Latent Gaussian Model Boosting
Latent Gaussian models and boosting are widely used techniques in statistics and machine learning. Tree-boosting shows excellent prediction accuracy on many data sets, but potential drawbacks are that it assumes conditional independence of samples, produces discontinuous predictions for, e.g., spati...
Uložené v:
| Vydané v: | IEEE transactions on pattern analysis and machine intelligence Ročník 45; číslo 2; s. 1894 - 1905 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Latent Gaussian models and boosting are widely used techniques in statistics and machine learning. Tree-boosting shows excellent prediction accuracy on many data sets, but potential drawbacks are that it assumes conditional independence of samples, produces discontinuous predictions for, e.g., spatial data, and it can have difficulty with high-cardinality categorical variables. Latent Gaussian models, such as Gaussian process and grouped random effects models, are flexible prior models which explicitly model dependence among samples and which allow for efficient learning of predictor functions and for making probabilistic predictions. However, existing latent Gaussian models usually assume either a zero or a linear prior mean function which can be an unrealistic assumption. This article introduces a novel approach that combines boosting and latent Gaussian models to remedy the above-mentioned drawbacks and to leverage the advantages of both techniques. We obtain increased prediction accuracy compared to existing approaches in both simulated and real-world data experiments. |
|---|---|
| AbstractList | Latent Gaussian models and boosting are widely used techniques in statistics and machine learning. Tree-boosting shows excellent prediction accuracy on many data sets, but potential drawbacks are that it assumes conditional independence of samples, produces discontinuous predictions for, e.g., spatial data, and it can have difficulty with high-cardinality categorical variables. Latent Gaussian models, such as Gaussian process and grouped random effects models, are flexible prior models which explicitly model dependence among samples and which allow for efficient learning of predictor functions and for making probabilistic predictions. However, existing latent Gaussian models usually assume either a zero or a linear prior mean function which can be an unrealistic assumption. This article introduces a novel approach that combines boosting and latent Gaussian models to remedy the above-mentioned drawbacks and to leverage the advantages of both techniques. We obtain increased prediction accuracy compared to existing approaches in both simulated and real-world data experiments. Latent Gaussian models and boosting are widely used techniques in statistics and machine learning. Tree-boosting shows excellent prediction accuracy on many data sets, but potential drawbacks are that it assumes conditional independence of samples, produces discontinuous predictions for, e.g., spatial data, and it can have difficulty with high-cardinality categorical variables. Latent Gaussian models, such as Gaussian process and grouped random effects models, are flexible prior models which explicitly model dependence among samples and which allow for efficient learning of predictor functions and for making probabilistic predictions. However, existing latent Gaussian models usually assume either a zero or a linear prior mean function which can be an unrealistic assumption. This article introduces a novel approach that combines boosting and latent Gaussian models to remedy the above-mentioned drawbacks and to leverage the advantages of both techniques. We obtain increased prediction accuracy compared to existing approaches in both simulated and real-world data experiments.Latent Gaussian models and boosting are widely used techniques in statistics and machine learning. Tree-boosting shows excellent prediction accuracy on many data sets, but potential drawbacks are that it assumes conditional independence of samples, produces discontinuous predictions for, e.g., spatial data, and it can have difficulty with high-cardinality categorical variables. Latent Gaussian models, such as Gaussian process and grouped random effects models, are flexible prior models which explicitly model dependence among samples and which allow for efficient learning of predictor functions and for making probabilistic predictions. However, existing latent Gaussian models usually assume either a zero or a linear prior mean function which can be an unrealistic assumption. This article introduces a novel approach that combines boosting and latent Gaussian models to remedy the above-mentioned drawbacks and to leverage the advantages of both techniques. We obtain increased prediction accuracy compared to existing approaches in both simulated and real-world data experiments. |
| Author | Sigrist, Fabio |
| Author_xml | – sequence: 1 givenname: Fabio orcidid: 0000-0002-3994-2244 surname: Sigrist fullname: Sigrist, Fabio email: fabio.sigrist@hslu.ch organization: Lucerne University of Applied Sciences and Arts, Rotkreuz, Switzerland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35439126$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kD1PwzAQQC1URD_gD4BUVWJhSbHPsWOPpYJSqRUMZbYc54pSpXGJk4F_T0pLhw5MXt67O78-6ZS-REJuGR0zRvXj6n2ynI-BAow5k4oJuCA9YJJGGjR0SI8yCZFSoLqkH8KGUhYLyq9Il4uYawayR4YLW2NZj2a2CSG35WjpMyxGT96HOi8_r8nl2hYBb47vgHy8PK-mr9HibTafThaR41rUUaxEQiFhInUZ41KkDNVaaiodqgwxsykgxJkTHDjna8ZBSqmdSxAUd0nGB-ThMHdX-a8GQ222eXBYFLZE3wQDUoCSrZ606P0ZuvFNVbbXGUgk40msYtlSwyPVpFvMzK7Kt7b6Nn8_bwE4AK7yIVS4PiGMmn1e85vX7POaY95WUmeSy2tb576sK5sX_6t3BzVHxNMunQiteMx_AODghAY |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1080_01621459_2024_2410004 crossref_primary_10_1016_j_ejor_2022_06_035 crossref_primary_10_1002_cncy_22725 crossref_primary_10_1016_j_aap_2025_108088 crossref_primary_10_1093_ibd_izaf060 crossref_primary_10_1111_ene_70124 crossref_primary_10_1016_j_ascom_2024_100818 crossref_primary_10_1016_j_ecolind_2025_114087 crossref_primary_10_1016_j_pirs_2024_100033 crossref_primary_10_1002_cncy_22732 crossref_primary_10_1017_asb_2024_7 crossref_primary_10_1016_j_trd_2025_104662 crossref_primary_10_1016_j_ufug_2025_128976 crossref_primary_10_1002_jvc2_219 crossref_primary_10_1038_s41598_023_28631_y crossref_primary_10_1186_s12936_023_04760_7 crossref_primary_10_1002_ecs2_4751 crossref_primary_10_1016_j_ajpath_2023_02_020 crossref_primary_10_1080_13658816_2024_2348740 |
| Cites_doi | 10.1080/00949655.2012.741599 10.1080/03610918.2018.1490429 10.2307/143141 10.1073/pnas.1907378117 10.1109/TPAMI.2013.159 10.3758/s13428-017-0971-x 10.1016/j.eswa.2020.114080 10.3414/ME11-02-0021 10.1016/j.chemolab.2019.01.002 10.1198/016214503000125 10.1016/j.csda.2015.02.004 10.1007/s10994-019-05787-1 10.1515/ijb-2020-0136 10.17161/bi.v15i2.13384 10.1080/01621459.1986.10478240 10.2307/2699986 10.1214/11-STS361 10.1214/ss/1177013609 10.1214/009053606000000092 10.1080/01621459.2021.1950003 10.1007/s00180-012-0382-5 10.1198/016214503000170 10.1007/s10994-011-5258-3 10.2307/2337136 10.1073/pnas.1903070116 10.1007/978-1-4419-8853-9 10.1214/aos/1016218223 10.1002/sim.2738 10.1201/9781315370279 10.1016/j.spl.2017.02.033 10.1145/2939672.2939785 10.1145/3446776 10.1080/01621459.2020.1801451 10.1007/s11063-021-10434-9 10.1016/j.inffus.2021.11.011 10.1002/sam.11505 10.1109/CVPR.2011.5995605 10.1016/j.spl.2010.12.003 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2022.3168152 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 1905 |
| ExternalDocumentID | 35439126 10_1109_TPAMI_2022_3168152 9759834 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Swiss Innovation Agency grantid: 55463.1 IP-IC |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD ESBDL F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 AAYOK ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RIG RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c395t-485702715bcd1365b1e8f6906ce8deedab2e24dc532333f1326669cc7e283c7d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000912386000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Thu Oct 02 11:51:29 EDT 2025 Sun Nov 30 05:19:22 EST 2025 Thu Apr 03 07:03:20 EDT 2025 Sat Nov 29 02:58:19 EST 2025 Tue Nov 18 22:24:37 EST 2025 Wed Aug 27 02:54:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c395t-485702715bcd1365b1e8f6906ce8deedab2e24dc532333f1326669cc7e283c7d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3994-2244 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9759834 |
| PMID | 35439126 |
| PQID | 2761374846 |
| PQPubID | 85458 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TPAMI_2022_3168152 pubmed_primary_35439126 proquest_miscellaneous_2652865327 crossref_citationtrail_10_1109_TPAMI_2022_3168152 proquest_journals_2761374846 ieee_primary_9759834 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref52 ref11 ref10 ref17 ref19 ref18 Hothorn (ref23) 2010; 11 ref51 ref50 ref46 ref45 ref41 ref44 Wyner (ref42) 2017; 18 ref49 Pinheiro (ref7) 2006 Belkin (ref43) ref9 ref4 Minka (ref35) ref3 ref5 Williams (ref6) 2006 ref34 ref37 ref31 ref30 Freund (ref1) ref33 Breiman (ref8) 1984 ref32 ref2 Lu (ref39) 2019 ref38 Kuss (ref36) 2005; 6 Rabinowicz (ref16) 2021 Ke (ref48) ref24 ref26 ref25 Sigrist (ref14) 2020 ref20 Nesterov (ref40) 2004; 87 ref22 ref21 ref28 ref27 ref29 Guennebaud (ref47) 2010 |
| References_xml | – ident: ref13 doi: 10.1080/00949655.2012.741599 – ident: ref20 doi: 10.1080/03610918.2018.1490429 – ident: ref9 doi: 10.2307/143141 – ident: ref45 doi: 10.1073/pnas.1907378117 – start-page: 148 volume-title: Proc. 13th Int. Conf. Mach. Learn. ident: ref1 article-title: Experiments with a new boosting algorithm – year: 2020 ident: ref14 article-title: Gaussian process boosting – ident: ref5 doi: 10.1109/TPAMI.2013.159 – volume-title: Classification and Regression Trees year: 1984 ident: ref8 – ident: ref19 doi: 10.3758/s13428-017-0971-x – start-page: 362 volume-title: Proc. 17th Conf. Uncertainty Artif. Intell. ident: ref35 article-title: Expectation propagation for approximate Bayesian inference – ident: ref37 doi: 10.1016/j.eswa.2020.114080 – ident: ref27 doi: 10.3414/ME11-02-0021 – ident: ref21 doi: 10.1016/j.chemolab.2019.01.002 – ident: ref29 doi: 10.1198/016214503000125 – ident: ref12 doi: 10.1016/j.csda.2015.02.004 – ident: ref38 doi: 10.1007/s10994-019-05787-1 – ident: ref15 doi: 10.1515/ijb-2020-0136 – ident: ref51 doi: 10.17161/bi.v15i2.13384 – year: 2019 ident: ref39 article-title: Accelerating gradient boosting machine – year: 2021 ident: ref16 article-title: Trees-based models for correlated data – volume: 11 start-page: 2109 issue: Aug year: 2010 ident: ref23 article-title: Model-based boosting 2.0 publication-title: J. Mach. Learn. Res. – ident: ref34 doi: 10.1080/01621459.1986.10478240 – ident: ref2 doi: 10.2307/2699986 – ident: ref33 doi: 10.1214/11-STS361 – ident: ref24 doi: 10.1214/ss/1177013609 – ident: ref28 doi: 10.1214/009053606000000092 – ident: ref17 doi: 10.1080/01621459.2021.1950003 – ident: ref50 doi: 10.1007/s00180-012-0382-5 – ident: ref32 doi: 10.1198/016214503000170 – ident: ref11 doi: 10.1007/s10994-011-5258-3 – ident: ref46 doi: 10.2307/2337136 – ident: ref44 doi: 10.1073/pnas.1903070116 – volume: 87 volume-title: Introductory Lectures on Convex Optimization: A Basic Course year: 2004 ident: ref40 doi: 10.1007/978-1-4419-8853-9 – start-page: 541 volume-title: Proc. 35th Int. Conf. Mach. Learn. ident: ref43 article-title: To understand deep learning we need to understand kernel learning – ident: ref49 doi: 10.1214/aos/1016218223 – ident: ref26 doi: 10.1002/sim.2738 – volume-title: Mixed-Effects Models in S and S-PLUS year: 2006 ident: ref7 – ident: ref25 doi: 10.1201/9781315370279 – volume: 18 start-page: 1 issue: 48 year: 2017 ident: ref42 article-title: Explaining the success of AdaBoost and random forests as interpolating classifiers publication-title: J. Mach. Learn. Res. – ident: ref18 doi: 10.1016/j.spl.2017.02.033 – year: 2010 ident: ref47 article-title: Eigen v3 – ident: ref3 doi: 10.1145/2939672.2939785 – ident: ref41 doi: 10.1145/3446776 – ident: ref52 doi: 10.1080/01621459.2020.1801451 – volume-title: Gaussian Processes for Machine Learning year: 2006 ident: ref6 – ident: ref31 doi: 10.1007/s11063-021-10434-9 – volume: 6 start-page: 1679 issue: Oct year: 2005 ident: ref36 article-title: Assessing approximate inference for binary Gaussian process classification publication-title: J. Mach. Learn. Res. – start-page: 3149 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. ident: ref48 article-title: LightGBM: A highly efficient gradient boosting decision tree – ident: ref4 doi: 10.1016/j.inffus.2021.11.011 – ident: ref22 doi: 10.1002/sam.11505 – ident: ref30 doi: 10.1109/CVPR.2011.5995605 – ident: ref10 doi: 10.1016/j.spl.2010.12.003 |
| SSID | ssj0014503 |
| Score | 2.5469508 |
| Snippet | Latent Gaussian models and boosting are widely used techniques in statistics and machine learning. Tree-boosting shows excellent prediction accuracy on many... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1894 |
| SubjectTerms | Accuracy Analytical models Boosting Data models Gaussian process gaussian processes Machine learning mixed effects models Predictive models Spatial data Spatial databases Splines (mathematics) |
| Title | Latent Gaussian Model Boosting |
| URI | https://ieeexplore.ieee.org/document/9759834 https://www.ncbi.nlm.nih.gov/pubmed/35439126 https://www.proquest.com/docview/2761374846 https://www.proquest.com/docview/2652865327 |
| Volume | 45 |
| WOSCitedRecordID | wos000912386000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5URPTgo76itUTwpmmbbLa7e6ziC7T0UKG3kGw2IJREbOvvd2bzoAcVvAWyeTCZYb7JznwfwBUiApVhmeAZX2ov9DPuKZ5i4ZpJbdJBqOPMUua_iNFITqdqvAY3zSyMMcY2n5kuHdq9_LTQS_pV1lOCK8nCdVgXQpSzWs2OQcitCjIiGIxwLCPqAZm-6k3Gw9dnLAWDoEsyTZixtmGLcZo5JU6FlXxkBVZ-x5o25zzs_e9t92G3wpbusHSGA1gzeQv2at0GtwrjFuyskBAeQucF4Wa-cB_j5ZwmKl2SR5u5t0Uxp5boI3h7uJ_cPXmVaoKnmeILLyTK-kD4PNEp9bAlvpEZ0RFrI1PMiHESmCBMNWcBYyzDahQrGKW1MIg0tEjZMWzkRW5OwU1Un4lskAqa1xV-Eie-L4xACCRkLPuJA35tu0hXlOKkbDGLbGnRV5E1fUSmjyrTO3DdXPNREmr8ufqQDNusrGzqQLv-RFEVc_MoEAhNiBp14MBlcxqjhbZA4twUS1wz4DSKywLhwEn5aZt71x5x9vMzz2GbpObLju02bCw-l-YCNvXX4n3-2UGXnMqOdclvv5jWvw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB688HjwWo96VvBNq5uk2TSPKl64Lj6s4Ftp0xQEacXd9fc7kx74oIJvhSZtmWSYb5qZ7wM4RkSgc0wTAssiE4Qsl4GWGSaueWRs1gtNkjvK_L4aDKKXF_00BadtL4y11hWf2TO6dGf5WWkm9KvsXCupIxFOw6wMQ86qbq32zCCUTgcZMQz6OCYSTYtMV58Pny4e7zEZ5PyMhJowZi3CvJDUdUqsCt8ikpNY-R1tuqhzs_K_712F5Rpd-hfVdliDKVusw0qj3ODXjrwOS99oCDtw0EfAWYz922Qyop5KnwTS3vzLshxRUfQGPN9cD6_uglo3ITBCy3EQEmk9V0ymJqMqtpTZKCdCYmOjDGNiknLLw8xIwYUQOeajmMNoY5RFrGFUJjZhpigLuw1-qrtC5b1MUceuYmmSMqasQhCkoiTqph6wxnaxqUnFSdviLXbJRVfHzvQxmT6uTe_BSTvnvaLU-HN0hwzbjqxt6sFes0Rx7XWjmCsEJ0SO2vPgqL2N_kKHIElhywmO6UlqxhVcebBVLW377GZH7Pz8zkNYuBs-9uP-_eBhFxZJeL6q396DmfHHxO7DnPkcv44-DtzG_AIJL9ke |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent+Gaussian+Model+Boosting&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Sigrist%2C+Fabio&rft.date=2023-02-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=45&rft.issue=2&rft.spage=1894&rft_id=info:doi/10.1109%2FTPAMI.2022.3168152&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |