PPINN: Parareal physics-informed neural network for time-dependent PDEs

Physics-informed neural networks (PINNs) encode physical conservation laws and prior physical knowledge into the neural networks, ensuring the correct physics is represented accurately while alleviating the need for supervised learning to a great degree (Raissi et al., 2019). While effective for rel...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer methods in applied mechanics and engineering Ročník 370; číslo C; s. 113250
Hlavní autoři: Meng, Xuhui, Li, Zhen, Zhang, Dongkun, Karniadakis, George Em
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.10.2020
Elsevier BV
Elsevier
Témata:
ISSN:0045-7825, 1879-2138
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Physics-informed neural networks (PINNs) encode physical conservation laws and prior physical knowledge into the neural networks, ensuring the correct physics is represented accurately while alleviating the need for supervised learning to a great degree (Raissi et al., 2019). While effective for relatively short-term time integration, when long time integration of the time-dependent PDEs is sought, the time–space domain may become arbitrarily large and hence training of the neural network may become prohibitively expensive. To this end, we develop a parareal physics-informed neural network (PPINN), hence decomposing a long-time problem into many independent short-time problems supervised by an inexpensive/fast coarse-grained (CG) solver. In particular, the serial CG solver is designed to provide approximate predictions of the solution at discrete times, while initiate many fine PINNs simultaneously to correct the solution iteratively. There is a two-fold benefit from training PINNs with small-data sets rather than working on a large-data set directly, i.e., training of individual PINNs with small-data is much faster, while training the fine PINNs can be readily parallelized. Consequently, compared to the original PINN approach, the proposed PPINN approach may achieve a significant speed-up for long-time integration of PDEs, assuming that the CG solver is fast and can provide reasonable predictions of the solution, hence aiding the PPINN solution to converge in just a few iterations. To investigate the PPINN performance on solving time-dependent PDEs, we first apply the PPINN to solve the Burgers equation, and subsequently we apply the PPINN to solve a two-dimensional nonlinear diffusion–reaction equation. Our results demonstrate that PPINNs converge in a few iterations with significant speed-ups proportional to the number of time-subdomains employed.
AbstractList Physics-informed neural networks (PINNs) encode physical conservation laws and prior physical knowledge into the neural networks, ensuring the correct physics is represented accurately while alleviating the need for supervised learning to a great degree (Raissi et al., 2019). While effective for relatively short-term time integration, when long time integration of the time-dependent PDEs is sought, the time–space domain may become arbitrarily large and hence training of the neural network may become prohibitively expensive. To this end, we develop a parareal physics-informed neural network (PPINN), hence decomposing a long-time problem into many independent short-time problems supervised by an inexpensive/fast coarse-grained (CG) solver. In particular, the serial CG solver is designed to provide approximate predictions of the solution at discrete times, while initiate many fine PINNs simultaneously to correct the solution iteratively. There is a two-fold benefit from training PINNs with small-data sets rather than working on a large-data set directly, i.e., training of individual PINNs with small-data is much faster, while training the fine PINNs can be readily parallelized. Consequently, compared to the original PINN approach, the proposed PPINN approach may achieve a significant speed-up for long-time integration of PDEs, assuming that the CG solver is fast and can provide reasonable predictions of the solution, hence aiding the PPINN solution to converge in just a few iterations. To investigate the PPINN performance on solving time-dependent PDEs, we first apply the PPINN to solve the Burgers equation, and subsequently we apply the PPINN to solve a two-dimensional nonlinear diffusion–reaction equation. Our results demonstrate that PPINNs converge in a few iterations with significant speed-ups proportional to the number of time-subdomains employed.
Physics-informed neural networks (PINNs) encode physical conservation laws and prior physical knowledge into the neural networks, ensuring the correct physics is represented accurately while alleviating the need for supervised learning to a great degree (Raissi et al., 2019). While effective for relatively short-term time integration, when long time integration of the time-dependent PDEs is sought, the time–space domain may become arbitrarily large and hence training of the neural network may become prohibitively expensive. To this end, we develop a parareal physics-informed neural network (PPINN), hence decomposing a long-time problem into many independent short-time problems supervised by an inexpensive/fast coarse-grained (CG) solver. In particular, the serial CG solver is designed to provide approximate predictions of the solution at discrete times, while initiate many fine PINNs simultaneously to correct the solution iteratively. There is a two-fold benefit from training PINNs with small-data sets rather than working on a large-data set directly, i.e., training of individual PINNs with small-data is much faster, while training the fine PINNs can be readily parallelized. Consequently, compared to the original PINN approach, the proposed PPINN approach may achieve a significant speed-up for long-time integration of PDEs, assuming that the CG solver is fast and can provide reasonable predictions of the solution, hence aiding the PPINN solution to converge in just a few iterations. To investigate the PPINN performance on solving time-dependent PDEs, we first apply the PPINN to solve the Burgers equation, and subsequently we apply the PPINN to solve a two-dimensional nonlinear diffusion–reaction equation. Our results demonstrate that PPINNs converge in a few iterations with significant speed-ups proportional to the number of time-subdomains employed.
ArticleNumber 113250
Author Li, Zhen
Meng, Xuhui
Karniadakis, George Em
Zhang, Dongkun
Author_xml – sequence: 1
  givenname: Xuhui
  surname: Meng
  fullname: Meng, Xuhui
  organization: Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
– sequence: 2
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
  organization: Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA
– sequence: 3
  givenname: Dongkun
  surname: Zhang
  fullname: Zhang, Dongkun
  organization: Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
– sequence: 4
  givenname: George Em
  surname: Karniadakis
  fullname: Karniadakis, George Em
  email: george_karniadakis@brown.edu
  organization: Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
BackLink https://www.osti.gov/biblio/1637715$$D View this record in Osti.gov
BookMark eNp9kD1PwzAQhi0EEi3wA9gimFN8TpzEMKHyKSHIALPlOhfh0trFdkH99zgKEwNeTj69z-nVMyX71lkk5BToDChUF8uZXqsZoyz9oWCc7pEJNLXIGRTNPplQWvK8bhg_JNMQljS9BtiE3Lft4_PzZdYqrzyqVbZ53wWjQ25s7_wau8zi1qe9xfjt_EeWtlk0a8w73KDt0MasvbkNx-SgV6uAJ7_ziLzd3b7OH_Knl_vH-fVTrgvBY17qGrtKYNFhryslsK8pNEJAA0JX5aJhPdcUF0VRKuiZ6JuuWlDABXIuROKOyNl414VoZNAmon7XzlrUUUJV1DXwFDofQxvvPrcYoly6rbepl2QlpxzqUgwpGFPauxA89nLjzVr5nQQqB6lyKZNUOUiVo9TE1H-Y1EBF42z0yqz-Ja9GEpOdL4N-KI9WY2f80L1z5h_6BzYwkXc
CitedBy_id crossref_primary_10_1177_14759217251361808
crossref_primary_10_1177_14759217231202547
crossref_primary_10_1016_j_engappai_2023_106127
crossref_primary_10_1007_s10915_025_02791_7
crossref_primary_10_1007_s10409_024_24140_x
crossref_primary_10_1016_j_conengprac_2025_106365
crossref_primary_10_1016_j_neucom_2024_128936
crossref_primary_10_1016_j_cageo_2024_105611
crossref_primary_10_1016_j_jcp_2022_111902
crossref_primary_10_1016_j_mechmat_2024_105141
crossref_primary_10_1190_geo2023_0622_1
crossref_primary_10_1016_j_neunet_2024_106098
crossref_primary_10_1016_j_apm_2025_116232
crossref_primary_10_1016_j_enbuild_2025_116101
crossref_primary_10_1002_aic_18436
crossref_primary_10_1002_gamm_202100001
crossref_primary_10_1016_j_camwa_2024_12_024
crossref_primary_10_1016_j_cma_2022_115671
crossref_primary_10_1038_s44172_024_00303_3
crossref_primary_10_1007_s10915_022_01939_z
crossref_primary_10_1016_j_engstruct_2024_118077
crossref_primary_10_1016_j_neucom_2025_131262
crossref_primary_10_1016_j_cma_2024_116880
crossref_primary_10_1016_j_cam_2022_115041
crossref_primary_10_1186_s40703_024_00217_1
crossref_primary_10_1016_j_petrol_2022_110460
crossref_primary_10_1016_j_cma_2024_117290
crossref_primary_10_1016_j_dibe_2024_100598
crossref_primary_10_1016_j_ijheatfluidflow_2022_109002
crossref_primary_10_1007_s11837_020_04399_8
crossref_primary_10_1016_j_cam_2024_116372
crossref_primary_10_1016_j_cma_2022_115424
crossref_primary_10_1016_j_asoc_2023_110328
crossref_primary_10_1016_j_ress_2025_111724
crossref_primary_10_1016_j_istruc_2024_107361
crossref_primary_10_1088_1402_4896_adb99f
crossref_primary_10_1007_s11071_024_10309_3
crossref_primary_10_1016_j_jcp_2025_114326
crossref_primary_10_1016_j_enganabound_2025_106178
crossref_primary_10_1016_j_jestch_2023_101489
crossref_primary_10_1016_j_jcp_2024_112781
crossref_primary_10_1016_j_camwa_2025_06_006
crossref_primary_10_1016_j_eswa_2021_115006
crossref_primary_10_1063_5_0062377
crossref_primary_10_1016_j_gsd_2024_101172
crossref_primary_10_1016_j_neunet_2024_106756
crossref_primary_10_1088_1402_4896_adea1e
crossref_primary_10_1016_j_camwa_2023_05_004
crossref_primary_10_1016_j_ifacol_2025_07_175
crossref_primary_10_1016_j_fbp_2024_02_004
crossref_primary_10_1016_j_engappai_2024_109388
crossref_primary_10_1080_00295639_2022_2123211
crossref_primary_10_1016_j_isatra_2024_11_049
crossref_primary_10_1016_j_knosys_2024_111853
crossref_primary_10_1016_j_neunet_2024_106750
crossref_primary_10_3390_fi16120435
crossref_primary_10_1016_j_cma_2022_114800
crossref_primary_10_1038_s41598_022_22832_7
crossref_primary_10_1016_j_jmsy_2024_07_002
crossref_primary_10_1007_s12572_023_00365_0
crossref_primary_10_1088_1674_1056_ac4cc5
crossref_primary_10_1016_j_camwa_2025_09_007
crossref_primary_10_1007_s42979_024_02874_6
crossref_primary_10_1016_j_cma_2024_117036
crossref_primary_10_1016_j_enganabound_2023_03_039
crossref_primary_10_1111_ffe_14575
crossref_primary_10_1016_j_advengsoft_2022_103390
crossref_primary_10_1016_j_jcp_2020_109914
crossref_primary_10_1080_19942060_2023_2238849
crossref_primary_10_1016_j_camwa_2022_12_008
crossref_primary_10_1016_j_inffus_2023_102041
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127098
crossref_primary_10_1093_mnras_staa3540
crossref_primary_10_1007_s10208_022_09556_w
crossref_primary_10_1016_j_engappai_2024_109378
crossref_primary_10_1007_s42484_024_00176_x
crossref_primary_10_1088_2632_2153_ad45b2
crossref_primary_10_3390_a15020053
crossref_primary_10_1007_s11222_022_10195_y
crossref_primary_10_1016_j_jcp_2024_112761
crossref_primary_10_1038_s41598_022_13644_w
crossref_primary_10_1016_j_cam_2024_116223
crossref_primary_10_1088_1572_9494_adcc8e
crossref_primary_10_1038_s41598_023_29822_3
crossref_primary_10_3390_bdcc6040140
crossref_primary_10_1016_j_aei_2024_102438
crossref_primary_10_1016_j_jobe_2025_111788
crossref_primary_10_1007_s13226_024_00541_3
crossref_primary_10_1016_j_neunet_2025_107825
crossref_primary_10_1038_s44172_024_00253_w
crossref_primary_10_1007_s11071_023_08361_6
crossref_primary_10_1016_j_engappai_2024_109321
crossref_primary_10_1007_s11071_025_10871_4
crossref_primary_10_1016_j_jcp_2022_111024
crossref_primary_10_1016_j_cma_2021_114424
crossref_primary_10_1016_j_cma_2022_114823
crossref_primary_10_1007_s40687_020_00215_6
crossref_primary_10_1016_j_jcp_2022_111260
crossref_primary_10_1029_2024WR037490
crossref_primary_10_1109_TAI_2022_3209167
crossref_primary_10_1002_fld_5164
crossref_primary_10_1016_j_jcp_2024_113284
crossref_primary_10_3390_modelling5040080
crossref_primary_10_1162_neco_a_01647
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1016_j_neucom_2024_127419
crossref_primary_10_1029_2023JC019941
crossref_primary_10_3390_atmos14040759
crossref_primary_10_1007_s10483_022_2926_9
crossref_primary_10_1016_j_jcp_2022_111819
crossref_primary_10_1007_s11431_022_2118_9
crossref_primary_10_32604_cmes_2022_021277
crossref_primary_10_1016_j_asoc_2021_108050
crossref_primary_10_1109_ACCESS_2023_3244681
crossref_primary_10_1088_1873_7005_adb32e
crossref_primary_10_1016_j_physd_2022_133430
crossref_primary_10_1016_j_ijmecsci_2024_109210
crossref_primary_10_1088_1572_9494_ada3ce
crossref_primary_10_59717_j_xinn_energy_2025_100087
crossref_primary_10_1016_j_jhydrol_2023_129354
crossref_primary_10_1038_s41598_023_39989_4
crossref_primary_10_1088_2632_2153_ad63f4
crossref_primary_10_3390_e25040674
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123420
crossref_primary_10_1080_12269328_2025_2499267
crossref_primary_10_3390_math13091515
crossref_primary_10_1016_j_compositesb_2022_110208
crossref_primary_10_1016_j_jfoodeng_2022_111137
crossref_primary_10_3390_min14101043
crossref_primary_10_1016_j_engappai_2025_110166
crossref_primary_10_1016_j_chaos_2023_114090
crossref_primary_10_1016_j_ijsolstr_2021_111320
crossref_primary_10_1016_j_jcp_2023_112415
crossref_primary_10_1016_j_cma_2022_115810
crossref_primary_10_1016_j_compgeo_2023_105433
crossref_primary_10_1016_j_jcp_2021_110676
crossref_primary_10_1007_s00521_023_08876_4
crossref_primary_10_1063_5_0223510
crossref_primary_10_1016_j_engappai_2022_105724
crossref_primary_10_1016_j_ijheatfluidflow_2024_109707
crossref_primary_10_1007_s00466_024_02491_3
crossref_primary_10_1007_s42791_025_00098_0
crossref_primary_10_1155_2022_1781388
crossref_primary_10_1007_s11600_024_01507_z
crossref_primary_10_1007_s00366_024_01998_w
crossref_primary_10_1016_j_compositesb_2024_111597
crossref_primary_10_1007_s11071_023_08654_w
crossref_primary_10_1016_j_compbiomed_2023_107431
crossref_primary_10_1016_j_compchemeng_2023_108547
crossref_primary_10_1016_j_amc_2024_128928
crossref_primary_10_1016_j_compgeo_2023_105546
crossref_primary_10_1016_j_cpc_2024_109130
crossref_primary_10_1016_j_jprocont_2023_103005
crossref_primary_10_1016_j_cma_2024_117222
crossref_primary_10_3390_math12111617
crossref_primary_10_1016_j_engappai_2024_109755
crossref_primary_10_3389_fphy_2022_971722
crossref_primary_10_1093_jge_gxae062
crossref_primary_10_11728_cjss2025_02_2024_0149
crossref_primary_10_1029_2022WR033168
crossref_primary_10_1016_j_neucom_2025_130578
crossref_primary_10_1016_j_engappai_2025_110347
crossref_primary_10_1016_j_tafmec_2024_104457
crossref_primary_10_1016_j_engappai_2023_107183
crossref_primary_10_1002_cjce_25510
crossref_primary_10_1155_2021_8548482
crossref_primary_10_1007_s10064_025_04381_1
crossref_primary_10_1108_HFF_09_2023_0568
crossref_primary_10_1016_j_jcp_2024_113363
crossref_primary_10_1080_00036811_2024_2302405
crossref_primary_10_3390_ai5030074
crossref_primary_10_1017_jfm_2025_10448
crossref_primary_10_1007_s11814_023_1420_4
crossref_primary_10_1360_SSTe_2024_0364
crossref_primary_10_1017_jfm_2025_10325
crossref_primary_10_1016_j_neunet_2024_106703
crossref_primary_10_1016_j_jcp_2023_111912
crossref_primary_10_1063_5_0232675
crossref_primary_10_1016_j_jcp_2025_114066
crossref_primary_10_1103_PhysRevE_111_045309
crossref_primary_10_1016_j_jcp_2022_111855
crossref_primary_10_3389_fphy_2022_1004417
crossref_primary_10_1080_01621459_2024_2422131
crossref_primary_10_1190_geo2021_0118_1
crossref_primary_10_1016_j_chaos_2021_111530
crossref_primary_10_1016_j_gce_2024_08_004
crossref_primary_10_1016_j_jcp_2023_112464
crossref_primary_10_1088_1572_9494_accb8d
crossref_primary_10_3390_fractalfract8110671
crossref_primary_10_1109_TCPMT_2024_3416523
crossref_primary_10_1016_j_chaos_2022_112143
crossref_primary_10_1016_j_cma_2024_117681
crossref_primary_10_1016_j_cnsns_2024_108229
crossref_primary_10_1016_j_cnsns_2025_109049
crossref_primary_10_3390_sym16111490
crossref_primary_10_1007_s11430_024_1590_x
crossref_primary_10_1016_j_eml_2022_101645
crossref_primary_10_1016_j_advwatres_2024_104870
crossref_primary_10_2118_225442_PA
crossref_primary_10_1016_j_trgeo_2025_101722
crossref_primary_10_1038_s41598_024_77073_7
crossref_primary_10_1016_j_mechmachtheory_2023_105439
crossref_primary_10_1016_j_cma_2022_115852
crossref_primary_10_1016_j_compstruct_2023_117197
crossref_primary_10_1007_s00521_022_07294_2
crossref_primary_10_1016_j_compstruc_2024_107425
crossref_primary_10_1016_j_enganabound_2025_106200
crossref_primary_10_1007_s10040_021_02403_2
crossref_primary_10_1002_adma_202109171
crossref_primary_10_1088_2632_2153_acb416
crossref_primary_10_1016_j_trgeo_2024_101409
crossref_primary_10_1080_17452759_2023_2181192
crossref_primary_10_1007_s00466_020_01859_5
crossref_primary_10_3390_math11132791
crossref_primary_10_1016_j_advwatres_2023_104564
crossref_primary_10_3389_frai_2021_670208
crossref_primary_10_1016_j_jcp_2025_114283
crossref_primary_10_3390_jmse13091647
crossref_primary_10_1016_j_jcp_2022_111510
crossref_primary_10_1016_j_desal_2024_117557
crossref_primary_10_1016_j_cma_2023_116678
crossref_primary_10_1007_s10462_022_10329_8
crossref_primary_10_1007_s10409_025_25340_x
crossref_primary_10_1109_TII_2024_3452203
crossref_primary_10_1002_hyp_15143
crossref_primary_10_3390_app132111983
crossref_primary_10_1016_j_jcp_2024_113210
crossref_primary_10_1016_j_jhydrol_2022_128562
crossref_primary_10_1016_j_cma_2023_116214
crossref_primary_10_3390_math13101664
crossref_primary_10_1063_5_0253732
crossref_primary_10_1007_s11424_024_3449_9
crossref_primary_10_1016_j_buildenv_2023_110948
crossref_primary_10_1177_13694332241260140
crossref_primary_10_1021_jacs_0c09105
crossref_primary_10_1109_TCAD_2022_3166103
crossref_primary_10_3390_e24081106
crossref_primary_10_3390_axioms13090588
crossref_primary_10_1007_s10462_024_10874_4
crossref_primary_10_1016_j_compchemeng_2024_108898
crossref_primary_10_1137_23M1623707
crossref_primary_10_3390_app15168863
crossref_primary_10_1016_j_engappai_2025_112044
crossref_primary_10_3390_fluids7020056
crossref_primary_10_1016_j_measurement_2025_117383
crossref_primary_10_1016_j_neunet_2024_106732
crossref_primary_10_1016_j_engappai_2022_105467
crossref_primary_10_1016_j_cam_2025_116918
crossref_primary_10_1016_j_chaos_2023_114238
crossref_primary_10_1016_j_cma_2025_118244
crossref_primary_10_1016_j_cmpb_2025_108671
crossref_primary_10_1016_j_asoc_2024_112370
crossref_primary_10_1007_s44379_025_00015_1
crossref_primary_10_1007_s12206_024_0624_9
crossref_primary_10_1007_s11071_022_07746_3
crossref_primary_10_1016_j_jcp_2022_111419
crossref_primary_10_1016_j_ymssp_2023_110535
crossref_primary_10_1016_j_advwatres_2022_104243
crossref_primary_10_3390_e25030489
crossref_primary_10_1016_j_cma_2022_114778
crossref_primary_10_1016_j_cma_2024_117405
crossref_primary_10_1016_j_jcp_2023_112003
crossref_primary_10_1088_1674_1056_ac9cb9
crossref_primary_10_3390_axioms12080750
crossref_primary_10_1109_TGRS_2025_3542082
crossref_primary_10_1016_j_cma_2021_114490
crossref_primary_10_3390_math10121976
crossref_primary_10_1002_spe_3136
crossref_primary_10_1017_dce_2022_18
crossref_primary_10_2118_201430_PA
crossref_primary_10_1007_s11071_023_08975_w
crossref_primary_10_1016_j_cma_2021_114012
crossref_primary_10_1016_j_compstruct_2024_118485
crossref_primary_10_12677_app_2025_155039
crossref_primary_10_3389_arc_2025_14842
crossref_primary_10_1038_s41598_024_67483_y
crossref_primary_10_1007_s11433_025_2649_9
crossref_primary_10_1177_10775463241248555
crossref_primary_10_1016_j_neunet_2023_08_006
crossref_primary_10_1007_s11071_024_10833_2
crossref_primary_10_1016_j_matcom_2021_05_036
crossref_primary_10_1007_s00158_022_03348_0
crossref_primary_10_1080_17499518_2024_2315301
crossref_primary_10_1016_j_chaos_2024_115658
crossref_primary_10_1016_j_cma_2025_117914
crossref_primary_10_1063_5_0079602
crossref_primary_10_1016_j_engappai_2025_110327
crossref_primary_10_1109_TKDE_2024_3363711
crossref_primary_10_1155_mmce_6233356
crossref_primary_10_3390_math13101571
crossref_primary_10_1016_j_eswa_2024_123387
crossref_primary_10_1016_j_cma_2023_116120
crossref_primary_10_1080_17486025_2025_2502029
crossref_primary_10_1016_j_camwa_2024_04_025
crossref_primary_10_1002_acs_3758
crossref_primary_10_1016_j_chaos_2023_113169
crossref_primary_10_1016_j_compgeo_2025_107131
crossref_primary_10_1007_s00202_020_01153_w
crossref_primary_10_1109_TCYB_2022_3225155
crossref_primary_10_1007_s00498_022_00333_2
crossref_primary_10_1016_j_jcp_2021_110844
crossref_primary_10_1016_j_cma_2021_113722
crossref_primary_10_1007_s11227_025_07204_y
crossref_primary_10_1016_j_cma_2022_115523
crossref_primary_10_1109_TGRS_2024_3411472
crossref_primary_10_1016_j_jcp_2025_113837
crossref_primary_10_3390_app14177694
crossref_primary_10_1016_j_petrol_2021_109046
crossref_primary_10_3390_math10162945
crossref_primary_10_1149_1945_7111_ad4780
Cites_doi 10.1137/120872681
10.1016/j.jcp.2014.08.037
10.1016/j.ijheatmasstransfer.2016.04.095
10.1137/130914577
10.1002/nme.860
10.1016/j.jcp.2018.10.045
10.1090/crmp/041/11
10.1016/j.jcp.2019.05.026
10.1007/978-3-030-22747-0_15
10.1006/acha.1997.0226
10.1137/16M1080173
10.1016/j.jcp.2019.05.016
10.1007/s10915-010-9452-4
10.1016/j.jcp.2019.07.048
10.1016/j.jcp.2019.05.027
10.1016/j.jcp.2005.05.017
10.1016/j.jcp.2018.08.036
10.1137/110843484
10.1002/cnm.1640100303
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Oct 1, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Oct 1, 2020
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
OTOTI
DOI 10.1016/j.cma.2020.113250
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1879-2138
ExternalDocumentID 1637715
10_1016_j_cma_2020_113250
S0045782520304357
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
PQEST
ID FETCH-LOGICAL-c395t-4c7ed69e3defc6a9ef7018991819c64b82f5c0eb334a1f29f8d6b01ebe55999e3
ISICitedReferencesCount 403
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000569361100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Thu May 18 22:37:14 EDT 2023
Fri Jul 25 06:51:03 EDT 2025
Tue Nov 18 21:06:10 EST 2025
Sat Nov 29 07:28:26 EST 2025
Fri Feb 23 02:50:05 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Deep neural network
Long-time integration
PINN
Multiscale
Machine learning
Parallel-in-time
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-4c7ed69e3defc6a9ef7018991819c64b82f5c0eb334a1f29f8d6b01ebe55999e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
OpenAccessLink https://doi.org/10.1016/j.cma.2020.113250
PQID 2450517495
PQPubID 2045269
ParticipantIDs osti_scitechconnect_1637715
proquest_journals_2450517495
crossref_primary_10_1016_j_cma_2020_113250
crossref_citationtrail_10_1016_j_cma_2020_113250
elsevier_sciencedirect_doi_10_1016_j_cma_2020_113250
PublicationCentury 2000
PublicationDate 2020-10-01
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Tripathy, Bilionis (b8) 2018; 375
Baudron, Lautard, Maday, Riahi, Salomon (b29) 2014; 279
Kingma, Ba (b6) 2014
Hodas, Stinis (b1) 2018; 9
Christlieb, Haynes, Ong (b34) 2012; 34
Stinis (b12) 2019
Torrey, Shavlik (b37) 2010
Bottou, Curtis, Nocedal (b5) 2018; 60
Dissanayake, Phan-Thien (b15) 1994; 10
Fischer, Hecht, Maday (b30) 2005
Pang, Lu, Karniadakis (b21) 2018
Sanders, Kandrot (b41) 2010
Maday, Turinici (b25) 2005
Michoski, Milosavljevic, Oliver, Hatch (b9) 2019
Zhang, Lu, Guo, Karniadakis (b18) 2019; 397
Beylkin, Coult (b44) 1998; 5
Maday, Turinici (b24) 2002; 335
You, Zhang, Hsieh, Demmel, Keutzer (b4) 2019
Gander (b26) 2015
N.A.K. Doan, W. Polifke, L. Magri, Physics-informed echo state networks for chaotic systems forecasting, in: ICCS 2019 - International Conference on Computational Science, Faro, Portugal, 2019.
Livni, Shalev-Shwartz, Shamir (b36) 2014
Lu, Meng, Mao, Karniadakis (b16) 2019
Farhat, Chandesris (b31) 2003; 58
Meng, Karniadakis (b22) 2019
Christlieb, Ong (b33) 2011; 49
Yang, Perdikaris (b20) 2019; 394
Yang, Zhang, Karniadakis (b17) 2018
Ong, Schroder (b27) 2019
Meerschaert, Scheffler, Tadjeran (b40) 2006; 211
Zhang, Guo, Karniadakis (b19) 2019
Blumers, Li, Karniadakis (b35) 2019; 393
Bal, Maday (b23) 2002
Meng, Guo (b39) 2016; 100
Duchi, Hazan, Singer (b7) 2011; 12
Haut, Wingate (b42) 2014; 36
Legoll, Lelievre, Samaey (b43) 2013; 35
Du, Sarkis, Schaerer, Szyld (b28) 2013; 40
Lew, Shah, Pati, Cattell, Zhang, Sandhupatla, Ng, Goli, Sinclair, Rogers, Aamodt (b3) 2019
Winovich, Ramani, Lin (b13) 2019
Maday (b32) 2007; 41
Mattheakis, Protopapas, Sondak, Di Giovanni, Kaxiras (b11) 2019
Shu (b38) 2019
Raissi, Perdikaris, Karniadakis (b14) 2019; 378
Kurth, Treichler, Romero, Mudigonda, Luehr, Phillips, Mahesh, Matheson, Deslippe, Fatica, Prabhat, Houston (b2) 2018
Shu (10.1016/j.cma.2020.113250_b38) 2019
Du (10.1016/j.cma.2020.113250_b28) 2013; 40
Baudron (10.1016/j.cma.2020.113250_b29) 2014; 279
Michoski (10.1016/j.cma.2020.113250_b9) 2019
Lew (10.1016/j.cma.2020.113250_b3) 2019
Zhang (10.1016/j.cma.2020.113250_b18) 2019; 397
Tripathy (10.1016/j.cma.2020.113250_b8) 2018; 375
Kurth (10.1016/j.cma.2020.113250_b2) 2018
Christlieb (10.1016/j.cma.2020.113250_b33) 2011; 49
Hodas (10.1016/j.cma.2020.113250_b1) 2018; 9
Yang (10.1016/j.cma.2020.113250_b17) 2018
Yang (10.1016/j.cma.2020.113250_b20) 2019; 394
Blumers (10.1016/j.cma.2020.113250_b35) 2019; 393
Meng (10.1016/j.cma.2020.113250_b39) 2016; 100
Duchi (10.1016/j.cma.2020.113250_b7) 2011; 12
Bal (10.1016/j.cma.2020.113250_b23) 2002
Bottou (10.1016/j.cma.2020.113250_b5) 2018; 60
You (10.1016/j.cma.2020.113250_b4) 2019
Sanders (10.1016/j.cma.2020.113250_b41) 2010
10.1016/j.cma.2020.113250_b10
Pang (10.1016/j.cma.2020.113250_b21) 2018
Lu (10.1016/j.cma.2020.113250_b16) 2019
Winovich (10.1016/j.cma.2020.113250_b13) 2019
Ong (10.1016/j.cma.2020.113250_b27) 2019
Maday (10.1016/j.cma.2020.113250_b25) 2005
Raissi (10.1016/j.cma.2020.113250_b14) 2019; 378
Gander (10.1016/j.cma.2020.113250_b26) 2015
Stinis (10.1016/j.cma.2020.113250_b12) 2019
Meng (10.1016/j.cma.2020.113250_b22) 2019
Maday (10.1016/j.cma.2020.113250_b32) 2007; 41
Zhang (10.1016/j.cma.2020.113250_b19) 2019
Mattheakis (10.1016/j.cma.2020.113250_b11) 2019
Kingma (10.1016/j.cma.2020.113250_b6) 2014
Dissanayake (10.1016/j.cma.2020.113250_b15) 1994; 10
Meerschaert (10.1016/j.cma.2020.113250_b40) 2006; 211
Livni (10.1016/j.cma.2020.113250_b36) 2014
Haut (10.1016/j.cma.2020.113250_b42) 2014; 36
Fischer (10.1016/j.cma.2020.113250_b30) 2005
Torrey (10.1016/j.cma.2020.113250_b37) 2010
Maday (10.1016/j.cma.2020.113250_b24) 2002; 335
Farhat (10.1016/j.cma.2020.113250_b31) 2003; 58
Christlieb (10.1016/j.cma.2020.113250_b34) 2012; 34
Legoll (10.1016/j.cma.2020.113250_b43) 2013; 35
Beylkin (10.1016/j.cma.2020.113250_b44) 1998; 5
References_xml – volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: b7
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– start-page: 441
  year: 2005
  end-page: 448
  ident: b25
  article-title: The parareal in time iterative solver: a further direction to parallel implementation
  publication-title: Domain Decomposition Methods in Science and Engineering
– volume: 100
  start-page: 767
  year: 2016
  end-page: 778
  ident: b39
  article-title: Localized lattice Boltzmann equation model for simulating miscible viscous displacement in porous media
  publication-title: Int. J. Heat Mass Transfer
– year: 2019
  ident: b9
  article-title: Solving irregular and data-enriched differential equations using deep neural networks
– year: 2018
  ident: b17
  article-title: Physics-informed generative adversarial networks for stochastic differential equations
– volume: 49
  start-page: 167
  year: 2011
  end-page: 179
  ident: b33
  article-title: Implicit parallel time integrators
  publication-title: J. Sci. Comput.
– volume: 60
  start-page: 223
  year: 2018
  end-page: 311
  ident: b5
  article-title: Optimization methods for large-scale machine learning
  publication-title: SIAM Rev.
– volume: 397
  start-page: 108850
  year: 2019
  ident: b18
  article-title: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
  publication-title: J. Comput. Phys.
– year: 2018
  ident: b21
  article-title: FPINNs: Fractional physics-informed neural networks
– start-page: 189
  year: 2002
  end-page: 202
  ident: b23
  article-title: A “parareal” time discretization for non-linear PDE’s with application to the pricing of an American put
  publication-title: Recent Developments in Domain Decomposition Methods
– volume: 36
  start-page: A693
  year: 2014
  end-page: A713
  ident: b42
  article-title: An asymptotic parallel-in-time method for highly oscillatory PDEs
  publication-title: SIAM J. Sci. Comput.
– start-page: 433
  year: 2005
  end-page: 440
  ident: b30
  article-title: A parareal in time semi-implicit approximation of the Navier-Stokes equations
  publication-title: Domain Decomposition Methods in Science and Engineering
– start-page: 1
  year: 2019
  end-page: 14
  ident: b4
  article-title: Fast deep neural network training on distributed systems and cloud TPUs
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 211
  start-page: 249
  year: 2006
  end-page: 261
  ident: b40
  article-title: Finite difference methods for two-dimensional fractional dispersion equation
  publication-title: J. Comput. Phys.
– year: 2019
  ident: b38
  article-title: Deep learning for image classification on very small datasets using transfer learning
– volume: 41
  start-page: 183
  year: 2007
  end-page: 194
  ident: b32
  article-title: Parareal in time algorithm for kinetic systems based on model reduction
  publication-title: High-Dimens. Partial Differ. Equ. Sci. Eng.
– year: 2019
  ident: b27
  article-title: Applications of time parallelization
– volume: 10
  start-page: 195
  year: 1994
  end-page: 201
  ident: b15
  article-title: Neural-network-based approximations for solving partial-differential equations
  publication-title: Commun. Numer. Methods Eng.
– volume: 5
  start-page: 129
  year: 1998
  end-page: 155
  ident: b44
  article-title: A multiresolution strategy for reduction of elliptic PDEs and eigenvalue problems
  publication-title: Appl. Comput. Harmon. Anal.
– year: 2019
  ident: b11
  article-title: Physical symmetries embedded in neural networks
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b14
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– year: 2019
  ident: b19
  article-title: Learning in modal space: Solving time-dependent stochastic PDEs using physics-informed neural networks
– start-page: 242
  year: 2010
  end-page: 264
  ident: b37
  article-title: Transfer learning
  publication-title: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques
– year: 2019
  ident: b13
  article-title: ConvPDE-UQ: Convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains
  publication-title: J. Comput. Phys.
– volume: 9
  year: 2018
  ident: b1
  article-title: Doing the impossible: Why neural networks can be trained at all
  publication-title: Front. Psychol.
– reference: N.A.K. Doan, W. Polifke, L. Magri, Physics-informed echo state networks for chaotic systems forecasting, in: ICCS 2019 - International Conference on Computational Science, Faro, Portugal, 2019.
– start-page: 855
  year: 2014
  end-page: 863
  ident: b36
  article-title: On the computational efficiency of training neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 394
  start-page: 136
  year: 2019
  end-page: 152
  ident: b20
  article-title: Adversarial uncertainty quantification in physics-informed neural networks
  publication-title: J. Comput. Phys.
– volume: 335
  start-page: 387
  year: 2002
  end-page: 392
  ident: b24
  article-title: A parareal in time procedure for the control of partial differential equations
  publication-title: CR. Math.
– volume: 279
  start-page: 67
  year: 2014
  end-page: 79
  ident: b29
  article-title: Parareal in time 3D numerical solver for the LWR benchmark neutron diffusion transient model
  publication-title: J. Comput. Phys.
– year: 2010
  ident: b41
  article-title: CUDA by Example: an Introduction to General-Purpose GPU Programming
– year: 2018
  ident: b2
  article-title: Exascale deep learning for climate analytics
– year: 2019
  ident: b22
  article-title: A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems
– year: 2019
  ident: b16
  article-title: DeepXDE: A deep learning library for solving differential equations
– volume: 35
  start-page: A1951
  year: 2013
  end-page: A1986
  ident: b43
  article-title: A micro-macro parareal algorithm: application to singularly perturbed ordinary differential equations
  publication-title: SIAM J. Sci. Comput.
– start-page: 69
  year: 2015
  end-page: 113
  ident: b26
  article-title: 50 years of time parallel time integration
  publication-title: Multiple Shooting and Time Domain Decomposition Methods
– start-page: 151
  year: 2019
  end-page: 152
  ident: b3
  article-title: Analyzing machine learning workloads using a detailed GPU simulator
  publication-title: 2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)
– volume: 34
  start-page: C233
  year: 2012
  end-page: C248
  ident: b34
  article-title: A parallel space-time algorithm
  publication-title: SIAM J. Sci. Comput.
– volume: 393
  start-page: 214
  year: 2019
  end-page: 228
  ident: b35
  article-title: Supervised parallel-in-time algorithm for long-time Lagrangian simulations of stochastic dynamics: Application to hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 58
  start-page: 1397
  year: 2003
  end-page: 1434
  ident: b31
  article-title: Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 40
  start-page: 36
  year: 2013
  end-page: 57
  ident: b28
  article-title: Inexact and truncated parareal-in-time Krylov subspace methods for parabolic optimal control problems
  publication-title: Electron. Numer. Anal.
– volume: 375
  start-page: 565
  year: 2018
  end-page: 588
  ident: b8
  article-title: Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification
  publication-title: J. Comput. Phys.
– year: 2014
  ident: b6
  article-title: Adam: A method for stochastic optimization
– year: 2019
  ident: b12
  article-title: Enforcing constraints for time series prediction in supervised, unsupervised and reinforcement learning
– year: 2019
  ident: 10.1016/j.cma.2020.113250_b22
– volume: 335
  start-page: 387
  issue: 4
  year: 2002
  ident: 10.1016/j.cma.2020.113250_b24
  article-title: A parareal in time procedure for the control of partial differential equations
  publication-title: CR. Math.
– year: 2018
  ident: 10.1016/j.cma.2020.113250_b21
– volume: 35
  start-page: A1951
  issue: 4
  year: 2013
  ident: 10.1016/j.cma.2020.113250_b43
  article-title: A micro-macro parareal algorithm: application to singularly perturbed ordinary differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/120872681
– volume: 279
  start-page: 67
  year: 2014
  ident: 10.1016/j.cma.2020.113250_b29
  article-title: Parareal in time 3D numerical solver for the LWR benchmark neutron diffusion transient model
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.08.037
– year: 2019
  ident: 10.1016/j.cma.2020.113250_b19
– year: 2014
  ident: 10.1016/j.cma.2020.113250_b6
– start-page: 189
  year: 2002
  ident: 10.1016/j.cma.2020.113250_b23
  article-title: A “parareal” time discretization for non-linear PDE’s with application to the pricing of an American put
– volume: 100
  start-page: 767
  year: 2016
  ident: 10.1016/j.cma.2020.113250_b39
  article-title: Localized lattice Boltzmann equation model for simulating miscible viscous displacement in porous media
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.04.095
– volume: 36
  start-page: A693
  issue: 2
  year: 2014
  ident: 10.1016/j.cma.2020.113250_b42
  article-title: An asymptotic parallel-in-time method for highly oscillatory PDEs
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130914577
– start-page: 433
  year: 2005
  ident: 10.1016/j.cma.2020.113250_b30
  article-title: A parareal in time semi-implicit approximation of the Navier-Stokes equations
– start-page: 69
  year: 2015
  ident: 10.1016/j.cma.2020.113250_b26
  article-title: 50 years of time parallel time integration
– volume: 58
  start-page: 1397
  issue: 9
  year: 2003
  ident: 10.1016/j.cma.2020.113250_b31
  article-title: Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/nme.860
– start-page: 151
  year: 2019
  ident: 10.1016/j.cma.2020.113250_b3
  article-title: Analyzing machine learning workloads using a detailed GPU simulator
– year: 2019
  ident: 10.1016/j.cma.2020.113250_b9
– year: 2018
  ident: 10.1016/j.cma.2020.113250_b17
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cma.2020.113250_b14
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 41
  start-page: 183
  year: 2007
  ident: 10.1016/j.cma.2020.113250_b32
  article-title: Parareal in time algorithm for kinetic systems based on model reduction
  publication-title: High-Dimens. Partial Differ. Equ. Sci. Eng.
  doi: 10.1090/crmp/041/11
– year: 2010
  ident: 10.1016/j.cma.2020.113250_b41
– year: 2019
  ident: 10.1016/j.cma.2020.113250_b13
  article-title: ConvPDE-UQ: Convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.026
– volume: 40
  start-page: 36
  year: 2013
  ident: 10.1016/j.cma.2020.113250_b28
  article-title: Inexact and truncated parareal-in-time Krylov subspace methods for parabolic optimal control problems
  publication-title: Electron. Numer. Anal.
– ident: 10.1016/j.cma.2020.113250_b10
  doi: 10.1007/978-3-030-22747-0_15
– year: 2019
  ident: 10.1016/j.cma.2020.113250_b16
– year: 2019
  ident: 10.1016/j.cma.2020.113250_b27
– volume: 9
  issue: 1185
  year: 2018
  ident: 10.1016/j.cma.2020.113250_b1
  article-title: Doing the impossible: Why neural networks can be trained at all
  publication-title: Front. Psychol.
– year: 2019
  ident: 10.1016/j.cma.2020.113250_b11
– year: 2019
  ident: 10.1016/j.cma.2020.113250_b38
– volume: 5
  start-page: 129
  issue: 2
  year: 1998
  ident: 10.1016/j.cma.2020.113250_b44
  article-title: A multiresolution strategy for reduction of elliptic PDEs and eigenvalue problems
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1006/acha.1997.0226
– year: 2018
  ident: 10.1016/j.cma.2020.113250_b2
– volume: 60
  start-page: 223
  issue: 2
  year: 2018
  ident: 10.1016/j.cma.2020.113250_b5
  article-title: Optimization methods for large-scale machine learning
  publication-title: SIAM Rev.
  doi: 10.1137/16M1080173
– start-page: 242
  year: 2010
  ident: 10.1016/j.cma.2020.113250_b37
  article-title: Transfer learning
– year: 2019
  ident: 10.1016/j.cma.2020.113250_b12
– volume: 12
  start-page: 2121
  issue: Jul
  year: 2011
  ident: 10.1016/j.cma.2020.113250_b7
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– volume: 393
  start-page: 214
  year: 2019
  ident: 10.1016/j.cma.2020.113250_b35
  article-title: Supervised parallel-in-time algorithm for long-time Lagrangian simulations of stochastic dynamics: Application to hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.016
– volume: 49
  start-page: 167
  issue: 2
  year: 2011
  ident: 10.1016/j.cma.2020.113250_b33
  article-title: Implicit parallel time integrators
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-010-9452-4
– volume: 397
  start-page: 108850
  year: 2019
  ident: 10.1016/j.cma.2020.113250_b18
  article-title: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.07.048
– volume: 394
  start-page: 136
  year: 2019
  ident: 10.1016/j.cma.2020.113250_b20
  article-title: Adversarial uncertainty quantification in physics-informed neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.027
– volume: 211
  start-page: 249
  issue: 1
  year: 2006
  ident: 10.1016/j.cma.2020.113250_b40
  article-title: Finite difference methods for two-dimensional fractional dispersion equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.05.017
– start-page: 441
  year: 2005
  ident: 10.1016/j.cma.2020.113250_b25
  article-title: The parareal in time iterative solver: a further direction to parallel implementation
– start-page: 1
  year: 2019
  ident: 10.1016/j.cma.2020.113250_b4
  article-title: Fast deep neural network training on distributed systems and cloud TPUs
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 375
  start-page: 565
  year: 2018
  ident: 10.1016/j.cma.2020.113250_b8
  article-title: Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.036
– volume: 34
  start-page: C233
  issue: 5
  year: 2012
  ident: 10.1016/j.cma.2020.113250_b34
  article-title: A parallel space-time algorithm
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/110843484
– volume: 10
  start-page: 195
  issue: 3
  year: 1994
  ident: 10.1016/j.cma.2020.113250_b15
  article-title: Neural-network-based approximations for solving partial-differential equations
  publication-title: Commun. Numer. Methods Eng.
  doi: 10.1002/cnm.1640100303
– start-page: 855
  year: 2014
  ident: 10.1016/j.cma.2020.113250_b36
  article-title: On the computational efficiency of training neural networks
SSID ssj0000812
Score 2.7208533
Snippet Physics-informed neural networks (PINNs) encode physical conservation laws and prior physical knowledge into the neural networks, ensuring the correct physics...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113250
SubjectTerms Burgers equation
Conservation laws
Convergence
Datasets
Deep neural network
Long-time integration
Machine learning
Multiscale
Neural networks
Parallel-in-time
Physics
PINN
Reaction-diffusion equations
Time dependence
Time integration
Training
Title PPINN: Parareal physics-informed neural network for time-dependent PDEs
URI https://dx.doi.org/10.1016/j.cma.2020.113250
https://www.proquest.com/docview/2450517495
https://www.osti.gov/biblio/1637715
Volume 370
WOSCitedRecordID wos000569361100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFCQ48AggQgvyAXGgWuTH-rHcKuryUBRySJHFZeWs1zSlcUKdVD3y05l92W6BCA5crGiTiaOdyfib2ZlvEHrhRUVYECFwScAFkiIssWQhwz5NEi8oeOS7qlF4FI_HSZbRSa_3w_bCXJzFVZVcXtLVf1U1rIGyZevsP6i7-VJYgNegdLiC2uH6V4qXgfpYBvoTeY4geYN19qLGmiRVnvcLRbZR6RJwXWk4XwhsJ-Ku9yeHad3FrXb4g5k4rYpocwNgF0J2D1u2Z9ESHDbKFNqhZJuTzbypAFJlBF9O2la0Jnd9uKy-ftu05QEyeZMXEuq2Wfz9dNFNWEB0akvfTBat6aT53HXMJMQAVsKuYw70SBHjWr3fOnydezh9zRWJlK9m1PiayvYqufb4Ezs6Ho3YNM2mL1ffsZw7Js_nzRCWG2jHj0MKfnHn4EOafWyf5omnGefND7Qn46pG8Npd_4Rt-ktw17887BWCmd5Hd03o4Rxok3mAeqIaoHsmDHGMk68H6E6Ho3KAbk209TxE75RlvXGsXTnX7crRduUYu3Jg1blqV460q0fo-Cidvn2PzRwOzAMarjHhsSgiKoJClDzKqShj14M4HcAh5RGZJX4ZclfMgoDkXunTMimimeuBe5B0diD3GPWrZSWeICfwSjcPZpzkMYSmnCduGQCEzSmgcBeg8xC5dgcZNyT1clbKGbPViKcMNp3JTWd604foVSOy0gwt2z5MrFqYgZgaOjIwqG1iu1KFUkRSK3NZgwYyEMvEsRcO0Z7VLDOOoGY-CRULPA2fbn97F91u_yV7qL8-34hn6Ca_WM_r8-fGHH8C-yer5A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PPINN%3A+Parareal+physics-informed+neural+network+for+time-dependent+PDEs&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Meng%2C+Xuhui&rft.au=Li%2C+Zhen&rft.au=Zhang%2C+Dongkun&rft.au=Karniadakis%2C+George+Em&rft.date=2020-10-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=370&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2020.113250&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon