PPINN: Parareal physics-informed neural network for time-dependent PDEs
Physics-informed neural networks (PINNs) encode physical conservation laws and prior physical knowledge into the neural networks, ensuring the correct physics is represented accurately while alleviating the need for supervised learning to a great degree (Raissi et al., 2019). While effective for rel...
Uloženo v:
| Vydáno v: | Computer methods in applied mechanics and engineering Ročník 370; číslo C; s. 113250 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.10.2020
Elsevier BV Elsevier |
| Témata: | |
| ISSN: | 0045-7825, 1879-2138 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!