PPINN: Parareal physics-informed neural network for time-dependent PDEs
Physics-informed neural networks (PINNs) encode physical conservation laws and prior physical knowledge into the neural networks, ensuring the correct physics is represented accurately while alleviating the need for supervised learning to a great degree (Raissi et al., 2019). While effective for rel...
Uloženo v:
| Vydáno v: | Computer methods in applied mechanics and engineering Ročník 370; číslo C; s. 113250 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.10.2020
Elsevier BV Elsevier |
| Témata: | |
| ISSN: | 0045-7825, 1879-2138 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Physics-informed neural networks (PINNs) encode physical conservation laws and prior physical knowledge into the neural networks, ensuring the correct physics is represented accurately while alleviating the need for supervised learning to a great degree (Raissi et al., 2019). While effective for relatively short-term time integration, when long time integration of the time-dependent PDEs is sought, the time–space domain may become arbitrarily large and hence training of the neural network may become prohibitively expensive. To this end, we develop a parareal physics-informed neural network (PPINN), hence decomposing a long-time problem into many independent short-time problems supervised by an inexpensive/fast coarse-grained (CG) solver. In particular, the serial CG solver is designed to provide approximate predictions of the solution at discrete times, while initiate many fine PINNs simultaneously to correct the solution iteratively. There is a two-fold benefit from training PINNs with small-data sets rather than working on a large-data set directly, i.e., training of individual PINNs with small-data is much faster, while training the fine PINNs can be readily parallelized. Consequently, compared to the original PINN approach, the proposed PPINN approach may achieve a significant speed-up for long-time integration of PDEs, assuming that the CG solver is fast and can provide reasonable predictions of the solution, hence aiding the PPINN solution to converge in just a few iterations. To investigate the PPINN performance on solving time-dependent PDEs, we first apply the PPINN to solve the Burgers equation, and subsequently we apply the PPINN to solve a two-dimensional nonlinear diffusion–reaction equation. Our results demonstrate that PPINNs converge in a few iterations with significant speed-ups proportional to the number of time-subdomains employed. |
|---|---|
| AbstractList | Physics-informed neural networks (PINNs) encode physical conservation laws and prior physical knowledge into the neural networks, ensuring the correct physics is represented accurately while alleviating the need for supervised learning to a great degree (Raissi et al., 2019). While effective for relatively short-term time integration, when long time integration of the time-dependent PDEs is sought, the time–space domain may become arbitrarily large and hence training of the neural network may become prohibitively expensive. To this end, we develop a parareal physics-informed neural network (PPINN), hence decomposing a long-time problem into many independent short-time problems supervised by an inexpensive/fast coarse-grained (CG) solver. In particular, the serial CG solver is designed to provide approximate predictions of the solution at discrete times, while initiate many fine PINNs simultaneously to correct the solution iteratively. There is a two-fold benefit from training PINNs with small-data sets rather than working on a large-data set directly, i.e., training of individual PINNs with small-data is much faster, while training the fine PINNs can be readily parallelized. Consequently, compared to the original PINN approach, the proposed PPINN approach may achieve a significant speed-up for long-time integration of PDEs, assuming that the CG solver is fast and can provide reasonable predictions of the solution, hence aiding the PPINN solution to converge in just a few iterations. To investigate the PPINN performance on solving time-dependent PDEs, we first apply the PPINN to solve the Burgers equation, and subsequently we apply the PPINN to solve a two-dimensional nonlinear diffusion–reaction equation. Our results demonstrate that PPINNs converge in a few iterations with significant speed-ups proportional to the number of time-subdomains employed. Physics-informed neural networks (PINNs) encode physical conservation laws and prior physical knowledge into the neural networks, ensuring the correct physics is represented accurately while alleviating the need for supervised learning to a great degree (Raissi et al., 2019). While effective for relatively short-term time integration, when long time integration of the time-dependent PDEs is sought, the time–space domain may become arbitrarily large and hence training of the neural network may become prohibitively expensive. To this end, we develop a parareal physics-informed neural network (PPINN), hence decomposing a long-time problem into many independent short-time problems supervised by an inexpensive/fast coarse-grained (CG) solver. In particular, the serial CG solver is designed to provide approximate predictions of the solution at discrete times, while initiate many fine PINNs simultaneously to correct the solution iteratively. There is a two-fold benefit from training PINNs with small-data sets rather than working on a large-data set directly, i.e., training of individual PINNs with small-data is much faster, while training the fine PINNs can be readily parallelized. Consequently, compared to the original PINN approach, the proposed PPINN approach may achieve a significant speed-up for long-time integration of PDEs, assuming that the CG solver is fast and can provide reasonable predictions of the solution, hence aiding the PPINN solution to converge in just a few iterations. To investigate the PPINN performance on solving time-dependent PDEs, we first apply the PPINN to solve the Burgers equation, and subsequently we apply the PPINN to solve a two-dimensional nonlinear diffusion–reaction equation. Our results demonstrate that PPINNs converge in a few iterations with significant speed-ups proportional to the number of time-subdomains employed. |
| ArticleNumber | 113250 |
| Author | Li, Zhen Meng, Xuhui Karniadakis, George Em Zhang, Dongkun |
| Author_xml | – sequence: 1 givenname: Xuhui surname: Meng fullname: Meng, Xuhui organization: Division of Applied Mathematics, Brown University, Providence, RI 02912, USA – sequence: 2 givenname: Zhen surname: Li fullname: Li, Zhen organization: Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA – sequence: 3 givenname: Dongkun surname: Zhang fullname: Zhang, Dongkun organization: Division of Applied Mathematics, Brown University, Providence, RI 02912, USA – sequence: 4 givenname: George Em surname: Karniadakis fullname: Karniadakis, George Em email: george_karniadakis@brown.edu organization: Division of Applied Mathematics, Brown University, Providence, RI 02912, USA |
| BackLink | https://www.osti.gov/biblio/1637715$$D View this record in Osti.gov |
| BookMark | eNp9kD1PwzAQhi0EEi3wA9gimFN8TpzEMKHyKSHIALPlOhfh0trFdkH99zgKEwNeTj69z-nVMyX71lkk5BToDChUF8uZXqsZoyz9oWCc7pEJNLXIGRTNPplQWvK8bhg_JNMQljS9BtiE3Lft4_PzZdYqrzyqVbZ53wWjQ25s7_wau8zi1qe9xfjt_EeWtlk0a8w73KDt0MasvbkNx-SgV6uAJ7_ziLzd3b7OH_Knl_vH-fVTrgvBY17qGrtKYNFhryslsK8pNEJAA0JX5aJhPdcUF0VRKuiZ6JuuWlDABXIuROKOyNl414VoZNAmon7XzlrUUUJV1DXwFDofQxvvPrcYoly6rbepl2QlpxzqUgwpGFPauxA89nLjzVr5nQQqB6lyKZNUOUiVo9TE1H-Y1EBF42z0yqz-Ja9GEpOdL4N-KI9WY2f80L1z5h_6BzYwkXc |
| CitedBy_id | crossref_primary_10_1177_14759217251361808 crossref_primary_10_1177_14759217231202547 crossref_primary_10_1016_j_engappai_2023_106127 crossref_primary_10_1007_s10915_025_02791_7 crossref_primary_10_1007_s10409_024_24140_x crossref_primary_10_1016_j_conengprac_2025_106365 crossref_primary_10_1016_j_neucom_2024_128936 crossref_primary_10_1016_j_cageo_2024_105611 crossref_primary_10_1016_j_jcp_2022_111902 crossref_primary_10_1016_j_mechmat_2024_105141 crossref_primary_10_1190_geo2023_0622_1 crossref_primary_10_1016_j_neunet_2024_106098 crossref_primary_10_1016_j_apm_2025_116232 crossref_primary_10_1016_j_enbuild_2025_116101 crossref_primary_10_1002_aic_18436 crossref_primary_10_1002_gamm_202100001 crossref_primary_10_1016_j_camwa_2024_12_024 crossref_primary_10_1016_j_cma_2022_115671 crossref_primary_10_1038_s44172_024_00303_3 crossref_primary_10_1007_s10915_022_01939_z crossref_primary_10_1016_j_engstruct_2024_118077 crossref_primary_10_1016_j_neucom_2025_131262 crossref_primary_10_1016_j_cma_2024_116880 crossref_primary_10_1016_j_cam_2022_115041 crossref_primary_10_1186_s40703_024_00217_1 crossref_primary_10_1016_j_petrol_2022_110460 crossref_primary_10_1016_j_cma_2024_117290 crossref_primary_10_1016_j_dibe_2024_100598 crossref_primary_10_1016_j_ijheatfluidflow_2022_109002 crossref_primary_10_1007_s11837_020_04399_8 crossref_primary_10_1016_j_cam_2024_116372 crossref_primary_10_1016_j_cma_2022_115424 crossref_primary_10_1016_j_asoc_2023_110328 crossref_primary_10_1016_j_ress_2025_111724 crossref_primary_10_1016_j_istruc_2024_107361 crossref_primary_10_1088_1402_4896_adb99f crossref_primary_10_1007_s11071_024_10309_3 crossref_primary_10_1016_j_jcp_2025_114326 crossref_primary_10_1016_j_enganabound_2025_106178 crossref_primary_10_1016_j_jestch_2023_101489 crossref_primary_10_1016_j_jcp_2024_112781 crossref_primary_10_1016_j_camwa_2025_06_006 crossref_primary_10_1016_j_eswa_2021_115006 crossref_primary_10_1063_5_0062377 crossref_primary_10_1016_j_gsd_2024_101172 crossref_primary_10_1016_j_neunet_2024_106756 crossref_primary_10_1088_1402_4896_adea1e crossref_primary_10_1016_j_camwa_2023_05_004 crossref_primary_10_1016_j_ifacol_2025_07_175 crossref_primary_10_1016_j_fbp_2024_02_004 crossref_primary_10_1016_j_engappai_2024_109388 crossref_primary_10_1080_00295639_2022_2123211 crossref_primary_10_1016_j_isatra_2024_11_049 crossref_primary_10_1016_j_knosys_2024_111853 crossref_primary_10_1016_j_neunet_2024_106750 crossref_primary_10_3390_fi16120435 crossref_primary_10_1016_j_cma_2022_114800 crossref_primary_10_1038_s41598_022_22832_7 crossref_primary_10_1016_j_jmsy_2024_07_002 crossref_primary_10_1007_s12572_023_00365_0 crossref_primary_10_1088_1674_1056_ac4cc5 crossref_primary_10_1016_j_camwa_2025_09_007 crossref_primary_10_1007_s42979_024_02874_6 crossref_primary_10_1016_j_cma_2024_117036 crossref_primary_10_1016_j_enganabound_2023_03_039 crossref_primary_10_1111_ffe_14575 crossref_primary_10_1016_j_advengsoft_2022_103390 crossref_primary_10_1016_j_jcp_2020_109914 crossref_primary_10_1080_19942060_2023_2238849 crossref_primary_10_1016_j_camwa_2022_12_008 crossref_primary_10_1016_j_inffus_2023_102041 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127098 crossref_primary_10_1093_mnras_staa3540 crossref_primary_10_1007_s10208_022_09556_w crossref_primary_10_1016_j_engappai_2024_109378 crossref_primary_10_1007_s42484_024_00176_x crossref_primary_10_1088_2632_2153_ad45b2 crossref_primary_10_3390_a15020053 crossref_primary_10_1007_s11222_022_10195_y crossref_primary_10_1016_j_jcp_2024_112761 crossref_primary_10_1038_s41598_022_13644_w crossref_primary_10_1016_j_cam_2024_116223 crossref_primary_10_1088_1572_9494_adcc8e crossref_primary_10_1038_s41598_023_29822_3 crossref_primary_10_3390_bdcc6040140 crossref_primary_10_1016_j_aei_2024_102438 crossref_primary_10_1016_j_jobe_2025_111788 crossref_primary_10_1007_s13226_024_00541_3 crossref_primary_10_1016_j_neunet_2025_107825 crossref_primary_10_1038_s44172_024_00253_w crossref_primary_10_1007_s11071_023_08361_6 crossref_primary_10_1016_j_engappai_2024_109321 crossref_primary_10_1007_s11071_025_10871_4 crossref_primary_10_1016_j_jcp_2022_111024 crossref_primary_10_1016_j_cma_2021_114424 crossref_primary_10_1016_j_cma_2022_114823 crossref_primary_10_1007_s40687_020_00215_6 crossref_primary_10_1016_j_jcp_2022_111260 crossref_primary_10_1029_2024WR037490 crossref_primary_10_1109_TAI_2022_3209167 crossref_primary_10_1002_fld_5164 crossref_primary_10_1016_j_jcp_2024_113284 crossref_primary_10_3390_modelling5040080 crossref_primary_10_1162_neco_a_01647 crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_1016_j_neucom_2024_127419 crossref_primary_10_1029_2023JC019941 crossref_primary_10_3390_atmos14040759 crossref_primary_10_1007_s10483_022_2926_9 crossref_primary_10_1016_j_jcp_2022_111819 crossref_primary_10_1007_s11431_022_2118_9 crossref_primary_10_32604_cmes_2022_021277 crossref_primary_10_1016_j_asoc_2021_108050 crossref_primary_10_1109_ACCESS_2023_3244681 crossref_primary_10_1088_1873_7005_adb32e crossref_primary_10_1016_j_physd_2022_133430 crossref_primary_10_1016_j_ijmecsci_2024_109210 crossref_primary_10_1088_1572_9494_ada3ce crossref_primary_10_59717_j_xinn_energy_2025_100087 crossref_primary_10_1016_j_jhydrol_2023_129354 crossref_primary_10_1038_s41598_023_39989_4 crossref_primary_10_1088_2632_2153_ad63f4 crossref_primary_10_3390_e25040674 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123420 crossref_primary_10_1080_12269328_2025_2499267 crossref_primary_10_3390_math13091515 crossref_primary_10_1016_j_compositesb_2022_110208 crossref_primary_10_1016_j_jfoodeng_2022_111137 crossref_primary_10_3390_min14101043 crossref_primary_10_1016_j_engappai_2025_110166 crossref_primary_10_1016_j_chaos_2023_114090 crossref_primary_10_1016_j_ijsolstr_2021_111320 crossref_primary_10_1016_j_jcp_2023_112415 crossref_primary_10_1016_j_cma_2022_115810 crossref_primary_10_1016_j_compgeo_2023_105433 crossref_primary_10_1016_j_jcp_2021_110676 crossref_primary_10_1007_s00521_023_08876_4 crossref_primary_10_1063_5_0223510 crossref_primary_10_1016_j_engappai_2022_105724 crossref_primary_10_1016_j_ijheatfluidflow_2024_109707 crossref_primary_10_1007_s00466_024_02491_3 crossref_primary_10_1007_s42791_025_00098_0 crossref_primary_10_1155_2022_1781388 crossref_primary_10_1007_s11600_024_01507_z crossref_primary_10_1007_s00366_024_01998_w crossref_primary_10_1016_j_compositesb_2024_111597 crossref_primary_10_1007_s11071_023_08654_w crossref_primary_10_1016_j_compbiomed_2023_107431 crossref_primary_10_1016_j_compchemeng_2023_108547 crossref_primary_10_1016_j_amc_2024_128928 crossref_primary_10_1016_j_compgeo_2023_105546 crossref_primary_10_1016_j_cpc_2024_109130 crossref_primary_10_1016_j_jprocont_2023_103005 crossref_primary_10_1016_j_cma_2024_117222 crossref_primary_10_3390_math12111617 crossref_primary_10_1016_j_engappai_2024_109755 crossref_primary_10_3389_fphy_2022_971722 crossref_primary_10_1093_jge_gxae062 crossref_primary_10_11728_cjss2025_02_2024_0149 crossref_primary_10_1029_2022WR033168 crossref_primary_10_1016_j_neucom_2025_130578 crossref_primary_10_1016_j_engappai_2025_110347 crossref_primary_10_1016_j_tafmec_2024_104457 crossref_primary_10_1016_j_engappai_2023_107183 crossref_primary_10_1002_cjce_25510 crossref_primary_10_1155_2021_8548482 crossref_primary_10_1007_s10064_025_04381_1 crossref_primary_10_1108_HFF_09_2023_0568 crossref_primary_10_1016_j_jcp_2024_113363 crossref_primary_10_1080_00036811_2024_2302405 crossref_primary_10_3390_ai5030074 crossref_primary_10_1017_jfm_2025_10448 crossref_primary_10_1007_s11814_023_1420_4 crossref_primary_10_1360_SSTe_2024_0364 crossref_primary_10_1017_jfm_2025_10325 crossref_primary_10_1016_j_neunet_2024_106703 crossref_primary_10_1016_j_jcp_2023_111912 crossref_primary_10_1063_5_0232675 crossref_primary_10_1016_j_jcp_2025_114066 crossref_primary_10_1103_PhysRevE_111_045309 crossref_primary_10_1016_j_jcp_2022_111855 crossref_primary_10_3389_fphy_2022_1004417 crossref_primary_10_1080_01621459_2024_2422131 crossref_primary_10_1190_geo2021_0118_1 crossref_primary_10_1016_j_chaos_2021_111530 crossref_primary_10_1016_j_gce_2024_08_004 crossref_primary_10_1016_j_jcp_2023_112464 crossref_primary_10_1088_1572_9494_accb8d crossref_primary_10_3390_fractalfract8110671 crossref_primary_10_1109_TCPMT_2024_3416523 crossref_primary_10_1016_j_chaos_2022_112143 crossref_primary_10_1016_j_cma_2024_117681 crossref_primary_10_1016_j_cnsns_2024_108229 crossref_primary_10_1016_j_cnsns_2025_109049 crossref_primary_10_3390_sym16111490 crossref_primary_10_1007_s11430_024_1590_x crossref_primary_10_1016_j_eml_2022_101645 crossref_primary_10_1016_j_advwatres_2024_104870 crossref_primary_10_2118_225442_PA crossref_primary_10_1016_j_trgeo_2025_101722 crossref_primary_10_1038_s41598_024_77073_7 crossref_primary_10_1016_j_mechmachtheory_2023_105439 crossref_primary_10_1016_j_cma_2022_115852 crossref_primary_10_1016_j_compstruct_2023_117197 crossref_primary_10_1007_s00521_022_07294_2 crossref_primary_10_1016_j_compstruc_2024_107425 crossref_primary_10_1016_j_enganabound_2025_106200 crossref_primary_10_1007_s10040_021_02403_2 crossref_primary_10_1002_adma_202109171 crossref_primary_10_1088_2632_2153_acb416 crossref_primary_10_1016_j_trgeo_2024_101409 crossref_primary_10_1080_17452759_2023_2181192 crossref_primary_10_1007_s00466_020_01859_5 crossref_primary_10_3390_math11132791 crossref_primary_10_1016_j_advwatres_2023_104564 crossref_primary_10_3389_frai_2021_670208 crossref_primary_10_1016_j_jcp_2025_114283 crossref_primary_10_3390_jmse13091647 crossref_primary_10_1016_j_jcp_2022_111510 crossref_primary_10_1016_j_desal_2024_117557 crossref_primary_10_1016_j_cma_2023_116678 crossref_primary_10_1007_s10462_022_10329_8 crossref_primary_10_1007_s10409_025_25340_x crossref_primary_10_1109_TII_2024_3452203 crossref_primary_10_1002_hyp_15143 crossref_primary_10_3390_app132111983 crossref_primary_10_1016_j_jcp_2024_113210 crossref_primary_10_1016_j_jhydrol_2022_128562 crossref_primary_10_1016_j_cma_2023_116214 crossref_primary_10_3390_math13101664 crossref_primary_10_1063_5_0253732 crossref_primary_10_1007_s11424_024_3449_9 crossref_primary_10_1016_j_buildenv_2023_110948 crossref_primary_10_1177_13694332241260140 crossref_primary_10_1021_jacs_0c09105 crossref_primary_10_1109_TCAD_2022_3166103 crossref_primary_10_3390_e24081106 crossref_primary_10_3390_axioms13090588 crossref_primary_10_1007_s10462_024_10874_4 crossref_primary_10_1016_j_compchemeng_2024_108898 crossref_primary_10_1137_23M1623707 crossref_primary_10_3390_app15168863 crossref_primary_10_1016_j_engappai_2025_112044 crossref_primary_10_3390_fluids7020056 crossref_primary_10_1016_j_measurement_2025_117383 crossref_primary_10_1016_j_neunet_2024_106732 crossref_primary_10_1016_j_engappai_2022_105467 crossref_primary_10_1016_j_cam_2025_116918 crossref_primary_10_1016_j_chaos_2023_114238 crossref_primary_10_1016_j_cma_2025_118244 crossref_primary_10_1016_j_cmpb_2025_108671 crossref_primary_10_1016_j_asoc_2024_112370 crossref_primary_10_1007_s44379_025_00015_1 crossref_primary_10_1007_s12206_024_0624_9 crossref_primary_10_1007_s11071_022_07746_3 crossref_primary_10_1016_j_jcp_2022_111419 crossref_primary_10_1016_j_ymssp_2023_110535 crossref_primary_10_1016_j_advwatres_2022_104243 crossref_primary_10_3390_e25030489 crossref_primary_10_1016_j_cma_2022_114778 crossref_primary_10_1016_j_cma_2024_117405 crossref_primary_10_1016_j_jcp_2023_112003 crossref_primary_10_1088_1674_1056_ac9cb9 crossref_primary_10_3390_axioms12080750 crossref_primary_10_1109_TGRS_2025_3542082 crossref_primary_10_1016_j_cma_2021_114490 crossref_primary_10_3390_math10121976 crossref_primary_10_1002_spe_3136 crossref_primary_10_1017_dce_2022_18 crossref_primary_10_2118_201430_PA crossref_primary_10_1007_s11071_023_08975_w crossref_primary_10_1016_j_cma_2021_114012 crossref_primary_10_1016_j_compstruct_2024_118485 crossref_primary_10_12677_app_2025_155039 crossref_primary_10_3389_arc_2025_14842 crossref_primary_10_1038_s41598_024_67483_y crossref_primary_10_1007_s11433_025_2649_9 crossref_primary_10_1177_10775463241248555 crossref_primary_10_1016_j_neunet_2023_08_006 crossref_primary_10_1007_s11071_024_10833_2 crossref_primary_10_1016_j_matcom_2021_05_036 crossref_primary_10_1007_s00158_022_03348_0 crossref_primary_10_1080_17499518_2024_2315301 crossref_primary_10_1016_j_chaos_2024_115658 crossref_primary_10_1016_j_cma_2025_117914 crossref_primary_10_1063_5_0079602 crossref_primary_10_1016_j_engappai_2025_110327 crossref_primary_10_1109_TKDE_2024_3363711 crossref_primary_10_1155_mmce_6233356 crossref_primary_10_3390_math13101571 crossref_primary_10_1016_j_eswa_2024_123387 crossref_primary_10_1016_j_cma_2023_116120 crossref_primary_10_1080_17486025_2025_2502029 crossref_primary_10_1016_j_camwa_2024_04_025 crossref_primary_10_1002_acs_3758 crossref_primary_10_1016_j_chaos_2023_113169 crossref_primary_10_1016_j_compgeo_2025_107131 crossref_primary_10_1007_s00202_020_01153_w crossref_primary_10_1109_TCYB_2022_3225155 crossref_primary_10_1007_s00498_022_00333_2 crossref_primary_10_1016_j_jcp_2021_110844 crossref_primary_10_1016_j_cma_2021_113722 crossref_primary_10_1007_s11227_025_07204_y crossref_primary_10_1016_j_cma_2022_115523 crossref_primary_10_1109_TGRS_2024_3411472 crossref_primary_10_1016_j_jcp_2025_113837 crossref_primary_10_3390_app14177694 crossref_primary_10_1016_j_petrol_2021_109046 crossref_primary_10_3390_math10162945 crossref_primary_10_1149_1945_7111_ad4780 |
| Cites_doi | 10.1137/120872681 10.1016/j.jcp.2014.08.037 10.1016/j.ijheatmasstransfer.2016.04.095 10.1137/130914577 10.1002/nme.860 10.1016/j.jcp.2018.10.045 10.1090/crmp/041/11 10.1016/j.jcp.2019.05.026 10.1007/978-3-030-22747-0_15 10.1006/acha.1997.0226 10.1137/16M1080173 10.1016/j.jcp.2019.05.016 10.1007/s10915-010-9452-4 10.1016/j.jcp.2019.07.048 10.1016/j.jcp.2019.05.027 10.1016/j.jcp.2005.05.017 10.1016/j.jcp.2018.08.036 10.1137/110843484 10.1002/cnm.1640100303 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Oct 1, 2020 |
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Oct 1, 2020 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D OTOTI |
| DOI | 10.1016/j.cma.2020.113250 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional OSTI.GOV |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Physics |
| EISSN | 1879-2138 |
| ExternalDocumentID | 1637715 10_1016_j_cma_2020_113250 S0045782520304357 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW VH1 VOH WUQ ZY4 ~HD 7SC 7TB 8FD AFXIZ AGCQF AGRNS BNPGV FR3 JQ2 KR7 L7M L~C L~D SSH AALMO AAPBV ABPIF ABPTK OTOTI PQEST |
| ID | FETCH-LOGICAL-c395t-4c7ed69e3defc6a9ef7018991819c64b82f5c0eb334a1f29f8d6b01ebe55999e3 |
| ISICitedReferencesCount | 403 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000569361100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7825 |
| IngestDate | Thu May 18 22:37:14 EDT 2023 Fri Jul 25 06:51:03 EDT 2025 Tue Nov 18 21:06:10 EST 2025 Sat Nov 29 07:28:26 EST 2025 Fri Feb 23 02:50:05 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Keywords | Deep neural network Long-time integration PINN Multiscale Machine learning Parallel-in-time |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c395t-4c7ed69e3defc6a9ef7018991819c64b82f5c0eb334a1f29f8d6b01ebe55999e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE |
| OpenAccessLink | https://doi.org/10.1016/j.cma.2020.113250 |
| PQID | 2450517495 |
| PQPubID | 2045269 |
| ParticipantIDs | osti_scitechconnect_1637715 proquest_journals_2450517495 crossref_primary_10_1016_j_cma_2020_113250 crossref_citationtrail_10_1016_j_cma_2020_113250 elsevier_sciencedirect_doi_10_1016_j_cma_2020_113250 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 2020-10-00 20201001 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
| References | Tripathy, Bilionis (b8) 2018; 375 Baudron, Lautard, Maday, Riahi, Salomon (b29) 2014; 279 Kingma, Ba (b6) 2014 Hodas, Stinis (b1) 2018; 9 Christlieb, Haynes, Ong (b34) 2012; 34 Stinis (b12) 2019 Torrey, Shavlik (b37) 2010 Bottou, Curtis, Nocedal (b5) 2018; 60 Dissanayake, Phan-Thien (b15) 1994; 10 Fischer, Hecht, Maday (b30) 2005 Pang, Lu, Karniadakis (b21) 2018 Sanders, Kandrot (b41) 2010 Maday, Turinici (b25) 2005 Michoski, Milosavljevic, Oliver, Hatch (b9) 2019 Zhang, Lu, Guo, Karniadakis (b18) 2019; 397 Beylkin, Coult (b44) 1998; 5 Maday, Turinici (b24) 2002; 335 You, Zhang, Hsieh, Demmel, Keutzer (b4) 2019 Gander (b26) 2015 N.A.K. Doan, W. Polifke, L. Magri, Physics-informed echo state networks for chaotic systems forecasting, in: ICCS 2019 - International Conference on Computational Science, Faro, Portugal, 2019. Livni, Shalev-Shwartz, Shamir (b36) 2014 Lu, Meng, Mao, Karniadakis (b16) 2019 Farhat, Chandesris (b31) 2003; 58 Meng, Karniadakis (b22) 2019 Christlieb, Ong (b33) 2011; 49 Yang, Perdikaris (b20) 2019; 394 Yang, Zhang, Karniadakis (b17) 2018 Ong, Schroder (b27) 2019 Meerschaert, Scheffler, Tadjeran (b40) 2006; 211 Zhang, Guo, Karniadakis (b19) 2019 Blumers, Li, Karniadakis (b35) 2019; 393 Bal, Maday (b23) 2002 Meng, Guo (b39) 2016; 100 Duchi, Hazan, Singer (b7) 2011; 12 Haut, Wingate (b42) 2014; 36 Legoll, Lelievre, Samaey (b43) 2013; 35 Du, Sarkis, Schaerer, Szyld (b28) 2013; 40 Lew, Shah, Pati, Cattell, Zhang, Sandhupatla, Ng, Goli, Sinclair, Rogers, Aamodt (b3) 2019 Winovich, Ramani, Lin (b13) 2019 Maday (b32) 2007; 41 Mattheakis, Protopapas, Sondak, Di Giovanni, Kaxiras (b11) 2019 Shu (b38) 2019 Raissi, Perdikaris, Karniadakis (b14) 2019; 378 Kurth, Treichler, Romero, Mudigonda, Luehr, Phillips, Mahesh, Matheson, Deslippe, Fatica, Prabhat, Houston (b2) 2018 Shu (10.1016/j.cma.2020.113250_b38) 2019 Du (10.1016/j.cma.2020.113250_b28) 2013; 40 Baudron (10.1016/j.cma.2020.113250_b29) 2014; 279 Michoski (10.1016/j.cma.2020.113250_b9) 2019 Lew (10.1016/j.cma.2020.113250_b3) 2019 Zhang (10.1016/j.cma.2020.113250_b18) 2019; 397 Tripathy (10.1016/j.cma.2020.113250_b8) 2018; 375 Kurth (10.1016/j.cma.2020.113250_b2) 2018 Christlieb (10.1016/j.cma.2020.113250_b33) 2011; 49 Hodas (10.1016/j.cma.2020.113250_b1) 2018; 9 Yang (10.1016/j.cma.2020.113250_b17) 2018 Yang (10.1016/j.cma.2020.113250_b20) 2019; 394 Blumers (10.1016/j.cma.2020.113250_b35) 2019; 393 Meng (10.1016/j.cma.2020.113250_b39) 2016; 100 Duchi (10.1016/j.cma.2020.113250_b7) 2011; 12 Bal (10.1016/j.cma.2020.113250_b23) 2002 Bottou (10.1016/j.cma.2020.113250_b5) 2018; 60 You (10.1016/j.cma.2020.113250_b4) 2019 Sanders (10.1016/j.cma.2020.113250_b41) 2010 10.1016/j.cma.2020.113250_b10 Pang (10.1016/j.cma.2020.113250_b21) 2018 Lu (10.1016/j.cma.2020.113250_b16) 2019 Winovich (10.1016/j.cma.2020.113250_b13) 2019 Ong (10.1016/j.cma.2020.113250_b27) 2019 Maday (10.1016/j.cma.2020.113250_b25) 2005 Raissi (10.1016/j.cma.2020.113250_b14) 2019; 378 Gander (10.1016/j.cma.2020.113250_b26) 2015 Stinis (10.1016/j.cma.2020.113250_b12) 2019 Meng (10.1016/j.cma.2020.113250_b22) 2019 Maday (10.1016/j.cma.2020.113250_b32) 2007; 41 Zhang (10.1016/j.cma.2020.113250_b19) 2019 Mattheakis (10.1016/j.cma.2020.113250_b11) 2019 Kingma (10.1016/j.cma.2020.113250_b6) 2014 Dissanayake (10.1016/j.cma.2020.113250_b15) 1994; 10 Meerschaert (10.1016/j.cma.2020.113250_b40) 2006; 211 Livni (10.1016/j.cma.2020.113250_b36) 2014 Haut (10.1016/j.cma.2020.113250_b42) 2014; 36 Fischer (10.1016/j.cma.2020.113250_b30) 2005 Torrey (10.1016/j.cma.2020.113250_b37) 2010 Maday (10.1016/j.cma.2020.113250_b24) 2002; 335 Farhat (10.1016/j.cma.2020.113250_b31) 2003; 58 Christlieb (10.1016/j.cma.2020.113250_b34) 2012; 34 Legoll (10.1016/j.cma.2020.113250_b43) 2013; 35 Beylkin (10.1016/j.cma.2020.113250_b44) 1998; 5 |
| References_xml | – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: b7 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – start-page: 441 year: 2005 end-page: 448 ident: b25 article-title: The parareal in time iterative solver: a further direction to parallel implementation publication-title: Domain Decomposition Methods in Science and Engineering – volume: 100 start-page: 767 year: 2016 end-page: 778 ident: b39 article-title: Localized lattice Boltzmann equation model for simulating miscible viscous displacement in porous media publication-title: Int. J. Heat Mass Transfer – year: 2019 ident: b9 article-title: Solving irregular and data-enriched differential equations using deep neural networks – year: 2018 ident: b17 article-title: Physics-informed generative adversarial networks for stochastic differential equations – volume: 49 start-page: 167 year: 2011 end-page: 179 ident: b33 article-title: Implicit parallel time integrators publication-title: J. Sci. Comput. – volume: 60 start-page: 223 year: 2018 end-page: 311 ident: b5 article-title: Optimization methods for large-scale machine learning publication-title: SIAM Rev. – volume: 397 start-page: 108850 year: 2019 ident: b18 article-title: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems publication-title: J. Comput. Phys. – year: 2018 ident: b21 article-title: FPINNs: Fractional physics-informed neural networks – start-page: 189 year: 2002 end-page: 202 ident: b23 article-title: A “parareal” time discretization for non-linear PDE’s with application to the pricing of an American put publication-title: Recent Developments in Domain Decomposition Methods – volume: 36 start-page: A693 year: 2014 end-page: A713 ident: b42 article-title: An asymptotic parallel-in-time method for highly oscillatory PDEs publication-title: SIAM J. Sci. Comput. – start-page: 433 year: 2005 end-page: 440 ident: b30 article-title: A parareal in time semi-implicit approximation of the Navier-Stokes equations publication-title: Domain Decomposition Methods in Science and Engineering – start-page: 1 year: 2019 end-page: 14 ident: b4 article-title: Fast deep neural network training on distributed systems and cloud TPUs publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 211 start-page: 249 year: 2006 end-page: 261 ident: b40 article-title: Finite difference methods for two-dimensional fractional dispersion equation publication-title: J. Comput. Phys. – year: 2019 ident: b38 article-title: Deep learning for image classification on very small datasets using transfer learning – volume: 41 start-page: 183 year: 2007 end-page: 194 ident: b32 article-title: Parareal in time algorithm for kinetic systems based on model reduction publication-title: High-Dimens. Partial Differ. Equ. Sci. Eng. – year: 2019 ident: b27 article-title: Applications of time parallelization – volume: 10 start-page: 195 year: 1994 end-page: 201 ident: b15 article-title: Neural-network-based approximations for solving partial-differential equations publication-title: Commun. Numer. Methods Eng. – volume: 5 start-page: 129 year: 1998 end-page: 155 ident: b44 article-title: A multiresolution strategy for reduction of elliptic PDEs and eigenvalue problems publication-title: Appl. Comput. Harmon. Anal. – year: 2019 ident: b11 article-title: Physical symmetries embedded in neural networks – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b14 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – year: 2019 ident: b19 article-title: Learning in modal space: Solving time-dependent stochastic PDEs using physics-informed neural networks – start-page: 242 year: 2010 end-page: 264 ident: b37 article-title: Transfer learning publication-title: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques – year: 2019 ident: b13 article-title: ConvPDE-UQ: Convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains publication-title: J. Comput. Phys. – volume: 9 year: 2018 ident: b1 article-title: Doing the impossible: Why neural networks can be trained at all publication-title: Front. Psychol. – reference: N.A.K. Doan, W. Polifke, L. Magri, Physics-informed echo state networks for chaotic systems forecasting, in: ICCS 2019 - International Conference on Computational Science, Faro, Portugal, 2019. – start-page: 855 year: 2014 end-page: 863 ident: b36 article-title: On the computational efficiency of training neural networks publication-title: Advances in Neural Information Processing Systems – volume: 394 start-page: 136 year: 2019 end-page: 152 ident: b20 article-title: Adversarial uncertainty quantification in physics-informed neural networks publication-title: J. Comput. Phys. – volume: 335 start-page: 387 year: 2002 end-page: 392 ident: b24 article-title: A parareal in time procedure for the control of partial differential equations publication-title: CR. Math. – volume: 279 start-page: 67 year: 2014 end-page: 79 ident: b29 article-title: Parareal in time 3D numerical solver for the LWR benchmark neutron diffusion transient model publication-title: J. Comput. Phys. – year: 2010 ident: b41 article-title: CUDA by Example: an Introduction to General-Purpose GPU Programming – year: 2018 ident: b2 article-title: Exascale deep learning for climate analytics – year: 2019 ident: b22 article-title: A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems – year: 2019 ident: b16 article-title: DeepXDE: A deep learning library for solving differential equations – volume: 35 start-page: A1951 year: 2013 end-page: A1986 ident: b43 article-title: A micro-macro parareal algorithm: application to singularly perturbed ordinary differential equations publication-title: SIAM J. Sci. Comput. – start-page: 69 year: 2015 end-page: 113 ident: b26 article-title: 50 years of time parallel time integration publication-title: Multiple Shooting and Time Domain Decomposition Methods – start-page: 151 year: 2019 end-page: 152 ident: b3 article-title: Analyzing machine learning workloads using a detailed GPU simulator publication-title: 2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS) – volume: 34 start-page: C233 year: 2012 end-page: C248 ident: b34 article-title: A parallel space-time algorithm publication-title: SIAM J. Sci. Comput. – volume: 393 start-page: 214 year: 2019 end-page: 228 ident: b35 article-title: Supervised parallel-in-time algorithm for long-time Lagrangian simulations of stochastic dynamics: Application to hydrodynamics publication-title: J. Comput. Phys. – volume: 58 start-page: 1397 year: 2003 end-page: 1434 ident: b31 article-title: Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications publication-title: Internat. J. Numer. Methods Fluids – volume: 40 start-page: 36 year: 2013 end-page: 57 ident: b28 article-title: Inexact and truncated parareal-in-time Krylov subspace methods for parabolic optimal control problems publication-title: Electron. Numer. Anal. – volume: 375 start-page: 565 year: 2018 end-page: 588 ident: b8 article-title: Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification publication-title: J. Comput. Phys. – year: 2014 ident: b6 article-title: Adam: A method for stochastic optimization – year: 2019 ident: b12 article-title: Enforcing constraints for time series prediction in supervised, unsupervised and reinforcement learning – year: 2019 ident: 10.1016/j.cma.2020.113250_b22 – volume: 335 start-page: 387 issue: 4 year: 2002 ident: 10.1016/j.cma.2020.113250_b24 article-title: A parareal in time procedure for the control of partial differential equations publication-title: CR. Math. – year: 2018 ident: 10.1016/j.cma.2020.113250_b21 – volume: 35 start-page: A1951 issue: 4 year: 2013 ident: 10.1016/j.cma.2020.113250_b43 article-title: A micro-macro parareal algorithm: application to singularly perturbed ordinary differential equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/120872681 – volume: 279 start-page: 67 year: 2014 ident: 10.1016/j.cma.2020.113250_b29 article-title: Parareal in time 3D numerical solver for the LWR benchmark neutron diffusion transient model publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.08.037 – year: 2019 ident: 10.1016/j.cma.2020.113250_b19 – year: 2014 ident: 10.1016/j.cma.2020.113250_b6 – start-page: 189 year: 2002 ident: 10.1016/j.cma.2020.113250_b23 article-title: A “parareal” time discretization for non-linear PDE’s with application to the pricing of an American put – volume: 100 start-page: 767 year: 2016 ident: 10.1016/j.cma.2020.113250_b39 article-title: Localized lattice Boltzmann equation model for simulating miscible viscous displacement in porous media publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.04.095 – volume: 36 start-page: A693 issue: 2 year: 2014 ident: 10.1016/j.cma.2020.113250_b42 article-title: An asymptotic parallel-in-time method for highly oscillatory PDEs publication-title: SIAM J. Sci. Comput. doi: 10.1137/130914577 – start-page: 433 year: 2005 ident: 10.1016/j.cma.2020.113250_b30 article-title: A parareal in time semi-implicit approximation of the Navier-Stokes equations – start-page: 69 year: 2015 ident: 10.1016/j.cma.2020.113250_b26 article-title: 50 years of time parallel time integration – volume: 58 start-page: 1397 issue: 9 year: 2003 ident: 10.1016/j.cma.2020.113250_b31 article-title: Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications publication-title: Internat. J. Numer. Methods Fluids doi: 10.1002/nme.860 – start-page: 151 year: 2019 ident: 10.1016/j.cma.2020.113250_b3 article-title: Analyzing machine learning workloads using a detailed GPU simulator – year: 2019 ident: 10.1016/j.cma.2020.113250_b9 – year: 2018 ident: 10.1016/j.cma.2020.113250_b17 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.cma.2020.113250_b14 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 41 start-page: 183 year: 2007 ident: 10.1016/j.cma.2020.113250_b32 article-title: Parareal in time algorithm for kinetic systems based on model reduction publication-title: High-Dimens. Partial Differ. Equ. Sci. Eng. doi: 10.1090/crmp/041/11 – year: 2010 ident: 10.1016/j.cma.2020.113250_b41 – year: 2019 ident: 10.1016/j.cma.2020.113250_b13 article-title: ConvPDE-UQ: Convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.05.026 – volume: 40 start-page: 36 year: 2013 ident: 10.1016/j.cma.2020.113250_b28 article-title: Inexact and truncated parareal-in-time Krylov subspace methods for parabolic optimal control problems publication-title: Electron. Numer. Anal. – ident: 10.1016/j.cma.2020.113250_b10 doi: 10.1007/978-3-030-22747-0_15 – year: 2019 ident: 10.1016/j.cma.2020.113250_b16 – year: 2019 ident: 10.1016/j.cma.2020.113250_b27 – volume: 9 issue: 1185 year: 2018 ident: 10.1016/j.cma.2020.113250_b1 article-title: Doing the impossible: Why neural networks can be trained at all publication-title: Front. Psychol. – year: 2019 ident: 10.1016/j.cma.2020.113250_b11 – year: 2019 ident: 10.1016/j.cma.2020.113250_b38 – volume: 5 start-page: 129 issue: 2 year: 1998 ident: 10.1016/j.cma.2020.113250_b44 article-title: A multiresolution strategy for reduction of elliptic PDEs and eigenvalue problems publication-title: Appl. Comput. Harmon. Anal. doi: 10.1006/acha.1997.0226 – year: 2018 ident: 10.1016/j.cma.2020.113250_b2 – volume: 60 start-page: 223 issue: 2 year: 2018 ident: 10.1016/j.cma.2020.113250_b5 article-title: Optimization methods for large-scale machine learning publication-title: SIAM Rev. doi: 10.1137/16M1080173 – start-page: 242 year: 2010 ident: 10.1016/j.cma.2020.113250_b37 article-title: Transfer learning – year: 2019 ident: 10.1016/j.cma.2020.113250_b12 – volume: 12 start-page: 2121 issue: Jul year: 2011 ident: 10.1016/j.cma.2020.113250_b7 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – volume: 393 start-page: 214 year: 2019 ident: 10.1016/j.cma.2020.113250_b35 article-title: Supervised parallel-in-time algorithm for long-time Lagrangian simulations of stochastic dynamics: Application to hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.05.016 – volume: 49 start-page: 167 issue: 2 year: 2011 ident: 10.1016/j.cma.2020.113250_b33 article-title: Implicit parallel time integrators publication-title: J. Sci. Comput. doi: 10.1007/s10915-010-9452-4 – volume: 397 start-page: 108850 year: 2019 ident: 10.1016/j.cma.2020.113250_b18 article-title: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.07.048 – volume: 394 start-page: 136 year: 2019 ident: 10.1016/j.cma.2020.113250_b20 article-title: Adversarial uncertainty quantification in physics-informed neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.05.027 – volume: 211 start-page: 249 issue: 1 year: 2006 ident: 10.1016/j.cma.2020.113250_b40 article-title: Finite difference methods for two-dimensional fractional dispersion equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.05.017 – start-page: 441 year: 2005 ident: 10.1016/j.cma.2020.113250_b25 article-title: The parareal in time iterative solver: a further direction to parallel implementation – start-page: 1 year: 2019 ident: 10.1016/j.cma.2020.113250_b4 article-title: Fast deep neural network training on distributed systems and cloud TPUs publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 375 start-page: 565 year: 2018 ident: 10.1016/j.cma.2020.113250_b8 article-title: Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.036 – volume: 34 start-page: C233 issue: 5 year: 2012 ident: 10.1016/j.cma.2020.113250_b34 article-title: A parallel space-time algorithm publication-title: SIAM J. Sci. Comput. doi: 10.1137/110843484 – volume: 10 start-page: 195 issue: 3 year: 1994 ident: 10.1016/j.cma.2020.113250_b15 article-title: Neural-network-based approximations for solving partial-differential equations publication-title: Commun. Numer. Methods Eng. doi: 10.1002/cnm.1640100303 – start-page: 855 year: 2014 ident: 10.1016/j.cma.2020.113250_b36 article-title: On the computational efficiency of training neural networks |
| SSID | ssj0000812 |
| Score | 2.7208533 |
| Snippet | Physics-informed neural networks (PINNs) encode physical conservation laws and prior physical knowledge into the neural networks, ensuring the correct physics... |
| SourceID | osti proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113250 |
| SubjectTerms | Burgers equation Conservation laws Convergence Datasets Deep neural network Long-time integration Machine learning Multiscale Neural networks Parallel-in-time Physics PINN Reaction-diffusion equations Time dependence Time integration Training |
| Title | PPINN: Parareal physics-informed neural network for time-dependent PDEs |
| URI | https://dx.doi.org/10.1016/j.cma.2020.113250 https://www.proquest.com/docview/2450517495 https://www.osti.gov/biblio/1637715 |
| Volume | 370 |
| WOSCitedRecordID | wos000569361100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFCQ48AggQgvyAXGgWuTH-rHcKuryUBRySJHFZeWs1zSlcUKdVD3y05l92W6BCA5crGiTiaOdyfib2ZlvEHrhRUVYECFwScAFkiIssWQhwz5NEi8oeOS7qlF4FI_HSZbRSa_3w_bCXJzFVZVcXtLVf1U1rIGyZevsP6i7-VJYgNegdLiC2uH6V4qXgfpYBvoTeY4geYN19qLGmiRVnvcLRbZR6RJwXWk4XwhsJ-Ku9yeHad3FrXb4g5k4rYpocwNgF0J2D1u2Z9ESHDbKFNqhZJuTzbypAFJlBF9O2la0Jnd9uKy-ftu05QEyeZMXEuq2Wfz9dNFNWEB0akvfTBat6aT53HXMJMQAVsKuYw70SBHjWr3fOnydezh9zRWJlK9m1PiayvYqufb4Ezs6Ho3YNM2mL1ffsZw7Js_nzRCWG2jHj0MKfnHn4EOafWyf5omnGefND7Qn46pG8Npd_4Rt-ktw17887BWCmd5Hd03o4Rxok3mAeqIaoHsmDHGMk68H6E6Ho3KAbk209TxE75RlvXGsXTnX7crRduUYu3Jg1blqV460q0fo-Cidvn2PzRwOzAMarjHhsSgiKoJClDzKqShj14M4HcAh5RGZJX4ZclfMgoDkXunTMimimeuBe5B0diD3GPWrZSWeICfwSjcPZpzkMYSmnCduGQCEzSmgcBeg8xC5dgcZNyT1clbKGbPViKcMNp3JTWd604foVSOy0gwt2z5MrFqYgZgaOjIwqG1iu1KFUkRSK3NZgwYyEMvEsRcO0Z7VLDOOoGY-CRULPA2fbn97F91u_yV7qL8-34hn6Ca_WM_r8-fGHH8C-yer5A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PPINN%3A+Parareal+physics-informed+neural+network+for+time-dependent+PDEs&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Meng%2C+Xuhui&rft.au=Li%2C+Zhen&rft.au=Zhang%2C+Dongkun&rft.au=Karniadakis%2C+George+Em&rft.date=2020-10-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=370&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2020.113250&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |