PPINN: Parareal physics-informed neural network for time-dependent PDEs
Physics-informed neural networks (PINNs) encode physical conservation laws and prior physical knowledge into the neural networks, ensuring the correct physics is represented accurately while alleviating the need for supervised learning to a great degree (Raissi et al., 2019). While effective for rel...
Gespeichert in:
| Veröffentlicht in: | Computer methods in applied mechanics and engineering Jg. 370; H. C; S. 113250 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
01.10.2020
Elsevier BV Elsevier |
| Schlagworte: | |
| ISSN: | 0045-7825, 1879-2138 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!