.1109/TCYB.2020.3025251 10.1137/1.9781611970777 10.1109/TIE.2015.2392720 10.1109/TCYB.2020.3021982 10.1109/TAC.2020.2968975 10.1080/03081079.2014.973733 10.1049/iet-cta.2017.0653 10.1109/TNNLS.2020.3015376 10.1109/TSMC.2018.2876497 10.1109/TCYB.2020.3004187 10.1109/TCYB.2020.3021194 10.1109/TNNLS.2020.2995708 10.1109/TAES.2006.1642572 10.1016/0893-6080(89)90020-8 10.1109/TNN.2008.2004373 10.1080/00207721.2021.1917721 10.1109/JAS.2021.1003826 10.1109/TCNS.2021.3049361 10.1016/j.inffus.2019.07.008 10.1109/TAC.2010.2052384 10.1109/TSMC.2018.2874508 10.1109/TII.2019.2893845 10.1016/j.isatra.2016.11.005 10.1109/TAC.2017.2697210 10.1016/j.automatica.2018.09.013 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2021.3102127 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 798 |
| ExternalDocumentID | 34383656 10_1109_TNNLS_2021_3102127 9512300 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61873148; 61873169; 61933007; 61973102 funderid: 10.13039/501100001809 – fundername: Alexander von Humboldt Foundation of Germany funderid: 10.13039/100005156 – fundername: Royal Society of the U.K. funderid: 10.13039/501100000288 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c395t-532b2de0e6960a9941c4f42b3e95ef28590359a6e53a97395c6e98b87dfa3be73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732401600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sat Sep 27 22:34:47 EDT 2025 Sun Jun 29 13:21:59 EDT 2025 Thu Jan 02 22:52:03 EST 2025 Sat Nov 29 01:40:14 EST 2025 Tue Nov 18 20:47:34 EST 2025 Wed Aug 27 02:48:03 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c395t-532b2de0e6960a9941c4f42b3e95ef28590359a6e53a97395c6e98b87dfa3be73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9934-9979 0000-0002-9576-7401 0000-0002-0658-0806 0000-0003-2928-4142 |
| OpenAccessLink | http://bura.brunel.ac.uk/bitstream/2438/24632/3/FullText.pdf |
| PMID | 34383656 |
| PQID | 2773455390 |
| PQPubID | 85436 |
| PageCount | 13 |
| ParticipantIDs | pubmed_primary_34383656 proquest_journals_2773455390 proquest_miscellaneous_2561490667 ieee_primary_9512300 crossref_primary_10_1109_TNNLS_2021_3102127 crossref_citationtrail_10_1109_TNNLS_2021_3102127 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 Blanchini (ref4) 2008 ref8 ref7 ref9 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Zhu (ref50) 2021 ref28 ref27 ref29 |
| References_xml | – ident: ref12 doi: 10.1109/TFUZZ.2017.2730826 – ident: ref38 doi: 10.1016/j.nahs.2020.100887 – volume-title: Set-Theoretic Methods in Control year: 2008 ident: ref4 doi: 10.1007/978-0-8176-4606-6 – ident: ref42 doi: 10.1016/j.jfranklin.2017.07.021 – ident: ref46 doi: 10.1016/j.automatica.2018.10.029 – ident: ref20 doi: 10.1080/00207721.2021.1872118 – ident: ref36 doi: 10.1016/j.automatica.2020.108865 – ident: ref37 doi: 10.1007/s12555-019-1000-x – ident: ref30 doi: 10.1109/TNNLS.2019.2946290 – ident: ref43 doi: 10.1109/ISIE.2013.6563623 – ident: ref24 doi: 10.1016/j.neunet.2019.09.006 – ident: ref18 doi: 10.1080/00207721.2020.1768453 – ident: ref10 doi: 10.1109/TCYB.2019.2917179 – ident: ref28 doi: 10.1080/00207721.2020.1794080 – ident: ref3 doi: 10.1080/00207721.2014.973466 – ident: ref23 doi: 10.1109/TAC.2020.2996579 – ident: ref34 doi: 10.1109/TCSI.2011.2151110 – ident: ref14 doi: 10.1109/TNNLS.2019.2927554 – ident: ref49 doi: 10.1080/00207721.2020.1814898 – ident: ref16 doi: 10.1109/TCYB.2020.3026001 – ident: ref45 doi: 10.1109/TCYB.2019.2923011 – start-page: 1 year: 2021 ident: ref50 article-title: On $\ell_{2}$ -$\ell_{\infty}$ output-feedback control scheduled by stochastic communication protocol for two-dimensional switched systems publication-title: Int. J. Syst. Sci. – ident: ref2 doi: 10.1016/j.automatica.2016.03.006 – ident: ref7 doi: 10.1109/ACC.2013.6579949 – ident: ref41 doi: 10.1109/TAC.2018.2831176 – ident: ref25 doi: 10.1109/TSMC.2018.2794414 – ident: ref11 doi: 10.1109/TCSII.2017.2723425 – ident: ref22 doi: 10.1016/j.automatica.2019.108714 – ident: ref40 doi: 10.1109/TCYB.2020.3025251 – ident: ref5 doi: 10.1137/1.9781611970777 – ident: ref9 doi: 10.1109/TIE.2015.2392720 – ident: ref21 doi: 10.1109/TCYB.2020.3021982 – ident: ref52 doi: 10.1109/TAC.2020.2968975 – ident: ref19 doi: 10.1080/03081079.2014.973733 – ident: ref15 doi: 10.1049/iet-cta.2017.0653 – ident: ref47 doi: 10.1109/TNNLS.2020.3015376 – ident: ref8 doi: 10.1109/TSMC.2018.2876497 – ident: ref31 doi: 10.1109/TCYB.2020.3004187 – ident: ref33 doi: 10.1109/TCYB.2020.3021194 – ident: ref32 doi: 10.1109/TNNLS.2020.2995708 – ident: ref27 doi: 10.1109/TAES.2006.1642572 – ident: ref13 doi: 10.1016/0893-6080(89)90020-8 – ident: ref35 doi: 10.1109/TNN.2008.2004373 – ident: ref53 doi: 10.1080/00207721.2021.1917721 – ident: ref51 doi: 10.1109/JAS.2021.1003826 – ident: ref26 doi: 10.1109/TCNS.2021.3049361 – ident: ref6 doi: 10.1016/j.inffus.2019.07.008 – ident: ref17 doi: 10.1109/TAC.2010.2052384 – ident: ref48 doi: 10.1109/TSMC.2018.2874508 – ident: ref29 doi: 10.1109/TII.2019.2893845 – ident: ref1 doi: 10.1016/j.isatra.2016.11.005 – ident: ref39 doi: 10.1109/TAC.2017.2697210 – ident: ref44 doi: 10.1016/j.automatica.2018.09.013 |
| SSID | ssj0000605649 |
| Score | 2.571198 |
| Snippet | In this article, the simultaneous state and fault estimation problem is investigated for a class of nonlinear 2-D shift-varying systems, where the sensors and... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 786 |
| SubjectTerms | 2-D systems Artificial neural networks Convexity encoding–decoding mechanism (EDM) Estimation fault estimation Neural networks neural networks (NNs) Optimization Quantization (signal) Scalars Security set-membership estimation (SME) State estimation Symmetric matrices Task analysis Tuning |
| Title | Neural-Network-Based Set-Membership Fault Estimation for 2-D Systems Under Encoding-Decoding Mechanism |
| URI | https://ieeexplore.ieee.org/document/9512300 https://www.ncbi.nlm.nih.gov/pubmed/34383656 https://www.proquest.com/docview/2773455390 https://www.proquest.com/docview/2561490667 |
| Volume | 34 |
| WOSCitedRecordID | wos000732401600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VCqFeKFAeC6UyEjcw3diOHR-B7opDGyG1oL1FTjyWKm2zqJvt76_HeYgDIHFzZOehzNgzY898H8D7LAgvCh-4DN5yZYLgznnHgzWNjauhVIk64ee5KctitbLf9-DjVAuDiCn5DD9RM53l-02zo62y0-gNRI85BugPjNF9rda0nzKPfrlO3q7ItOBCmtVYIzO3p1dleX4Zo0GRxSA1oZofwCNJMJ2aqKt_M0mJY-Xv7mYyO8vD__vgJ_B4cC_Z514fnsIets_gcKRuYMNMPoJAoBxuzcs-C5x_icbMs0vs-AUSRQjlcLGl2607toiLQF_fyKKDywQ_YwPMOUukSWzRNhuygPwM-wa7QKonvt7ePIcfy8XV1298oFzgjbR5x3MpauFxjjpGNs5alTUqKFFLtDkGArsjyD-nMZfO0hlfo9EWdWF8cLJGI1_Afrtp8RWweOFNbusiQ6WoViqzymvlpfaZC0WYQTb-9aoZ8MiJFmNdpbhkbqsktIqEVg1Cm8GH6Z5fPRrHP0cfkUimkYM0ZnA8CrcaJuy2EiaqZZ5LG7vfTd1xqtH5iWtxs4tjCDXVUlbwDF72SjE9e9Sl139-5xs4IJ76Pt37GPa72x2-hYfNXXe9vT2J-rwqTpI-3wMGU-0u |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBUEvFCiFhQJG4gZuE9t5-EjprorYjZC6oL1FTjyWKm2zqJvl9-NxHuIAlbglsuNEmbFnxp75PoD3sRNW5NZx6azmKnOCG2MNdzqrtV8NpQrUCT_mWVHkq5X-tgcfx1oYRAzJZ3hKl-Es327qHW2VnXlvwHvMPkC_l_ghoq5aa9xRibxnngZ_V8Sp4EJmq6FKJtJny6KYX_l4UMQ-TA245gfwQBJQZ0rk1X8YpcCy8m-HMxie2eH_ffJjeNQ7mOxTpxFPYA-bp3A4kDewfi4fgSNYDrPmRZcHzs-9ObPsClu-QCIJoSwuNjO7dcumfhnoKhyZd3GZ4BesBzpngTaJTZt6QzaQX2B3wRZIFcXX25tn8H02XX6-5D3pAq-lTlqeSFEJixGmPrYxWqu4Vk6JSqJO0BHcHYH-mRQTaTSd8tUp6rzKM-uMrDCTx7DfbBp8Aczf2CzRVR6jUlQtFWtlU2VlamPjcjeBePjrZd0jkhMxxroMkUmkyyC0koRW9kKbwIfxmZ8dHsedvY9IJGPPXhoTOBmEW_ZTdluKzCtmkkjtm9-NzX6y0QmKaXCz830IN1VTXvAEnndKMY496NLLv7_zLTy8XC7m5fxL8fUVHBBrfZf8fQL77e0OX8P9-ld7vb19E7T6N-zM740 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-Network-Based+Set-Membership+Fault+Estimation+for+2-D+Systems+Under+Encoding-Decoding+Mechanism&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhu%2C+Kaiqun&rft.au=Wang%2C+Zidong&rft.au=Chen%2C+Yun&rft.au=Wei%2C+Guoliang&rft.date=2023-02-01&rft.eissn=2162-2388&rft.volume=34&rft.issue=2&rft.spage=786&rft_id=info:doi/10.1109%2FTNNLS.2021.3102127&rft_id=info%3Apmid%2F34383656&rft.externalDocID=34383656 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |