Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition
The degradation of organic contaminants under high salinity condition is still a challenge for environmental remediation due to the inhibiting effect resulted from the side reactions between radicals and anions. Here, we demonstrate the non-radical oxidation process via peroxymonosulfate (PMS) activ...
Saved in:
| Published in: | Water research (Oxford) Vol. 148; pp. 416 - 424 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Elsevier Ltd
01.01.2019
|
| Subjects: | |
| ISSN: | 0043-1354, 1879-2448, 1879-2448 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The degradation of organic contaminants under high salinity condition is still a challenge for environmental remediation due to the inhibiting effect resulted from the side reactions between radicals and anions. Here, we demonstrate the non-radical oxidation process via peroxymonosulfate (PMS) activation by metal-free carbon catalyst for efficiently decomposing bisphenol A (BPA) in saline water. The nitrogen-doped graphitic carbon (NGC700) exhibits excellent catalytic activity for depredating BPA at acid and neutral pH. Based on the scavenger experiments and electron paramagnetic resonance (EPR) analyses, the mechanism of catalytic oxidation was elucidated as the non-radical pathway, and singlet oxygen was identified as the primary reactive species. Experiments on the influence of anions (5–500 mM) further show that the inhibiting effect was overcame due to the non-radical process. Interestingly, Cl− markedly facilitated the catalytic performance by generating HOCl in the catalytic process. The results highlight leveraging the non-radical pathway dominated by singlet oxygen to conquer the inhibitory effect of anions in NGC700/PMS system, which represents a crucial step towards environmental remediation under high salinity condition.
[Display omitted]
•The non-radical oxidation process under high salinity condition was investigated.•Excellent performance on bisphenol A degradation was achieved in saline water.•Singlet oxygen was identified as the dominated reactive species.•The inhibiting effect of anions can be suppressed by the non-radical process. |
|---|---|
| AbstractList | The degradation of organic contaminants under high salinity condition is still a challenge for environmental remediation due to the inhibiting effect resulted from the side reactions between radicals and anions. Here, we demonstrate the non-radical oxidation process via peroxymonosulfate (PMS) activation by metal-free carbon catalyst for efficiently decomposing bisphenol A (BPA) in saline water. The nitrogen-doped graphitic carbon (NGC700) exhibits excellent catalytic activity for depredating BPA at acid and neutral pH. Based on the scavenger experiments and electron paramagnetic resonance (EPR) analyses, the mechanism of catalytic oxidation was elucidated as the non-radical pathway, and singlet oxygen was identified as the primary reactive species. Experiments on the influence of anions (5-500 mM) further show that the inhibiting effect was overcame due to the non-radical process. Interestingly, Cl
markedly facilitated the catalytic performance by generating HOCl in the catalytic process. The results highlight leveraging the non-radical pathway dominated by singlet oxygen to conquer the inhibitory effect of anions in NGC700/PMS system, which represents a crucial step towards environmental remediation under high salinity condition. The degradation of organic contaminants under high salinity condition is still a challenge for environmental remediation due to the inhibiting effect resulted from the side reactions between radicals and anions. Here, we demonstrate the non-radical oxidation process via peroxymonosulfate (PMS) activation by metal-free carbon catalyst for efficiently decomposing bisphenol A (BPA) in saline water. The nitrogen-doped graphitic carbon (NGC700) exhibits excellent catalytic activity for depredating BPA at acid and neutral pH. Based on the scavenger experiments and electron paramagnetic resonance (EPR) analyses, the mechanism of catalytic oxidation was elucidated as the non-radical pathway, and singlet oxygen was identified as the primary reactive species. Experiments on the influence of anions (5-500 mM) further show that the inhibiting effect was overcame due to the non-radical process. Interestingly, Cl- markedly facilitated the catalytic performance by generating HOCl in the catalytic process. The results highlight leveraging the non-radical pathway dominated by singlet oxygen to conquer the inhibitory effect of anions in NGC700/PMS system, which represents a crucial step towards environmental remediation under high salinity condition.The degradation of organic contaminants under high salinity condition is still a challenge for environmental remediation due to the inhibiting effect resulted from the side reactions between radicals and anions. Here, we demonstrate the non-radical oxidation process via peroxymonosulfate (PMS) activation by metal-free carbon catalyst for efficiently decomposing bisphenol A (BPA) in saline water. The nitrogen-doped graphitic carbon (NGC700) exhibits excellent catalytic activity for depredating BPA at acid and neutral pH. Based on the scavenger experiments and electron paramagnetic resonance (EPR) analyses, the mechanism of catalytic oxidation was elucidated as the non-radical pathway, and singlet oxygen was identified as the primary reactive species. Experiments on the influence of anions (5-500 mM) further show that the inhibiting effect was overcame due to the non-radical process. Interestingly, Cl- markedly facilitated the catalytic performance by generating HOCl in the catalytic process. The results highlight leveraging the non-radical pathway dominated by singlet oxygen to conquer the inhibitory effect of anions in NGC700/PMS system, which represents a crucial step towards environmental remediation under high salinity condition. The degradation of organic contaminants under high salinity condition is still a challenge for environmental remediation due to the inhibiting effect resulted from the side reactions between radicals and anions. Here, we demonstrate the non-radical oxidation process via peroxymonosulfate (PMS) activation by metal-free carbon catalyst for efficiently decomposing bisphenol A (BPA) in saline water. The nitrogen-doped graphitic carbon (NGC700) exhibits excellent catalytic activity for depredating BPA at acid and neutral pH. Based on the scavenger experiments and electron paramagnetic resonance (EPR) analyses, the mechanism of catalytic oxidation was elucidated as the non-radical pathway, and singlet oxygen was identified as the primary reactive species. Experiments on the influence of anions (5–500 mM) further show that the inhibiting effect was overcame due to the non-radical process. Interestingly, Cl⁻ markedly facilitated the catalytic performance by generating HOCl in the catalytic process. The results highlight leveraging the non-radical pathway dominated by singlet oxygen to conquer the inhibitory effect of anions in NGC700/PMS system, which represents a crucial step towards environmental remediation under high salinity condition. The degradation of organic contaminants under high salinity condition is still a challenge for environmental remediation due to the inhibiting effect resulted from the side reactions between radicals and anions. Here, we demonstrate the non-radical oxidation process via peroxymonosulfate (PMS) activation by metal-free carbon catalyst for efficiently decomposing bisphenol A (BPA) in saline water. The nitrogen-doped graphitic carbon (NGC700) exhibits excellent catalytic activity for depredating BPA at acid and neutral pH. Based on the scavenger experiments and electron paramagnetic resonance (EPR) analyses, the mechanism of catalytic oxidation was elucidated as the non-radical pathway, and singlet oxygen was identified as the primary reactive species. Experiments on the influence of anions (5–500 mM) further show that the inhibiting effect was overcame due to the non-radical process. Interestingly, Cl− markedly facilitated the catalytic performance by generating HOCl in the catalytic process. The results highlight leveraging the non-radical pathway dominated by singlet oxygen to conquer the inhibitory effect of anions in NGC700/PMS system, which represents a crucial step towards environmental remediation under high salinity condition. [Display omitted] •The non-radical oxidation process under high salinity condition was investigated.•Excellent performance on bisphenol A degradation was achieved in saline water.•Singlet oxygen was identified as the dominated reactive species.•The inhibiting effect of anions can be suppressed by the non-radical process. |
| Author | Nasir Khan, Muhammad Abdul Wang, Chaohai Wang, Lianjun Luo, Rui Li, Jiansheng Han, Weiqing Li, Miaoqing Sun, Xiuyun Shen, Jinyou Zhang, Ming |
| Author_xml | – sequence: 1 givenname: Rui surname: Luo fullname: Luo, Rui – sequence: 2 givenname: Miaoqing surname: Li fullname: Li, Miaoqing – sequence: 3 givenname: Chaohai surname: Wang fullname: Wang, Chaohai – sequence: 4 givenname: Ming surname: Zhang fullname: Zhang, Ming – sequence: 5 givenname: Muhammad Abdul surname: Nasir Khan fullname: Nasir Khan, Muhammad Abdul – sequence: 6 givenname: Xiuyun surname: Sun fullname: Sun, Xiuyun – sequence: 7 givenname: Jinyou orcidid: 0000-0002-0753-6612 surname: Shen fullname: Shen, Jinyou – sequence: 8 givenname: Weiqing surname: Han fullname: Han, Weiqing – sequence: 9 givenname: Lianjun surname: Wang fullname: Wang, Lianjun – sequence: 10 givenname: Jiansheng orcidid: 0000-0002-3708-3677 surname: Li fullname: Li, Jiansheng email: lijsh@njust.edu.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30399556$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkTtvFDEUhS0URDaBf4CQS5pZ_JqHKZCiiABSJAqgtjz29a5Xs_ZiewNb8N_jYZKGAqgsXX_n3KtzLtBZiAEQeknJmhLavdmtf-iSIK8ZoUMdrcnQP0ErOvSyYUIMZ2hFiOAN5a04Rxc57wghjHH5DJ1zwqVs226Ffn3xYTNBwfHnaQOhsXHvgy5gcV3XJG290VP99FYXHwM-pGggZ-xiwuCcNx5CwRY2FV2I6PDo82ELIU74Ch-DhYS3frPFWU8--HLCJgbrZ_g5eur0lOHFw3uJvt28_3r9sbn9_OHT9dVtY7hsS8PBQNs7Lo0xom-NcJINbHBW0t7wXnScwsiEtBScdVwIIV0HtBvBDMyNA79Erxffev73I-Si9j4bmCYdIB6zYrTveEuY7P4D5WQghEpa0VcP6HHcg1WH5Pc6ndRjuhV4uwAmxZwTOGV8-Z1SSdpPihI1V6l2aqlSzVXO01plFYs_xI_-_5C9W2RQ87zzkFSeOzJgfQJTlI3-7wb3-hW9AA |
| CitedBy_id | crossref_primary_10_1016_j_cej_2020_125498 crossref_primary_10_1016_j_jwpe_2022_103184 crossref_primary_10_1016_j_jece_2024_113422 crossref_primary_10_1016_j_jhazmat_2021_125305 crossref_primary_10_1021_acs_nanolett_5c00785 crossref_primary_10_1016_j_molliq_2024_125536 crossref_primary_10_1038_s41467_024_49266_1 crossref_primary_10_1016_j_psep_2024_12_060 crossref_primary_10_1016_j_jwpe_2025_107381 crossref_primary_10_1016_j_apcatb_2020_119484 crossref_primary_10_1016_j_envres_2024_120398 crossref_primary_10_1007_s42823_025_00901_x crossref_primary_10_1016_j_jhazmat_2020_123084 crossref_primary_10_1016_j_apsusc_2023_158501 crossref_primary_10_1016_j_jwpe_2025_107139 crossref_primary_10_1016_j_ces_2025_122148 crossref_primary_10_1016_j_jwpe_2025_107375 crossref_primary_10_1016_j_jclepro_2024_143392 crossref_primary_10_1002_adfm_202203001 crossref_primary_10_1016_j_apcatb_2021_120532 crossref_primary_10_1007_s11356_024_34095_y crossref_primary_10_1016_j_watres_2023_120785 crossref_primary_10_1016_j_watres_2022_119277 crossref_primary_10_1016_j_jhazmat_2020_124199 crossref_primary_10_1016_j_cej_2023_145922 crossref_primary_10_1016_j_cej_2020_126128 crossref_primary_10_1016_j_cej_2023_144832 crossref_primary_10_1016_j_cej_2023_144834 crossref_primary_10_1016_j_cej_2024_150553 crossref_primary_10_1016_j_watres_2020_116244 crossref_primary_10_1016_j_apcatb_2024_124989 crossref_primary_10_1016_j_seppur_2019_116170 crossref_primary_10_1016_j_cej_2022_135883 crossref_primary_10_1016_j_watres_2020_116246 crossref_primary_10_1002_smtd_202402072 crossref_primary_10_1016_j_envres_2023_115750 crossref_primary_10_1016_j_jwpe_2024_105910 crossref_primary_10_1016_j_jece_2024_112584 crossref_primary_10_1016_j_ccr_2024_216241 crossref_primary_10_1016_j_cej_2024_158031 crossref_primary_10_1007_s11164_024_05451_x crossref_primary_10_1016_j_cherd_2023_03_015 crossref_primary_10_1016_j_jcis_2021_04_074 crossref_primary_10_1016_j_mtchem_2022_100818 crossref_primary_10_1021_acs_est_5c02729 crossref_primary_10_1016_j_seppur_2021_120136 crossref_primary_10_1016_j_seppur_2022_122402 crossref_primary_10_1016_j_apcatb_2025_125054 crossref_primary_10_1002_smll_202311552 crossref_primary_10_1016_j_cej_2021_128605 crossref_primary_10_1002_ange_202507349 crossref_primary_10_3390_membranes10120428 crossref_primary_10_1016_j_jenvman_2022_115971 crossref_primary_10_1016_j_seppur_2025_133785 crossref_primary_10_1016_j_apcatb_2021_119963 crossref_primary_10_1016_j_jwpe_2023_104354 crossref_primary_10_1016_j_seppur_2023_125193 crossref_primary_10_1016_j_chemosphere_2022_137120 crossref_primary_10_1016_j_jclepro_2023_138713 crossref_primary_10_1016_j_jece_2025_116173 crossref_primary_10_1016_j_cej_2025_167255 crossref_primary_10_1016_j_seppur_2022_121557 crossref_primary_10_1016_j_surfin_2025_106269 crossref_primary_10_1016_j_watres_2023_120378 crossref_primary_10_1016_j_apcatb_2024_123819 crossref_primary_10_1016_j_cej_2024_156074 crossref_primary_10_1016_j_cej_2021_134286 crossref_primary_10_1038_s41467_024_51878_6 crossref_primary_10_1016_j_chemosphere_2022_137131 crossref_primary_10_1016_j_jtice_2023_104815 crossref_primary_10_1016_j_apcatb_2023_123323 crossref_primary_10_1016_j_jece_2022_108702 crossref_primary_10_1016_j_ijbiomac_2024_130922 crossref_primary_10_1016_j_carbon_2021_05_033 crossref_primary_10_1016_j_envres_2025_121742 crossref_primary_10_1016_j_jece_2024_112557 crossref_primary_10_1016_j_cej_2022_138958 crossref_primary_10_1016_j_apcatb_2019_03_048 crossref_primary_10_1016_j_cej_2020_126158 crossref_primary_10_1016_j_jcis_2025_138268 crossref_primary_10_1016_j_jtice_2020_10_022 crossref_primary_10_1016_j_seppur_2022_120471 crossref_primary_10_1016_j_jece_2025_118388 crossref_primary_10_1007_s11705_023_2327_7 crossref_primary_10_1016_j_apsusc_2025_163614 crossref_primary_10_1016_j_jhazmat_2022_128282 crossref_primary_10_1016_j_cej_2023_147050 crossref_primary_10_1007_s42773_022_00155_0 crossref_primary_10_1002_tcr_202000143 crossref_primary_10_1016_j_jwpe_2024_105946 crossref_primary_10_1039_D0EN00848F crossref_primary_10_1016_j_clay_2021_106327 crossref_primary_10_1016_j_cej_2020_125063 crossref_primary_10_1016_j_chemosphere_2022_136023 crossref_primary_10_1016_j_seppur_2021_119791 crossref_primary_10_1073_pnas_2313387121 crossref_primary_10_1016_j_jece_2024_113022 crossref_primary_10_3390_su141610128 crossref_primary_10_1016_j_apcatb_2019_118302 crossref_primary_10_1016_j_surfin_2023_102957 crossref_primary_10_1016_j_apcatb_2021_119921 crossref_primary_10_1016_j_apcatb_2019_118549 crossref_primary_10_1016_j_seppur_2024_127210 crossref_primary_10_1016_j_ces_2023_118979 crossref_primary_10_1016_j_mtcomm_2024_108694 crossref_primary_10_1016_j_seppur_2025_133190 crossref_primary_10_1016_j_envres_2022_112815 crossref_primary_10_1016_j_jhazmat_2023_130869 crossref_primary_10_1016_j_envres_2023_117313 crossref_primary_10_1016_j_apcatb_2021_119914 crossref_primary_10_1016_j_watres_2023_119744 crossref_primary_10_1016_j_cclet_2021_01_019 crossref_primary_10_1016_j_apcatb_2021_119910 crossref_primary_10_1016_j_seppur_2024_128771 crossref_primary_10_1016_j_chemosphere_2022_135317 crossref_primary_10_1016_j_jhazmat_2022_129357 crossref_primary_10_1016_j_seppur_2023_123147 crossref_primary_10_1016_j_apcatb_2021_120375 crossref_primary_10_1016_j_seppur_2023_124479 crossref_primary_10_1016_j_seppur_2023_125326 crossref_primary_10_1016_j_apcatb_2022_122136 crossref_primary_10_1016_j_chemosphere_2022_135791 crossref_primary_10_1016_j_scitotenv_2024_173206 crossref_primary_10_1016_j_seppur_2025_133161 crossref_primary_10_1016_j_cej_2020_127619 crossref_primary_10_1016_j_jallcom_2023_172208 crossref_primary_10_1016_j_cej_2021_133581 crossref_primary_10_1016_j_jhazmat_2021_128191 crossref_primary_10_1016_j_cej_2021_133102 crossref_primary_10_1016_j_jhazmat_2022_130562 crossref_primary_10_1016_j_jwpe_2025_108094 crossref_primary_10_1016_j_jwpe_2024_105737 crossref_primary_10_1039_D4MH01479K crossref_primary_10_1016_j_chemosphere_2021_133069 crossref_primary_10_1016_j_seppur_2023_124249 crossref_primary_10_1016_j_apcatb_2023_122883 crossref_primary_10_1016_j_seppur_2025_133391 crossref_primary_10_1016_j_inoche_2025_115252 crossref_primary_10_1016_j_jcis_2025_137533 crossref_primary_10_1016_j_scitotenv_2024_173211 crossref_primary_10_1360_TB_2024_0583 crossref_primary_10_1016_j_scitotenv_2020_141999 crossref_primary_10_1016_j_envres_2025_121155 crossref_primary_10_1016_j_jece_2022_108322 crossref_primary_10_1016_j_catcom_2021_106281 crossref_primary_10_1016_j_cej_2022_135815 crossref_primary_10_1016_j_watres_2023_119725 crossref_primary_10_1016_j_scitotenv_2021_151611 crossref_primary_10_1016_j_seppur_2022_120862 crossref_primary_10_1016_j_cej_2023_142479 crossref_primary_10_1016_j_ces_2025_122357 crossref_primary_10_1016_j_jhazmat_2024_136880 crossref_primary_10_1016_j_jece_2024_112379 crossref_primary_10_1016_j_jes_2021_10_030 crossref_primary_10_1007_s10853_023_08174_3 crossref_primary_10_1016_j_jwpe_2024_105567 crossref_primary_10_1016_j_jece_2023_110903 crossref_primary_10_1016_j_apsusc_2022_152705 crossref_primary_10_1016_j_jece_2025_119286 crossref_primary_10_1016_j_cej_2024_152568 crossref_primary_10_1016_j_cej_2025_160462 crossref_primary_10_1016_j_seppur_2023_124029 crossref_primary_10_1016_j_jhazmat_2022_130549 crossref_primary_10_1016_j_jcis_2021_07_130 crossref_primary_10_1016_j_cej_2020_127863 crossref_primary_10_1016_j_jwpe_2024_106423 crossref_primary_10_1016_j_envres_2022_115035 crossref_primary_10_1016_j_colsurfa_2022_129520 crossref_primary_10_1016_j_psep_2022_10_002 crossref_primary_10_1016_j_jhazmat_2020_122883 crossref_primary_10_1016_j_chemosphere_2020_126053 crossref_primary_10_1016_j_seppur_2021_119369 crossref_primary_10_1016_j_ceramint_2021_04_072 crossref_primary_10_1016_j_clay_2022_106802 crossref_primary_10_1016_j_cej_2022_141037 crossref_primary_10_1016_j_cej_2023_142450 crossref_primary_10_1016_j_jece_2024_112151 crossref_primary_10_1016_j_jwpe_2024_105781 crossref_primary_10_1016_j_jhazmat_2020_122414 crossref_primary_10_1016_j_watres_2023_120502 crossref_primary_10_1016_j_jece_2024_114338 crossref_primary_10_1016_j_apcatb_2022_122321 crossref_primary_10_1021_acsestwater_5c00402 crossref_primary_10_1016_j_cej_2021_132299 crossref_primary_10_1016_j_chemosphere_2022_135326 crossref_primary_10_1016_j_jece_2021_106276 crossref_primary_10_1016_j_jece_2023_109909 crossref_primary_10_1016_j_horiz_2024_100091 crossref_primary_10_1016_j_jece_2024_113480 crossref_primary_10_1016_j_watres_2020_116605 crossref_primary_10_1016_j_cej_2020_124382 crossref_primary_10_1016_j_apsusc_2023_157676 crossref_primary_10_1016_j_watres_2022_119462 crossref_primary_10_1016_j_envres_2023_117971 crossref_primary_10_1007_s11356_022_23063_z crossref_primary_10_1016_j_watres_2023_120992 crossref_primary_10_1016_j_cej_2023_143778 crossref_primary_10_1016_j_scitotenv_2024_176762 crossref_primary_10_1016_j_chemosphere_2022_136419 crossref_primary_10_1016_j_jece_2022_108523 crossref_primary_10_1016_j_jhazmat_2021_127054 crossref_primary_10_1016_j_apsusc_2019_143770 crossref_primary_10_1016_j_jhazmat_2021_127292 crossref_primary_10_1016_j_seppur_2021_120334 crossref_primary_10_1016_j_colsurfa_2023_130958 crossref_primary_10_1016_j_ecoenv_2023_115592 crossref_primary_10_1016_j_seppur_2022_120874 crossref_primary_10_1016_j_seppur_2023_123779 crossref_primary_10_1016_j_cej_2020_124725 crossref_primary_10_1016_j_chemosphere_2023_140331 crossref_primary_10_1016_j_cej_2022_138219 crossref_primary_10_1016_j_apcatb_2025_125537 crossref_primary_10_1016_j_jhazmat_2022_128773 crossref_primary_10_1016_j_seppur_2024_128029 crossref_primary_10_1016_j_jhazmat_2020_122560 crossref_primary_10_1016_j_chemosphere_2020_127747 crossref_primary_10_1016_j_chemosphere_2023_140563 crossref_primary_10_1039_D0CY00102C crossref_primary_10_1016_j_cclet_2023_109437 crossref_primary_10_1016_j_cej_2022_138468 crossref_primary_10_1016_j_apcatb_2021_120093 crossref_primary_10_1016_j_apcatb_2025_125303 crossref_primary_10_1016_j_seppur_2023_123783 crossref_primary_10_1016_j_cej_2021_131777 crossref_primary_10_1016_j_seppur_2023_125965 crossref_primary_10_1016_j_watres_2024_122007 crossref_primary_10_1016_j_jwpe_2024_105221 crossref_primary_10_1002_apj_3156 crossref_primary_10_1016_j_nantod_2024_102462 crossref_primary_10_1016_j_seppur_2022_123034 crossref_primary_10_1016_j_jhazmat_2020_122578 crossref_primary_10_1016_j_chemosphere_2022_133735 crossref_primary_10_1016_j_cej_2022_136051 crossref_primary_10_1016_j_chemosphere_2022_133737 crossref_primary_10_1016_j_seppur_2021_119934 crossref_primary_10_1016_j_jhazmat_2023_133399 crossref_primary_10_1016_j_ecoenv_2023_114908 crossref_primary_10_1016_j_seppur_2024_129578 crossref_primary_10_1016_j_seppur_2024_127394 crossref_primary_10_1016_j_envpol_2023_122807 crossref_primary_10_1016_j_jhazmat_2021_127380 crossref_primary_10_1016_j_seppur_2023_123556 crossref_primary_10_1016_j_cej_2023_144386 crossref_primary_10_1016_j_jhazmat_2022_129613 crossref_primary_10_1016_j_carbpol_2025_124373 crossref_primary_10_1016_j_cej_2024_148800 crossref_primary_10_1016_j_jwpe_2022_102681 crossref_primary_10_3390_molecules28104237 crossref_primary_10_1016_j_cej_2022_136069 crossref_primary_10_1016_j_seppur_2024_129563 crossref_primary_10_1016_j_apcata_2019_117170 crossref_primary_10_1016_j_seppur_2021_118664 crossref_primary_10_1016_j_apcatb_2019_118348 crossref_primary_10_1016_j_cej_2024_156402 crossref_primary_10_1016_j_cej_2021_129498 crossref_primary_10_1016_j_cej_2021_133767 crossref_primary_10_1039_D1EN00841B crossref_primary_10_1016_j_cej_2019_03_046 crossref_primary_10_1016_j_envpol_2022_119386 crossref_primary_10_1016_j_jcis_2022_11_079 crossref_primary_10_1016_j_cej_2023_145698 crossref_primary_10_1016_j_envres_2021_112060 crossref_primary_10_1016_j_cej_2020_124512 crossref_primary_10_1016_j_cej_2020_124752 crossref_primary_10_1016_j_jhazmat_2021_128204 crossref_primary_10_1016_j_cej_2023_146309 crossref_primary_10_1016_j_cej_2021_130250 crossref_primary_10_1021_acs_est_5c04008 crossref_primary_10_1016_j_chemosphere_2021_131091 crossref_primary_10_1016_j_cej_2022_140103 crossref_primary_10_1016_j_colsurfa_2024_134312 crossref_primary_10_1016_j_dwt_2024_100559 crossref_primary_10_1016_j_jhazmat_2021_127111 crossref_primary_10_1016_j_jenvman_2023_117978 crossref_primary_10_3390_w14203318 crossref_primary_10_1016_j_seppur_2025_135280 crossref_primary_10_1016_j_chemosphere_2022_134868 crossref_primary_10_1016_j_cej_2020_127818 crossref_primary_10_1016_j_seppur_2024_129533 crossref_primary_10_1007_s11356_024_33035_0 crossref_primary_10_1016_j_chemosphere_2022_135961 crossref_primary_10_1016_j_jallcom_2020_157739 crossref_primary_10_3390_app14083181 crossref_primary_10_1016_j_seppur_2023_123111 crossref_primary_10_1016_j_cej_2021_133789 crossref_primary_10_1016_j_jhazmat_2021_126495 crossref_primary_10_1016_j_optmat_2024_115218 crossref_primary_10_1016_j_watres_2025_123891 crossref_primary_10_1016_j_indcrop_2024_118569 crossref_primary_10_1016_j_jiec_2024_03_016 crossref_primary_10_1016_j_jhazmat_2022_128968 crossref_primary_10_1016_j_watres_2019_05_059 crossref_primary_10_1016_j_eti_2025_104517 crossref_primary_10_1016_j_cej_2020_127805 crossref_primary_10_1039_D2RA02970G crossref_primary_10_1016_j_jhazmat_2023_131183 crossref_primary_10_1177_00405175231195897 crossref_primary_10_1016_j_jwpe_2022_102639 crossref_primary_10_1016_j_jece_2022_107276 crossref_primary_10_1016_j_seppur_2024_127349 crossref_primary_10_1039_D1EN00426C crossref_primary_10_1016_j_cej_2019_123247 crossref_primary_10_1016_j_cej_2019_123244 crossref_primary_10_1016_j_cej_2025_161020 crossref_primary_10_1016_j_jhazmat_2020_122395 crossref_primary_10_1016_j_watres_2023_120164 crossref_primary_10_1016_j_jwpe_2025_107549 crossref_primary_10_1016_j_diamond_2024_111430 crossref_primary_10_1016_j_jcis_2023_08_017 crossref_primary_10_1016_j_jece_2023_110395 crossref_primary_10_1016_j_envpol_2022_120176 crossref_primary_10_1016_j_jclepro_2021_129642 crossref_primary_10_1038_s41598_023_38958_1 crossref_primary_10_1016_j_colsurfa_2021_126608 crossref_primary_10_1016_j_cej_2022_137765 crossref_primary_10_1016_j_jcis_2022_12_072 crossref_primary_10_1016_j_cej_2024_157136 crossref_primary_10_1016_j_jhazmat_2020_122164 crossref_primary_10_1016_j_seppur_2022_121461 crossref_primary_10_1039_D4EN00194J crossref_primary_10_1016_j_jes_2020_06_003 crossref_primary_10_1016_j_envres_2022_114789 crossref_primary_10_1016_j_jece_2022_107933 crossref_primary_10_1016_j_cej_2019_03_097 crossref_primary_10_1016_j_jhazmat_2021_126215 crossref_primary_10_1016_j_seppur_2022_122105 crossref_primary_10_1016_j_envres_2024_120579 crossref_primary_10_1016_j_jece_2024_112872 crossref_primary_10_1016_j_jhazmat_2021_127784 crossref_primary_10_1016_j_envres_2024_118258 crossref_primary_10_1016_j_jhazmat_2020_123024 crossref_primary_10_1016_j_cej_2025_166109 crossref_primary_10_1016_j_envres_2024_118259 crossref_primary_10_1016_j_cej_2024_149724 crossref_primary_10_1016_j_colsurfa_2023_131173 crossref_primary_10_1016_j_jece_2024_114810 crossref_primary_10_1016_j_jwpe_2025_108655 crossref_primary_10_1016_j_jwpe_2025_108653 crossref_primary_10_1016_j_jes_2023_01_010 crossref_primary_10_1016_j_cej_2023_141719 crossref_primary_10_1016_j_apcatb_2023_123178 crossref_primary_10_1016_j_cej_2019_122584 crossref_primary_10_1016_j_seppur_2022_122107 crossref_primary_10_1016_j_watres_2024_122631 crossref_primary_10_1002_smll_202403804 crossref_primary_10_1016_j_envres_2022_114521 crossref_primary_10_1016_j_jhazmat_2020_123039 crossref_primary_10_1016_j_matdes_2022_110817 crossref_primary_10_1016_j_seppur_2025_132623 crossref_primary_10_1016_j_gee_2023_10_005 crossref_primary_10_1016_j_cej_2022_138403 crossref_primary_10_1016_j_cej_2022_138888 crossref_primary_10_1016_j_chemosphere_2021_131433 crossref_primary_10_1016_j_cej_2025_167441 crossref_primary_10_1016_j_cej_2019_03_075 crossref_primary_10_1016_j_jhazmat_2020_123043 crossref_primary_10_1016_j_carbon_2019_09_050 crossref_primary_10_1016_j_jcis_2021_05_080 crossref_primary_10_1016_j_apcatb_2021_120714 crossref_primary_10_1016_j_seppur_2024_128075 crossref_primary_10_1016_j_scitotenv_2020_143333 crossref_primary_10_1016_j_cej_2019_122568 crossref_primary_10_1039_D3EN00971H crossref_primary_10_1016_j_chemosphere_2021_132597 crossref_primary_10_1016_j_cej_2025_166563 crossref_primary_10_1016_j_jhazmat_2020_124145 crossref_primary_10_1016_j_seppur_2022_122113 crossref_primary_10_1016_j_jece_2025_115377 crossref_primary_10_1039_D1RE00259G crossref_primary_10_1016_j_scitotenv_2021_144953 crossref_primary_10_1016_j_jes_2022_09_037 crossref_primary_10_1016_j_seppur_2024_130372 crossref_primary_10_1016_j_cej_2020_126090 crossref_primary_10_1016_j_jhazmat_2024_133806 crossref_primary_10_1007_s11356_022_23364_3 crossref_primary_10_1016_j_cej_2023_145298 crossref_primary_10_1016_j_cclet_2021_06_027 crossref_primary_10_1016_j_apcatb_2019_118160 crossref_primary_10_1016_j_jhazmat_2021_127503 crossref_primary_10_1016_j_envres_2022_113882 crossref_primary_10_1016_j_chemosphere_2019_125539 crossref_primary_10_1016_j_seppur_2022_122141 crossref_primary_10_1016_j_seppur_2024_129140 crossref_primary_10_1016_j_apcatb_2020_119222 crossref_primary_10_1016_j_memsci_2021_120204 crossref_primary_10_1016_j_jhazmat_2023_132662 crossref_primary_10_1016_j_cej_2024_158885 crossref_primary_10_1016_j_seppur_2025_131508 crossref_primary_10_1016_j_jhazmat_2023_131333 crossref_primary_10_1016_j_cej_2021_132611 crossref_primary_10_1016_j_jcis_2021_11_178 crossref_primary_10_1016_j_cej_2021_129671 crossref_primary_10_1016_j_jece_2025_118428 crossref_primary_10_1016_j_jhazmat_2021_125796 crossref_primary_10_1016_j_seppur_2022_121048 crossref_primary_10_1016_j_cej_2023_146124 crossref_primary_10_1016_j_jhazmat_2021_125552 crossref_primary_10_1016_j_jcis_2021_11_186 crossref_primary_10_1016_j_jece_2025_118423 crossref_primary_10_1016_j_envres_2021_112242 crossref_primary_10_1016_j_cej_2022_136024 crossref_primary_10_1016_j_seppur_2025_131972 crossref_primary_10_1016_j_cej_2020_124936 crossref_primary_10_1016_j_seppur_2020_117669 crossref_primary_10_3390_nano12162842 crossref_primary_10_1016_j_envpol_2024_123825 crossref_primary_10_1016_j_chemosphere_2023_140534 crossref_primary_10_1016_j_apcatb_2022_121900 crossref_primary_10_1016_j_cej_2021_132844 crossref_primary_10_1016_j_ijbiomac_2024_130519 crossref_primary_10_1016_j_cej_2021_129441 crossref_primary_10_3390_app13053182 crossref_primary_10_1016_j_jhazmat_2021_126998 crossref_primary_10_1016_j_chemosphere_2024_143202 crossref_primary_10_1016_j_cclet_2021_07_029 crossref_primary_10_1016_j_inoche_2023_110791 crossref_primary_10_1016_j_jcis_2025_137262 crossref_primary_10_1016_j_seppur_2023_126122 crossref_primary_10_1016_j_apcatb_2024_124848 crossref_primary_10_1016_j_apcatb_2020_119361 crossref_primary_10_1016_j_seppur_2023_125036 crossref_primary_10_1002_smll_202205583 crossref_primary_10_1016_j_cej_2022_140097 crossref_primary_10_1016_j_apcatb_2024_123753 crossref_primary_10_1016_j_microc_2025_114580 crossref_primary_10_1016_j_cej_2020_127545 crossref_primary_10_1016_j_jcis_2025_137277 crossref_primary_10_1016_j_jclepro_2020_124645 crossref_primary_10_1016_j_cej_2023_142782 crossref_primary_10_1016_j_molliq_2024_125427 crossref_primary_10_1016_j_watres_2023_120697 crossref_primary_10_1016_j_ces_2025_121178 crossref_primary_10_1016_j_apcatb_2020_119136 crossref_primary_10_1002_anie_202507349 crossref_primary_10_1080_26395940_2021_1974949 crossref_primary_10_1016_j_chemosphere_2019_125444 crossref_primary_10_1016_j_colsurfa_2025_136361 crossref_primary_10_1016_j_apsusc_2021_150335 crossref_primary_10_1016_j_jhazmat_2023_131202 crossref_primary_10_1016_j_seppur_2024_127961 crossref_primary_10_3390_molecules29071525 crossref_primary_10_1016_j_scitotenv_2020_142794 crossref_primary_10_1002_adfm_202207723 crossref_primary_10_1016_j_jhazmat_2023_132538 crossref_primary_10_1016_j_apsusc_2021_151429 crossref_primary_10_1016_j_jechem_2020_10_011 crossref_primary_10_1016_j_jhazmat_2021_126735 crossref_primary_10_1007_s10311_024_01798_0 crossref_primary_10_1016_j_jhazmat_2021_125646 crossref_primary_10_1016_j_jece_2023_111067 crossref_primary_10_1016_j_envres_2021_111986 crossref_primary_10_1016_j_cej_2023_148075 crossref_primary_10_1016_j_chemosphere_2022_134392 crossref_primary_10_1016_j_jhazmat_2019_121584 crossref_primary_10_1016_j_cej_2020_124065 crossref_primary_10_1016_j_scitotenv_2021_149490 crossref_primary_10_1016_S1872_2067_21_64050_0 crossref_primary_10_1073_pnas_2305706120 crossref_primary_10_1016_j_jhazmat_2024_135086 crossref_primary_10_1016_j_jece_2024_114647 crossref_primary_10_1016_j_apcatb_2023_123468 crossref_primary_10_1021_acsestengg_5c00022 crossref_primary_10_1016_j_cej_2021_134385 crossref_primary_10_1016_j_seppur_2022_122762 crossref_primary_10_1016_j_cej_2019_123936 crossref_primary_10_1016_j_cej_2019_123935 crossref_primary_10_1016_j_jcis_2021_12_153 crossref_primary_10_1016_j_jhazmat_2025_137971 crossref_primary_10_1016_j_jece_2024_113743 crossref_primary_10_1016_j_cej_2022_138814 crossref_primary_10_1016_j_cej_2022_135784 crossref_primary_10_1016_j_cej_2022_135788 crossref_primary_10_1016_j_cej_2022_139900 crossref_primary_10_1039_D1EW00731A crossref_primary_10_1016_j_seppur_2024_126841 crossref_primary_10_1016_j_envres_2021_112618 crossref_primary_10_1016_j_cej_2020_126499 crossref_primary_10_1016_j_jhazmat_2019_121518 crossref_primary_10_1039_D2RA02491H crossref_primary_10_1002_cnma_202500150 crossref_primary_10_1016_j_chemosphere_2021_131404 crossref_primary_10_1016_j_jhazmat_2019_121998 crossref_primary_10_1016_j_envres_2025_121858 crossref_primary_10_1016_j_jece_2024_112647 crossref_primary_10_1016_j_apcatb_2023_123204 crossref_primary_10_1016_j_cej_2022_135553 crossref_primary_10_1016_j_apcatb_2021_120694 crossref_primary_10_1016_j_jece_2022_107734 crossref_primary_10_1016_j_jhazmat_2024_135291 crossref_primary_10_1016_j_seppur_2021_120288 crossref_primary_10_1016_j_seppur_2022_121694 crossref_primary_10_1016_j_envpol_2023_122059 crossref_primary_10_1016_j_watres_2022_119191 crossref_primary_10_1016_j_jwpe_2023_104214 crossref_primary_10_1016_j_scitotenv_2019_136447 crossref_primary_10_1016_j_jallcom_2020_158026 crossref_primary_10_1016_j_jclepro_2022_131540 crossref_primary_10_1016_j_cej_2020_125189 crossref_primary_10_1016_j_cej_2021_128996 crossref_primary_10_1016_j_colsurfa_2022_128731 crossref_primary_10_1016_j_envres_2024_120488 crossref_primary_10_3390_catal12091058 crossref_primary_10_1016_j_apsusc_2025_162643 crossref_primary_10_1016_j_cej_2023_141638 crossref_primary_10_1016_j_cej_2022_136424 crossref_primary_10_1016_j_watres_2020_116799 crossref_primary_10_1016_j_jwpe_2025_107070 crossref_primary_10_1016_j_apcatb_2023_123428 crossref_primary_10_1016_j_apsusc_2023_156616 crossref_primary_10_1016_j_cej_2023_148026 crossref_primary_10_1016_j_seppur_2024_130070 crossref_primary_10_1016_j_jece_2024_114471 crossref_primary_10_1039_D3EN00729D crossref_primary_10_3390_catal12091004 crossref_primary_10_1016_j_cej_2020_127957 crossref_primary_10_1016_j_apsusc_2021_149984 crossref_primary_10_1016_j_cej_2021_133443 crossref_primary_10_1016_j_seppur_2023_124101 crossref_primary_10_1016_j_scitotenv_2022_159725 crossref_primary_10_1016_j_cej_2023_143476 crossref_primary_10_1016_j_jece_2024_114224 crossref_primary_10_1016_j_envres_2025_121258 crossref_primary_10_1016_j_watres_2023_120614 crossref_primary_10_1016_j_jece_2023_110842 crossref_primary_10_1016_j_chemosphere_2020_128796 crossref_primary_10_1016_j_jece_2024_114228 crossref_primary_10_1016_j_jtice_2024_105643 crossref_primary_10_1016_j_jece_2022_107137 crossref_primary_10_1016_j_seppur_2023_124591 crossref_primary_10_1016_j_jece_2021_105492 crossref_primary_10_1016_j_chemosphere_2022_135439 crossref_primary_10_1016_j_jhazmat_2024_136799 crossref_primary_10_1016_j_seppur_2023_124110 crossref_primary_10_1007_s10570_021_03717_w crossref_primary_10_1016_j_coche_2023_100940 crossref_primary_10_1016_j_scitotenv_2021_150867 crossref_primary_10_1016_j_seppur_2021_120437 crossref_primary_10_1016_j_cej_2021_132106 crossref_primary_10_1016_j_chemosphere_2022_134100 crossref_primary_10_1016_j_jhazmat_2023_131847 crossref_primary_10_1002_anie_202310934 crossref_primary_10_1016_j_seppur_2025_134135 crossref_primary_10_1016_j_cej_2020_127738 crossref_primary_10_1016_j_matt_2020_02_013 crossref_primary_10_1002_adma_202505128 crossref_primary_10_1016_j_cej_2021_132374 crossref_primary_10_1016_j_colsurfa_2024_135133 crossref_primary_10_1016_j_seppur_2022_122909 crossref_primary_10_1016_j_seppur_2024_128881 crossref_primary_10_1016_j_apcatb_2022_121390 crossref_primary_10_1016_j_seppur_2022_120964 crossref_primary_10_1016_j_apcatb_2022_122245 crossref_primary_10_1016_j_jcis_2024_11_122 crossref_primary_10_1016_j_jece_2024_113155 crossref_primary_10_1016_j_jtice_2020_07_001 crossref_primary_10_1016_j_jece_2025_118900 crossref_primary_10_1016_j_jece_2024_112062 crossref_primary_10_1016_j_cej_2023_146724 crossref_primary_10_1016_j_cej_2020_124458 crossref_primary_10_1016_j_cej_2020_126877 crossref_primary_10_1016_j_jhazmat_2024_135002 crossref_primary_10_1016_j_cej_2023_147815 crossref_primary_10_1016_j_cej_2024_149052 crossref_primary_10_1007_s11356_024_32962_2 crossref_primary_10_1016_j_cej_2022_134609 crossref_primary_10_1016_j_micromeso_2021_111259 crossref_primary_10_1016_j_colsurfa_2023_131711 crossref_primary_10_1016_j_cej_2021_131295 crossref_primary_10_1016_j_ijbiomac_2024_134352 crossref_primary_10_1016_j_cej_2025_161675 crossref_primary_10_1016_j_jhazmat_2022_129420 crossref_primary_10_1016_j_jes_2025_02_031 crossref_primary_10_1016_j_cej_2024_149265 crossref_primary_10_1016_j_matchemphys_2022_126257 crossref_primary_10_1016_j_jenvman_2023_119403 crossref_primary_10_1016_j_envpol_2024_125439 crossref_primary_10_1016_j_jwpe_2024_105219 crossref_primary_10_1016_j_cej_2020_127507 crossref_primary_10_1016_j_cej_2021_133477 crossref_primary_10_1016_j_jcis_2023_10_096 crossref_primary_10_1016_j_jece_2022_107572 crossref_primary_10_1007_s42114_025_01394_y crossref_primary_10_1016_j_cej_2022_136806 crossref_primary_10_1016_j_scitotenv_2023_163054 crossref_primary_10_3390_nano15110865 crossref_primary_10_1016_j_seppur_2021_119492 crossref_primary_10_1016_j_seppur_2024_129704 crossref_primary_10_1016_j_seppur_2022_121851 crossref_primary_10_1016_j_cej_2020_126445 crossref_primary_10_1016_j_seppur_2021_119697 crossref_primary_10_3390_ijms251910528 crossref_primary_10_1016_j_seppur_2021_118367 crossref_primary_10_1016_j_seppur_2025_132396 crossref_primary_10_1016_j_seppur_2021_119457 crossref_primary_10_1016_j_jece_2024_113126 crossref_primary_10_1016_j_apcatb_2022_121594 crossref_primary_10_1016_j_watres_2020_115876 crossref_primary_10_1016_j_cej_2022_134877 crossref_primary_10_1016_j_apcatb_2019_117783 crossref_primary_10_1016_j_seppur_2022_122706 crossref_primary_10_1016_j_cej_2024_149003 crossref_primary_10_1016_j_jclepro_2022_135500 crossref_primary_10_1016_j_seppur_2023_125259 crossref_primary_10_1016_j_jallcom_2023_172370 crossref_primary_10_1016_j_seppur_2022_120525 crossref_primary_10_1016_j_cej_2020_124015 crossref_primary_10_1016_j_jece_2024_113351 crossref_primary_10_1016_j_watres_2022_118259 crossref_primary_10_1007_s12649_020_01009_1 crossref_primary_10_1007_s11270_023_06259_y crossref_primary_10_1016_j_apcatb_2022_121584 crossref_primary_10_1016_j_cej_2022_134882 crossref_primary_10_1016_j_jhazmat_2024_135449 crossref_primary_10_1016_j_cej_2021_131080 crossref_primary_10_1016_j_jwpe_2024_106519 crossref_primary_10_1016_j_cej_2025_163841 crossref_primary_10_1016_j_cej_2024_154836 crossref_primary_10_1016_j_jece_2022_107559 crossref_primary_10_1016_j_cej_2023_146234 crossref_primary_10_1016_j_jwpe_2024_105120 crossref_primary_10_1016_j_cej_2022_138574 crossref_primary_10_1016_j_cej_2022_138576 crossref_primary_10_1002_ange_202422892 crossref_primary_10_1016_j_cej_2024_157892 crossref_primary_10_1016_j_seppur_2024_129237 crossref_primary_10_1016_j_seppur_2025_131847 crossref_primary_10_1016_j_jhazmat_2024_134420 crossref_primary_10_1016_j_jhazmat_2024_136600 crossref_primary_10_1016_j_jwpe_2025_107817 crossref_primary_10_1016_j_cej_2025_162289 crossref_primary_10_1016_j_cej_2023_145141 crossref_primary_10_1016_j_scitotenv_2019_133836 crossref_primary_10_1016_j_scitotenv_2022_158917 crossref_primary_10_1016_j_scitotenv_2022_158919 crossref_primary_10_1016_j_watres_2024_121486 crossref_primary_10_1016_j_cej_2020_125921 crossref_primary_10_1016_j_jes_2023_11_021 crossref_primary_10_1002_ange_202310934 crossref_primary_10_1016_j_jhazmat_2020_122448 crossref_primary_10_1016_j_seppur_2024_129472 crossref_primary_10_1016_j_jcis_2022_08_022 crossref_primary_10_1016_j_chemosphere_2023_140436 crossref_primary_10_1016_j_cej_2021_133834 crossref_primary_10_1002_adma_202311419 crossref_primary_10_1016_j_cej_2023_143194 crossref_primary_10_1016_j_micromeso_2019_109810 crossref_primary_10_1016_j_jwpe_2025_107843 crossref_primary_10_1016_j_nantod_2025_102663 crossref_primary_10_1016_j_jece_2025_116796 crossref_primary_10_1016_j_jece_2024_115188 crossref_primary_10_1016_j_apcatb_2020_118850 crossref_primary_10_1073_pnas_2220608120 crossref_primary_10_1016_j_jece_2023_110656 crossref_primary_10_1002_smll_202405012 crossref_primary_10_1016_j_cej_2021_129590 crossref_primary_10_1016_j_seppur_2024_129458 crossref_primary_10_1016_j_apcata_2023_119543 crossref_primary_10_1016_j_jallcom_2023_172856 crossref_primary_10_1016_j_cej_2019_124009 crossref_primary_10_1016_j_envpol_2022_120669 crossref_primary_10_1016_j_memsci_2021_119782 crossref_primary_10_1016_j_cej_2022_140671 crossref_primary_10_1016_j_procbio_2024_09_023 crossref_primary_10_1016_j_cej_2021_129111 crossref_primary_10_1016_j_scitotenv_2020_140828 crossref_primary_10_1016_j_cej_2021_131447 crossref_primary_10_1016_j_cej_2022_136180 crossref_primary_10_1016_j_efmat_2023_08_001 crossref_primary_10_1016_j_jhazmat_2020_122228 crossref_primary_10_1016_j_cej_2024_156532 crossref_primary_10_1016_j_psep_2025_107543 crossref_primary_10_1016_j_cej_2021_132767 crossref_primary_10_1016_j_cej_2023_146683 crossref_primary_10_1016_j_seppur_2023_123204 crossref_primary_10_1016_j_wasman_2019_07_016 crossref_primary_10_1038_s41545_024_00383_w crossref_primary_10_1016_j_cej_2025_166843 crossref_primary_10_1016_j_seppur_2020_118025 crossref_primary_10_1016_j_cej_2023_147525 crossref_primary_10_1016_j_ces_2024_120058 crossref_primary_10_1016_j_chemosphere_2023_140253 crossref_primary_10_1016_j_checat_2025_101299 crossref_primary_10_1016_j_seppur_2024_130663 crossref_primary_10_1016_j_cej_2022_140216 crossref_primary_10_1016_j_cej_2024_156769 crossref_primary_10_1016_j_seppur_2024_129432 crossref_primary_10_1016_j_seppur_2025_131807 crossref_primary_10_1016_j_jwpe_2025_108708 crossref_primary_10_1016_j_seppur_2023_124303 crossref_primary_10_1016_j_cej_2019_123377 crossref_primary_10_1016_j_cej_2023_142075 crossref_primary_10_1016_j_cej_2023_144494 crossref_primary_10_1016_j_seppur_2023_124789 crossref_primary_10_1016_j_watres_2022_118792 crossref_primary_10_1007_s12274_022_4640_8 crossref_primary_10_1016_j_jece_2025_118921 crossref_primary_10_1016_j_jece_2025_118920 crossref_primary_10_1016_j_apcatb_2024_124471 crossref_primary_10_1016_j_cej_2023_147758 crossref_primary_10_1016_j_seppur_2021_119882 crossref_primary_10_1016_j_apcatb_2019_118232 crossref_primary_10_1016_j_cej_2022_139233 crossref_primary_10_1016_j_cherd_2024_09_030 crossref_primary_10_1016_j_cej_2022_137052 crossref_primary_10_1016_j_scitotenv_2021_145522 crossref_primary_10_1016_j_seppur_2024_130412 crossref_primary_10_1016_j_jece_2022_109116 crossref_primary_10_1016_j_biortech_2025_133033 crossref_primary_10_1016_j_seppur_2024_127486 crossref_primary_10_1016_j_jwpe_2025_107608 crossref_primary_10_1016_j_chemosphere_2023_138164 crossref_primary_10_1016_j_jhazmat_2020_123103 crossref_primary_10_1016_j_cej_2025_164407 crossref_primary_10_1016_j_jece_2022_108251 crossref_primary_10_1016_j_cej_2019_04_187 crossref_primary_10_1016_j_chemosphere_2022_134509 crossref_primary_10_1016_j_jmst_2022_05_023 crossref_primary_10_1016_j_seppur_2022_120922 crossref_primary_10_1016_j_seppur_2022_120921 crossref_primary_10_1016_j_chemosphere_2020_127400 crossref_primary_10_1038_s41545_024_00415_5 crossref_primary_10_1016_j_cej_2020_127921 crossref_primary_10_1016_j_jece_2024_114286 crossref_primary_10_1016_j_chemosphere_2022_136937 crossref_primary_10_1002_anie_202422892 crossref_primary_10_1016_j_jece_2023_110863 crossref_primary_10_1016_j_jece_2025_115438 crossref_primary_10_1016_j_cej_2019_122274 crossref_primary_10_1016_j_scitotenv_2019_134715 crossref_primary_10_1016_j_seppur_2024_126378 crossref_primary_10_1016_j_jcis_2025_01_099 crossref_primary_10_1016_j_ecss_2019_106381 crossref_primary_10_1016_j_watres_2023_119925 crossref_primary_10_1016_j_jece_2024_115130 crossref_primary_10_1016_j_jhazmat_2021_126363 crossref_primary_10_1016_j_envint_2019_105128 crossref_primary_10_1016_j_jhazmat_2021_126113 crossref_primary_10_1016_j_chemosphere_2021_132427 crossref_primary_10_1016_j_envpol_2020_114053 crossref_primary_10_1016_j_cej_2022_137407 crossref_primary_10_1016_j_watres_2024_121891 crossref_primary_10_1016_j_colsurfa_2024_134867 crossref_primary_10_1016_j_seppur_2022_121358 crossref_primary_10_1016_j_dwt_2024_100806 crossref_primary_10_1016_j_indcrop_2025_121740 crossref_primary_10_1016_j_seppur_2022_121346 crossref_primary_10_1016_j_jhazmat_2022_129912 crossref_primary_10_1016_j_jclepro_2023_136054 crossref_primary_10_1016_j_jhazmat_2021_126101 crossref_primary_10_1016_j_cej_2021_129504 crossref_primary_10_1016_j_jhazmat_2025_137146 crossref_primary_10_1016_j_cej_2022_138504 crossref_primary_10_1016_j_reactfunctpolym_2022_105482 crossref_primary_10_3390_ijerph18073344 crossref_primary_10_1016_j_apcatb_2024_124430 crossref_primary_10_1016_j_apcatb_2024_124432 crossref_primary_10_1016_j_seppur_2022_121379 crossref_primary_10_1016_j_jenvman_2024_121799 crossref_primary_10_1016_j_jhazmat_2020_122055 crossref_primary_10_1002_smll_202204793 crossref_primary_10_1016_j_chemosphere_2022_136291 crossref_primary_10_3390_catal13101321 crossref_primary_10_1007_s11356_021_15391_3 crossref_primary_10_1016_j_jece_2024_113844 crossref_primary_10_1016_j_jhazmat_2024_133996 crossref_primary_10_1016_j_jece_2022_107806 crossref_primary_10_1016_j_cej_2019_122223 crossref_primary_10_1016_j_jes_2021_08_002 crossref_primary_10_1016_j_cej_2020_128143 crossref_primary_10_1016_j_cej_2025_164044 crossref_primary_10_1016_j_seppur_2023_124935 crossref_primary_10_1016_j_seppur_2023_123846 crossref_primary_10_1016_j_seppur_2023_124936 crossref_primary_10_1016_j_jhazmat_2020_123157 crossref_primary_10_1016_j_watres_2024_122750 crossref_primary_10_1016_j_jece_2023_110265 crossref_primary_10_1016_j_apcatb_2020_119551 crossref_primary_10_1016_j_cej_2023_142922 crossref_primary_10_1016_j_cej_2022_136589 crossref_primary_10_1016_j_apcatb_2021_120832 crossref_primary_10_1016_j_chemosphere_2022_137394 crossref_primary_10_1016_j_jhazmat_2021_127641 crossref_primary_10_1016_j_seppur_2024_129284 crossref_primary_10_1016_j_seppur_2025_132730 crossref_primary_10_1016_j_chemosphere_2022_133838 crossref_primary_10_1016_j_seppur_2021_118705 crossref_primary_10_1039_D4RA06537A crossref_primary_10_1016_j_cej_2022_137686 crossref_primary_10_1016_j_envres_2025_122094 crossref_primary_10_1016_j_jtice_2021_10_009 crossref_primary_10_1007_s42773_023_00254_6 crossref_primary_10_1016_j_jece_2022_109190 crossref_primary_10_1016_j_cherd_2024_06_042 crossref_primary_10_1016_j_jclepro_2022_135064 crossref_primary_10_1016_j_jece_2023_110481 crossref_primary_10_1016_j_cej_2021_128459 crossref_primary_10_1016_j_watres_2022_118710 crossref_primary_10_1016_j_jece_2024_112923 crossref_primary_10_1038_s41598_022_13489_3 crossref_primary_10_1016_j_seppur_2021_118717 crossref_primary_10_1016_j_cej_2023_147591 crossref_primary_10_1016_j_cej_2020_128150 crossref_primary_10_1016_j_cej_2020_127066 crossref_primary_10_1016_j_jhazmat_2024_133924 crossref_primary_10_1016_j_jhazmat_2021_126535 crossref_primary_10_1016_j_seppur_2023_125817 crossref_primary_10_1016_j_seppur_2022_122265 crossref_primary_10_1016_j_fmre_2022_12_007 crossref_primary_10_1016_j_cej_2020_125915 crossref_primary_10_1016_j_cej_2024_155495 crossref_primary_10_1016_j_carbon_2022_05_027 crossref_primary_10_1016_j_seppur_2023_125811 crossref_primary_10_1016_j_seppur_2022_122016 crossref_primary_10_1016_j_jhazmat_2021_125679 crossref_primary_10_1016_j_cej_2020_125903 crossref_primary_10_1016_j_chemosphere_2023_140663 crossref_primary_10_1016_j_jhazmat_2021_125438 crossref_primary_10_1016_j_seppur_2024_129252 crossref_primary_10_1016_j_jwpe_2025_108325 crossref_primary_10_1016_j_cej_2022_136385 crossref_primary_10_1016_j_cej_2019_122670 crossref_primary_10_1016_j_apcatb_2023_123029 crossref_primary_10_1016_j_jclepro_2023_136468 crossref_primary_10_3390_w14101583 crossref_primary_10_1016_j_jhazmat_2023_132316 crossref_primary_10_1016_j_jhazmat_2024_133946 crossref_primary_10_1016_j_seppur_2023_125823 |
| Cites_doi | 10.1021/acs.est.5b02022 10.1021/es4005202 10.1039/c1ee01463c 10.1016/j.watres.2014.10.006 10.1016/j.jhazmat.2016.07.038 10.1016/j.apcatb.2016.04.003 10.1039/C6CS00391E 10.1016/j.cej.2017.07.156 10.1016/j.jhazmat.2017.01.032 10.1021/es501218f 10.1021/acsami.7b09707 10.1039/cs9811000205 10.1021/es400781r 10.1016/j.chemosphere.2015.05.027 10.1016/S0045-6535(01)00086-8 10.1021/acs.est.8b00959 10.1016/j.talanta.2011.04.078 10.1021/acscatal.5b00774 10.1016/j.electacta.2013.05.088 10.1039/c0ce00851f 10.1039/C7TA11052A 10.1016/j.chemosphere.2010.04.067 10.1006/bbrc.2000.3689 10.1021/es506362e 10.1007/s11783-012-0453-4 10.1021/acs.est.7b02519 10.1002/anie.201603198 10.1016/j.jhazmat.2010.03.039 10.1021/acs.est.7b03014 10.1016/S0891-5849(99)00049-0 10.1007/s11356-013-1678-x 10.1016/j.envint.2008.07.009 10.1016/j.apcatb.2017.02.032 10.1016/j.watres.2006.08.027 10.1002/cssc.201402753 10.1021/j100386a015 10.1016/S0141-0229(96)00070-1 10.1007/s007260170026 10.1002/jctb.1873 10.1021/acs.est.6b02079 10.1016/j.jhazmat.2011.04.016 10.1016/j.cej.2015.01.010 10.1016/j.carbon.2016.02.048 10.1021/acs.est.6b00701 10.1038/nrm2256 10.1039/C5RA16094D 10.1016/j.apcatb.2012.03.021 10.1039/C8TA02282H 10.1021/cs5017613 10.1021/es050634b 10.1016/j.carbon.2017.01.060 10.1021/jf000766i 10.1039/C5CC03008K 10.1021/am503063m 10.1038/srep02065 10.1021/es1010225 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.watres.2018.10.087 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2448 |
| EndPage | 424 |
| ExternalDocumentID | 30399556 10_1016_j_watres_2018_10_087 S0043135418309047 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ ~HD NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c395t-3ece57f39ccc475c4f92828fd917c374631eb249d1efdf34449f6e16bec82fb83 |
| ISICitedReferencesCount | 903 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452931600041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1354 1879-2448 |
| IngestDate | Wed Oct 01 14:36:43 EDT 2025 Thu Oct 02 16:02:51 EDT 2025 Wed Feb 19 02:33:24 EST 2025 Sat Nov 29 07:28:39 EST 2025 Tue Nov 18 21:21:09 EST 2025 Fri Feb 23 02:48:19 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Anions Singlet oxygen Non-radical Inhibiting effect High salinity condition |
| Language | English |
| License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c395t-3ece57f39ccc475c4f92828fd917c374631eb249d1efdf34449f6e16bec82fb83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0753-6612 0000-0002-3708-3677 |
| PMID | 30399556 |
| PQID | 2130800191 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2176350296 proquest_miscellaneous_2130800191 pubmed_primary_30399556 crossref_citationtrail_10_1016_j_watres_2018_10_087 crossref_primary_10_1016_j_watres_2018_10_087 elsevier_sciencedirect_doi_10_1016_j_watres_2018_10_087 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 2019-01-00 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Water research (Oxford) |
| PublicationTitleAlternate | Water Res |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhou, Xiao, Xiao, Guo, Fang, Lou, Wang, Liu (bib59) 2015; 134 Lee, Gerrity, Lee, Bogeat, Salhi, Gamage, Trenholm, Wert, Snyder, von Gunten (bib23) 2013; 47 Gong, Wang, Li, Zhou, Yao, Lu, Huang, Chen (bib12) 2015; 267 Chen, Zhang, Huang, Li, Wang, Wang (bib3) 2016; 320 Liang, Zhang, Duan, Sun, Liu, Tade, Wang (bib29) 2017; 4 Hu, Zhai, Liu, Zhao, Jiang, Qu (bib17) 2013; 3 Wang, Liu, Li, Luo, Hu, Sun, Shen, Han, Wang (bib46) 2017; 207 Oh, Dong, Lim (bib38) 2016; 194 Kargi, Dincer (bib21) 1996; 19 Yun, Yoo, Bae, Kim, Lee (bib53) 2017; 51 Gutiérrez, Carriazo, Ania, Parra, Ferrer, del Monte (bib15) 2011; 4 Duan, Sun, Kang, Wang, Indrawirawan, Wang (bib10) 2015; 5 Lutze, Kerlin, Schmidt (bib36) 2015; 72 He, Weniger, Neumann, Beller (bib16) 2016; 55 Wang, Ma, Ren, Du, Xu, Han (bib49) 2018; 6 Alia, Mohanty, Matysik (bib2) 2001; 21 Grebel, Pignatello, Mitch (bib14) 2010; 44 Lou, Guo, Xiao, Wang, Lu, Liu (bib32) 2013; 20 Lee, Kim, Weon, Choi, Hwang, Seo, Lee, Kim (bib24) 2016; 50 Duan, Sun, Wang, Kang, Wang (bib9) 2015; 5 Lefebvre, Moletta (bib25) 2006; 40 Wang, Wang, Luo, Liu, Li, Sun, Shen, Han, Wang (bib47) 2017; 330 Zhang, Chen, Wang, Le Roux, Yang, Croué (bib57) 2014; 48 Lopez-Salas, del Monte, Tamayo, Fierro, De Lacey, Ferrer, Gutierrez (bib31) 2014; 7 Zhang, Zheng, Hang, Yan, Zhao (bib55) 2011; 85 Zhang, Chen, Leiknes (bib58) 2016; 50 Li, Wan, Ma, Wang, Guan (bib27) 2015; 5 Ai, Gao, Zhang, He, Yin (bib1) 2013; 47 Huang, Jiang, Huang, Yu (bib19) 2018; 6 Wang, Chen, Quan, Yu, Zhang (bib48) 2017; 115 Luo, Liu, Li, Wang, Hu, Sun, Shen, Han, Wang (bib34) 2017; 329 Luo, Liu, Li, Wang, Sun, Shen, Han, Wang (bib33) 2017; 9 Das, Das (bib8) 2000; 277 Wang, Yuan, Guo, Xu, Liu (bib43) 2011; 190 Luo, Liu, Li, Wang, Sun, Shen, Han, Wang (bib35) 2018; 6 D'Autréaux, Toledano (bib7) 2007; 8 Timmins, Liu, Bechara, Kotake, Swartz (bib40) 1999; 27 Yun, Lee, Kim, Park, Lee (bib54) 2018; 52 Wang, Kang, Sun, Ang, Tadé, Wang (bib45) 2016; 102 Yang, Wang, Yang, Shan, Zhang, Shao, Niu (bib51) 2010; 179 Li, Zhu, Xu (bib26) 2015; 51 Zhang, Li, Croué (bib56) 2012; 121–122 Li, Huang, Xi, Miao, Ding, Cai, Liu, Yang, Yang, Gao, Wang, Huang, Zhang, Liu (bib28) 2018 Yan, Du, Xu, Liao (bib50) 2012; 6 Tian, Chen, Zhou, Pan, Tian, Huang, Fu (bib39) 2011; 13 Clifton (bib4) 1990; 94 Wang, Jiao (bib41) 2000; 48 Yang, Jiang, Lu, Ma, Liu (bib52) 2015; 49 Hu, Su, Chen, Yu, Li, Zhou, Alvarez, Long (bib18) 2017; 51 Klavarioti, Mantzavinos, Kassinos (bib22) 2009; 35 Matilainen, Sillanpää (bib37) 2010; 80 Jin, Wang, Sun, Ai, Wang (bib20) 2015; 49 Wang, Xiong, Qie, Huang (bib44) 2013; 106 George, D.D.D., Gonzalez (bib11) 2006; 40 Wang, Yediler, Lienert, Wang, Kettrup (bib42) 2002; 46 Cychosz, Guillet-Nicolas, García-Martínez, Thommes (bib6) 2016; 46 Liu, Li, Qi, Wang, Luo, Shen, Sun, Han, Wang (bib30) 2014; 6 Comninellis, Kapalka, Malato, Parsons, Poulios, Mantzavinos (bib5) 2008; 83 Gorman, Rodgers (bib13) 1981; 10 Grebel (10.1016/j.watres.2018.10.087_bib14) 2010; 44 Gorman (10.1016/j.watres.2018.10.087_bib13) 1981; 10 Ai (10.1016/j.watres.2018.10.087_bib1) 2013; 47 He (10.1016/j.watres.2018.10.087_bib16) 2016; 55 Liang (10.1016/j.watres.2018.10.087_bib29) 2017; 4 Li (10.1016/j.watres.2018.10.087_bib27) 2015; 5 Liu (10.1016/j.watres.2018.10.087_bib30) 2014; 6 Wang (10.1016/j.watres.2018.10.087_bib42) 2002; 46 Yun (10.1016/j.watres.2018.10.087_bib54) 2018; 52 Luo (10.1016/j.watres.2018.10.087_bib33) 2017; 9 Matilainen (10.1016/j.watres.2018.10.087_bib37) 2010; 80 Cychosz (10.1016/j.watres.2018.10.087_bib6) 2016; 46 Lee (10.1016/j.watres.2018.10.087_bib23) 2013; 47 Alia (10.1016/j.watres.2018.10.087_bib2) 2001; 21 Luo (10.1016/j.watres.2018.10.087_bib35) 2018; 6 Luo (10.1016/j.watres.2018.10.087_bib34) 2017; 329 Duan (10.1016/j.watres.2018.10.087_bib10) 2015; 5 Wang (10.1016/j.watres.2018.10.087_bib49) 2018; 6 Oh (10.1016/j.watres.2018.10.087_bib38) 2016; 194 Chen (10.1016/j.watres.2018.10.087_bib3) 2016; 320 Gutiérrez (10.1016/j.watres.2018.10.087_bib15) 2011; 4 Jin (10.1016/j.watres.2018.10.087_bib20) 2015; 49 Lutze (10.1016/j.watres.2018.10.087_bib36) 2015; 72 Hu (10.1016/j.watres.2018.10.087_bib18) 2017; 51 Kargi (10.1016/j.watres.2018.10.087_bib21) 1996; 19 Tian (10.1016/j.watres.2018.10.087_bib39) 2011; 13 Zhang (10.1016/j.watres.2018.10.087_bib55) 2011; 85 Li (10.1016/j.watres.2018.10.087_bib26) 2015; 51 Das (10.1016/j.watres.2018.10.087_bib8) 2000; 277 Hu (10.1016/j.watres.2018.10.087_bib17) 2013; 3 Lee (10.1016/j.watres.2018.10.087_bib24) 2016; 50 Wang (10.1016/j.watres.2018.10.087_bib48) 2017; 115 Lefebvre (10.1016/j.watres.2018.10.087_bib25) 2006; 40 Zhang (10.1016/j.watres.2018.10.087_bib57) 2014; 48 Wang (10.1016/j.watres.2018.10.087_bib46) 2017; 207 Gong (10.1016/j.watres.2018.10.087_bib12) 2015; 267 Yan (10.1016/j.watres.2018.10.087_bib50) 2012; 6 Wang (10.1016/j.watres.2018.10.087_bib47) 2017; 330 Yang (10.1016/j.watres.2018.10.087_bib51) 2010; 179 George (10.1016/j.watres.2018.10.087_bib11) 2006; 40 Wang (10.1016/j.watres.2018.10.087_bib44) 2013; 106 Wang (10.1016/j.watres.2018.10.087_bib41) 2000; 48 Huang (10.1016/j.watres.2018.10.087_bib19) 2018; 6 D'Autréaux (10.1016/j.watres.2018.10.087_bib7) 2007; 8 Clifton (10.1016/j.watres.2018.10.087_bib4) 1990; 94 Lou (10.1016/j.watres.2018.10.087_bib32) 2013; 20 Zhou (10.1016/j.watres.2018.10.087_bib59) 2015; 134 Lopez-Salas (10.1016/j.watres.2018.10.087_bib31) 2014; 7 Wang (10.1016/j.watres.2018.10.087_bib43) 2011; 190 Yun (10.1016/j.watres.2018.10.087_bib53) 2017; 51 Zhang (10.1016/j.watres.2018.10.087_bib58) 2016; 50 Klavarioti (10.1016/j.watres.2018.10.087_bib22) 2009; 35 Wang (10.1016/j.watres.2018.10.087_bib45) 2016; 102 Comninellis (10.1016/j.watres.2018.10.087_bib5) 2008; 83 Timmins (10.1016/j.watres.2018.10.087_bib40) 1999; 27 Yang (10.1016/j.watres.2018.10.087_bib52) 2015; 49 Zhang (10.1016/j.watres.2018.10.087_bib56) 2012; 121–122 Li (10.1016/j.watres.2018.10.087_bib28) 2018 Duan (10.1016/j.watres.2018.10.087_bib9) 2015; 5 |
| References_xml | – volume: 19 start-page: 529 year: 1996 end-page: 537 ident: bib21 article-title: Effect of salt concentration on biological treatment of saline wastewater by fed-batch operation publication-title: Enzym. Microb. Technol. – volume: 6 start-page: 884 year: 2018 end-page: 895 ident: bib49 article-title: Prussian blue analogues derived porous nitrogen-doped carbon microspheres as high-performance metal-free peroxymonosulfate activators for non-radical-dominated degradation of organic pollutants publication-title: J. Mater. Chem. – volume: 47 start-page: 5872 year: 2013 end-page: 5881 ident: bib23 article-title: Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information publication-title: Environ. Sci. Technol. – volume: 329 start-page: 92 year: 2017 end-page: 101 ident: bib34 article-title: Nanostructured CoP: an efficient catalyst for degradation of organic pollutants by activating peroxymonosulfate publication-title: J. Hazard. Mater. – volume: 49 start-page: 7330 year: 2015 end-page: 7339 ident: bib52 article-title: Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process publication-title: Environ. Sci. Technol. – volume: 8 start-page: 813 year: 2007 ident: bib7 article-title: ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 83 start-page: 769 year: 2008 end-page: 776 ident: bib5 article-title: Advanced oxidation processes for water treatment: advances and trends for R&D publication-title: J. Chem. Technol. Biotechnol. – volume: 48 start-page: 5868 year: 2014 end-page: 5875 ident: bib57 article-title: Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation publication-title: Environ. Sci. Technol. – volume: 277 start-page: 443 year: 2000 end-page: 447 ident: bib8 article-title: Thioredoxin, a singlet oxygen quencher and hydroxyl radical scavenger: redox independent functions publication-title: Biochem. Biophys. Res. Commun. – volume: 51 start-page: 10827 year: 2015 end-page: 10830 ident: bib26 article-title: Pd nanoparticles supported on hierarchically porous carbons derived from assembled nanoparticles of a zeolitic imidazolate framework (ZIF-8) for methanol electrooxidation publication-title: Chem. Commun. – volume: 49 start-page: 9168 year: 2015 end-page: 9175 ident: bib20 article-title: Adsorption of 4-n-nonylphenol and bisphenol-a on magnetic reduced graphene oxides: a combined experimental and theoretical studies publication-title: Environ. Sci. Technol. – volume: 3 start-page: 2065 year: 2013 ident: bib17 article-title: Spontaneous reduction and assembly of graphene oxide into three-dimensional graphene network on arbitrary conductive substrates publication-title: Sci. Rep. – volume: 134 start-page: 446 year: 2015 end-page: 451 ident: bib59 article-title: Transformations of chloro and nitro groups during the peroxymonosulfate-based oxidation of 4-chloro-2-nitrophenol publication-title: Chemosphere – volume: 115 start-page: 730 year: 2017 end-page: 739 ident: bib48 article-title: Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants publication-title: Carbon – volume: 40 start-page: 3671 year: 2006 end-page: 3682 ident: bib25 article-title: Treatment of organic pollution in industrial saline wastewater: a literature review publication-title: Water Res. – volume: 55 start-page: 12582 year: 2016 end-page: 12594 ident: bib16 article-title: Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 3535 year: 2011 end-page: 3544 ident: bib15 article-title: Deep eutectic solvents as both precursors and structure directing agents in the synthesis of nitrogen doped hierarchical carbons highly suitable for CO publication-title: Energy Environ. Sci. – volume: 13 start-page: 2994 year: 2011 end-page: 3000 ident: bib39 article-title: 3D hierarchical flower-like TiO publication-title: CrystEngComm – volume: 194 start-page: 169 year: 2016 end-page: 201 ident: bib38 article-title: Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects publication-title: Appl. Catal. B Environ. – volume: 4 start-page: 315 year: 2017 end-page: 324 ident: bib29 article-title: An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate publication-title: Environ. Sci.: Nano – volume: 72 start-page: 349 year: 2015 end-page: 360 ident: bib36 article-title: Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate publication-title: Water Res. – volume: 47 start-page: 5344 year: 2013 end-page: 5352 ident: bib1 article-title: Core-shell structure dependent reactivity of Fe@Fe(2)O(3) nanowires on aerobic degradation of 4-chlorophenol publication-title: Environ. Sci. Technol. – volume: 7 start-page: 3347 year: 2014 end-page: 3355 ident: bib31 article-title: Sulfur-doped carbons prepared from eutectic mixtures containing hydroxymethylthiophene as metal-free oxygen reduction catalysts publication-title: ChemSusChem – volume: 190 start-page: 1083 year: 2011 end-page: 1087 ident: bib43 article-title: Effects of chloride ions on bleaching of azo dyes by Co publication-title: J. Hazard. Mater. – volume: 6 start-page: 806 year: 2012 end-page: 814 ident: bib50 article-title: Decolorization of azo dyes by a salt-tolerant publication-title: Front. Environ. Sci. Eng. – volume: 40 start-page: 1000 year: 2006 end-page: 1007 ident: bib11 article-title: Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions publication-title: Environ. Sci. Technol. – volume: 21 start-page: 195 year: 2001 end-page: 200 ident: bib2 article-title: Effect of proline on the production of singlet oxygen publication-title: Amino Acids – volume: 46 start-page: 389 year: 2016 end-page: 414 ident: bib6 article-title: Recent advances in the textural characterization of hierarchically structured nanoporous materials publication-title: Chem. Soc. Rev. – volume: 50 start-page: 5864 year: 2016 end-page: 5873 ident: bib58 article-title: Oxidation of refractory benzothiazoles with PMS/CuFe publication-title: Environ. Sci. Technol. – year: 2018 ident: bib28 article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis publication-title: J. Am. Chem. Soc. – volume: 207 start-page: 316 year: 2017 end-page: 325 ident: bib46 article-title: In-situ incorporation of iron-copper bimetallic particles in electrospun carbon nanofibers as an efficient Fenton catalyst publication-title: Appl. Catal. B Environ. – volume: 27 start-page: 329 year: 1999 end-page: 333 ident: bib40 article-title: Trapping of free radicals with direct in vivo EPR detection: a comparison of 5,5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO and SO publication-title: Free Radical Biol. Med. – volume: 35 start-page: 402 year: 2009 end-page: 417 ident: bib22 article-title: Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes publication-title: Environ. Int. – volume: 44 start-page: 6822 year: 2010 end-page: 6828 ident: bib14 article-title: Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters publication-title: Environ. Sci. Technol. – volume: 5 start-page: 553 year: 2015 end-page: 559 ident: bib9 article-title: N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation publication-title: ACS Catal. – volume: 5 start-page: 4629 year: 2015 end-page: 4636 ident: bib10 article-title: Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons publication-title: ACS Catal. – volume: 9 start-page: 32737 year: 2017 end-page: 32744 ident: bib33 article-title: Deep-eutectic solvents derived nitrogen-doped graphitic carbon as a superior electrocatalyst for oxygen reduction publication-title: ACS Appl. Mater. Interfaces – volume: 106 start-page: 320 year: 2013 end-page: 326 ident: bib44 article-title: High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole publication-title: Electrochim. Acta – volume: 52 start-page: 7032 year: 2018 end-page: 7042 ident: bib54 article-title: Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer publication-title: Environ. Sci. Technol. – volume: 50 start-page: 10134 year: 2016 end-page: 10142 ident: bib24 article-title: Activation of persulfates by graphitized nanodiamonds for removal of organic compounds publication-title: Environ. Sci. Technol. – volume: 179 start-page: 552 year: 2010 end-page: 558 ident: bib51 article-title: Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide publication-title: J. Hazard. Mater. – volume: 20 start-page: 6317 year: 2013 end-page: 6323 ident: bib32 article-title: Rapid dye degradation with reactive oxidants generated by chloride-induced peroxymonosulfate activation publication-title: Environ. Sci. Pollut. Res. – volume: 80 start-page: 351 year: 2010 end-page: 365 ident: bib37 article-title: Removal of natural organic matter from drinking water by advanced oxidation processes publication-title: Chemosphere – volume: 102 start-page: 279 year: 2016 end-page: 287 ident: bib45 article-title: One-pot synthesis of N-doped graphene for metal-free advanced oxidation processes publication-title: Carbon – volume: 121–122 start-page: 88 year: 2012 end-page: 94 ident: bib56 article-title: A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water publication-title: Appl. Catal. B Environ. – volume: 6 start-page: 8978 year: 2018 end-page: 8985 ident: bib19 article-title: Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate publication-title: J. Mater. Chem. A. – volume: 5 start-page: 99935 year: 2015 end-page: 99943 ident: bib27 article-title: Role of inorganic ions and dissolved natural organic matters on persulfate oxidation of acid orange 7 with zero-valent iron publication-title: RSC Adv. – volume: 6 start-page: 3454 year: 2018 end-page: 3461 ident: bib35 article-title: Convenient synthesis and engineering of ultrafine Co publication-title: J. Mater. Chem. – volume: 94 start-page: 8561 year: 1990 end-page: 8567 ident: bib4 article-title: Temperature dependence of the rate constants for reactions of the sulfate radical, S04-, with anions publication-title: J. Phys. Chem. – volume: 10 start-page: 205 year: 1981 end-page: 231 ident: bib13 article-title: Singlet molecular oxygen publication-title: Chem. Soc. Rev. – volume: 330 start-page: 262 year: 2017 end-page: 271 ident: bib47 article-title: Metal-organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate publication-title: Chem. Eng. J. – volume: 320 start-page: 571 year: 2016 end-page: 580 ident: bib3 article-title: Decolorization of azo dye by peroxymonosulfate activated by carbon nanotube: radical versus non-radical mechanism publication-title: J. Hazard. Mater. – volume: 51 start-page: 11288 year: 2017 end-page: 11296 ident: bib18 article-title: Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation publication-title: Environ. Sci. Technol. – volume: 267 start-page: 102 year: 2015 end-page: 110 ident: bib12 article-title: An effective heterogeneous iron-based catalyst to activate peroxymonosulfate for organic contaminants removal publication-title: Chem. Eng. J. – volume: 6 start-page: 13167 year: 2014 end-page: 13173 ident: bib30 article-title: Yolk-shell Fe(0)@SiO publication-title: ACS Appl. Mater. Interfaces – volume: 85 start-page: 779 year: 2011 end-page: 786 ident: bib55 article-title: Sensitive and selective off-on rhodamine hydrazide fluorescent chemosensor for hypochlorous acid detection and bioimaging publication-title: Talanta – volume: 46 start-page: 339 year: 2002 end-page: 344 ident: bib42 article-title: Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri publication-title: Chemosphere – volume: 48 start-page: 5677 year: 2000 end-page: 5684 ident: bib41 article-title: Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen publication-title: J. Agric. Food Chem. – volume: 51 start-page: 10090 year: 2017 end-page: 10099 ident: bib53 article-title: Exploring the role of persulfate in the activation process: radical precursor versus electron acceptor publication-title: Environ. Sci. Technol. – volume: 49 start-page: 9168 year: 2015 ident: 10.1016/j.watres.2018.10.087_bib20 article-title: Adsorption of 4-n-nonylphenol and bisphenol-a on magnetic reduced graphene oxides: a combined experimental and theoretical studies publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b02022 – volume: 47 start-page: 5344 year: 2013 ident: 10.1016/j.watres.2018.10.087_bib1 article-title: Core-shell structure dependent reactivity of Fe@Fe(2)O(3) nanowires on aerobic degradation of 4-chlorophenol publication-title: Environ. Sci. Technol. doi: 10.1021/es4005202 – volume: 4 start-page: 3535 year: 2011 ident: 10.1016/j.watres.2018.10.087_bib15 article-title: Deep eutectic solvents as both precursors and structure directing agents in the synthesis of nitrogen doped hierarchical carbons highly suitable for CO2 capture publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01463c – volume: 72 start-page: 349 year: 2015 ident: 10.1016/j.watres.2018.10.087_bib36 article-title: Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate publication-title: Water Res. doi: 10.1016/j.watres.2014.10.006 – volume: 320 start-page: 571 year: 2016 ident: 10.1016/j.watres.2018.10.087_bib3 article-title: Decolorization of azo dye by peroxymonosulfate activated by carbon nanotube: radical versus non-radical mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.07.038 – volume: 194 start-page: 169 year: 2016 ident: 10.1016/j.watres.2018.10.087_bib38 article-title: Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.04.003 – volume: 46 start-page: 389 year: 2016 ident: 10.1016/j.watres.2018.10.087_bib6 article-title: Recent advances in the textural characterization of hierarchically structured nanoporous materials publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00391E – volume: 330 start-page: 262 year: 2017 ident: 10.1016/j.watres.2018.10.087_bib47 article-title: Metal-organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.156 – volume: 329 start-page: 92 year: 2017 ident: 10.1016/j.watres.2018.10.087_bib34 article-title: Nanostructured CoP: an efficient catalyst for degradation of organic pollutants by activating peroxymonosulfate publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.01.032 – volume: 48 start-page: 5868 year: 2014 ident: 10.1016/j.watres.2018.10.087_bib57 article-title: Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es501218f – volume: 9 start-page: 32737 year: 2017 ident: 10.1016/j.watres.2018.10.087_bib33 article-title: Deep-eutectic solvents derived nitrogen-doped graphitic carbon as a superior electrocatalyst for oxygen reduction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b09707 – volume: 10 start-page: 205 year: 1981 ident: 10.1016/j.watres.2018.10.087_bib13 article-title: Singlet molecular oxygen publication-title: Chem. Soc. Rev. doi: 10.1039/cs9811000205 – volume: 47 start-page: 5872 year: 2013 ident: 10.1016/j.watres.2018.10.087_bib23 article-title: Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information publication-title: Environ. Sci. Technol. doi: 10.1021/es400781r – volume: 134 start-page: 446 year: 2015 ident: 10.1016/j.watres.2018.10.087_bib59 article-title: Transformations of chloro and nitro groups during the peroxymonosulfate-based oxidation of 4-chloro-2-nitrophenol publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.05.027 – volume: 46 start-page: 339 year: 2002 ident: 10.1016/j.watres.2018.10.087_bib42 article-title: Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri publication-title: Chemosphere doi: 10.1016/S0045-6535(01)00086-8 – volume: 52 start-page: 7032 year: 2018 ident: 10.1016/j.watres.2018.10.087_bib54 article-title: Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00959 – volume: 85 start-page: 779 year: 2011 ident: 10.1016/j.watres.2018.10.087_bib55 article-title: Sensitive and selective off-on rhodamine hydrazide fluorescent chemosensor for hypochlorous acid detection and bioimaging publication-title: Talanta doi: 10.1016/j.talanta.2011.04.078 – volume: 5 start-page: 4629 year: 2015 ident: 10.1016/j.watres.2018.10.087_bib10 article-title: Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons publication-title: ACS Catal. doi: 10.1021/acscatal.5b00774 – volume: 106 start-page: 320 year: 2013 ident: 10.1016/j.watres.2018.10.087_bib44 article-title: High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.05.088 – volume: 13 start-page: 2994 year: 2011 ident: 10.1016/j.watres.2018.10.087_bib39 article-title: 3D hierarchical flower-like TiO2 nanostructure: morphology control and its photocatalytic property publication-title: CrystEngComm doi: 10.1039/c0ce00851f – volume: 6 start-page: 3454 year: 2018 ident: 10.1016/j.watres.2018.10.087_bib35 article-title: Convenient synthesis and engineering of ultrafine Co3O4-incorporated carbon composite: towards practical application of environmental remediation publication-title: J. Mater. Chem. doi: 10.1039/C7TA11052A – volume: 80 start-page: 351 year: 2010 ident: 10.1016/j.watres.2018.10.087_bib37 article-title: Removal of natural organic matter from drinking water by advanced oxidation processes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.04.067 – volume: 277 start-page: 443 year: 2000 ident: 10.1016/j.watres.2018.10.087_bib8 article-title: Thioredoxin, a singlet oxygen quencher and hydroxyl radical scavenger: redox independent functions publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2000.3689 – volume: 49 start-page: 7330 year: 2015 ident: 10.1016/j.watres.2018.10.087_bib52 article-title: Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process publication-title: Environ. Sci. Technol. doi: 10.1021/es506362e – volume: 6 start-page: 806 year: 2012 ident: 10.1016/j.watres.2018.10.087_bib50 article-title: Decolorization of azo dyes by a salt-tolerant Staphy-lococcus cohnii strain isolated from textile wastewater publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-012-0453-4 – volume: 51 start-page: 10090 year: 2017 ident: 10.1016/j.watres.2018.10.087_bib53 article-title: Exploring the role of persulfate in the activation process: radical precursor versus electron acceptor publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02519 – volume: 55 start-page: 12582 year: 2016 ident: 10.1016/j.watres.2018.10.087_bib16 article-title: Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201603198 – volume: 179 start-page: 552 year: 2010 ident: 10.1016/j.watres.2018.10.087_bib51 article-title: Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.03.039 – volume: 51 start-page: 11288 year: 2017 ident: 10.1016/j.watres.2018.10.087_bib18 article-title: Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03014 – year: 2018 ident: 10.1016/j.watres.2018.10.087_bib28 article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 329 year: 1999 ident: 10.1016/j.watres.2018.10.087_bib40 article-title: Trapping of free radicals with direct in vivo EPR detection: a comparison of 5,5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO and SO4•− publication-title: Free Radical Biol. Med. doi: 10.1016/S0891-5849(99)00049-0 – volume: 4 start-page: 315 year: 2017 ident: 10.1016/j.watres.2018.10.087_bib29 article-title: An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate publication-title: Environ. Sci.: Nano – volume: 20 start-page: 6317 year: 2013 ident: 10.1016/j.watres.2018.10.087_bib32 article-title: Rapid dye degradation with reactive oxidants generated by chloride-induced peroxymonosulfate activation publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-013-1678-x – volume: 35 start-page: 402 year: 2009 ident: 10.1016/j.watres.2018.10.087_bib22 article-title: Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes publication-title: Environ. Int. doi: 10.1016/j.envint.2008.07.009 – volume: 207 start-page: 316 year: 2017 ident: 10.1016/j.watres.2018.10.087_bib46 article-title: In-situ incorporation of iron-copper bimetallic particles in electrospun carbon nanofibers as an efficient Fenton catalyst publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.02.032 – volume: 40 start-page: 3671 year: 2006 ident: 10.1016/j.watres.2018.10.087_bib25 article-title: Treatment of organic pollution in industrial saline wastewater: a literature review publication-title: Water Res. doi: 10.1016/j.watres.2006.08.027 – volume: 7 start-page: 3347 year: 2014 ident: 10.1016/j.watres.2018.10.087_bib31 article-title: Sulfur-doped carbons prepared from eutectic mixtures containing hydroxymethylthiophene as metal-free oxygen reduction catalysts publication-title: ChemSusChem doi: 10.1002/cssc.201402753 – volume: 94 start-page: 8561 year: 1990 ident: 10.1016/j.watres.2018.10.087_bib4 article-title: Temperature dependence of the rate constants for reactions of the sulfate radical, S04-, with anions publication-title: J. Phys. Chem. doi: 10.1021/j100386a015 – volume: 19 start-page: 529 year: 1996 ident: 10.1016/j.watres.2018.10.087_bib21 article-title: Effect of salt concentration on biological treatment of saline wastewater by fed-batch operation publication-title: Enzym. Microb. Technol. doi: 10.1016/S0141-0229(96)00070-1 – volume: 21 start-page: 195 year: 2001 ident: 10.1016/j.watres.2018.10.087_bib2 article-title: Effect of proline on the production of singlet oxygen publication-title: Amino Acids doi: 10.1007/s007260170026 – volume: 83 start-page: 769 year: 2008 ident: 10.1016/j.watres.2018.10.087_bib5 article-title: Advanced oxidation processes for water treatment: advances and trends for R&D publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.1873 – volume: 50 start-page: 10134 year: 2016 ident: 10.1016/j.watres.2018.10.087_bib24 article-title: Activation of persulfates by graphitized nanodiamonds for removal of organic compounds publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02079 – volume: 190 start-page: 1083 year: 2011 ident: 10.1016/j.watres.2018.10.087_bib43 article-title: Effects of chloride ions on bleaching of azo dyes by Co2+/oxone reagent: kinetic analysis publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.04.016 – volume: 267 start-page: 102 year: 2015 ident: 10.1016/j.watres.2018.10.087_bib12 article-title: An effective heterogeneous iron-based catalyst to activate peroxymonosulfate for organic contaminants removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.01.010 – volume: 102 start-page: 279 year: 2016 ident: 10.1016/j.watres.2018.10.087_bib45 article-title: One-pot synthesis of N-doped graphene for metal-free advanced oxidation processes publication-title: Carbon doi: 10.1016/j.carbon.2016.02.048 – volume: 50 start-page: 5864 year: 2016 ident: 10.1016/j.watres.2018.10.087_bib58 article-title: Oxidation of refractory benzothiazoles with PMS/CuFe2O4: kinetics and transformation intermediates publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00701 – volume: 8 start-page: 813 year: 2007 ident: 10.1016/j.watres.2018.10.087_bib7 article-title: ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2256 – volume: 5 start-page: 99935 year: 2015 ident: 10.1016/j.watres.2018.10.087_bib27 article-title: Role of inorganic ions and dissolved natural organic matters on persulfate oxidation of acid orange 7 with zero-valent iron publication-title: RSC Adv. doi: 10.1039/C5RA16094D – volume: 121–122 start-page: 88 year: 2012 ident: 10.1016/j.watres.2018.10.087_bib56 article-title: A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2012.03.021 – volume: 6 start-page: 8978 year: 2018 ident: 10.1016/j.watres.2018.10.087_bib19 article-title: Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate publication-title: J. Mater. Chem. A. doi: 10.1039/C8TA02282H – volume: 5 start-page: 553 year: 2015 ident: 10.1016/j.watres.2018.10.087_bib9 article-title: N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation publication-title: ACS Catal. doi: 10.1021/cs5017613 – volume: 40 start-page: 1000 year: 2006 ident: 10.1016/j.watres.2018.10.087_bib11 article-title: Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions publication-title: Environ. Sci. Technol. doi: 10.1021/es050634b – volume: 115 start-page: 730 year: 2017 ident: 10.1016/j.watres.2018.10.087_bib48 article-title: Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants publication-title: Carbon doi: 10.1016/j.carbon.2017.01.060 – volume: 6 start-page: 884 year: 2018 ident: 10.1016/j.watres.2018.10.087_bib49 article-title: Prussian blue analogues derived porous nitrogen-doped carbon microspheres as high-performance metal-free peroxymonosulfate activators for non-radical-dominated degradation of organic pollutants publication-title: J. Mater. Chem. – volume: 48 start-page: 5677 year: 2000 ident: 10.1016/j.watres.2018.10.087_bib41 article-title: Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen publication-title: J. Agric. Food Chem. doi: 10.1021/jf000766i – volume: 51 start-page: 10827 year: 2015 ident: 10.1016/j.watres.2018.10.087_bib26 article-title: Pd nanoparticles supported on hierarchically porous carbons derived from assembled nanoparticles of a zeolitic imidazolate framework (ZIF-8) for methanol electrooxidation publication-title: Chem. Commun. doi: 10.1039/C5CC03008K – volume: 6 start-page: 13167 year: 2014 ident: 10.1016/j.watres.2018.10.087_bib30 article-title: Yolk-shell Fe(0)@SiO2 nanoparticles as nanoreactors for fenton-like catalytic reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am503063m – volume: 3 start-page: 2065 year: 2013 ident: 10.1016/j.watres.2018.10.087_bib17 article-title: Spontaneous reduction and assembly of graphene oxide into three-dimensional graphene network on arbitrary conductive substrates publication-title: Sci. Rep. doi: 10.1038/srep02065 – volume: 44 start-page: 6822 year: 2010 ident: 10.1016/j.watres.2018.10.087_bib14 article-title: Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters publication-title: Environ. Sci. Technol. doi: 10.1021/es1010225 |
| SSID | ssj0002239 |
| Score | 2.712656 |
| Snippet | The degradation of organic contaminants under high salinity condition is still a challenge for environmental remediation due to the inhibiting effect resulted... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 416 |
| SubjectTerms | Anions bisphenol A catalysts catalytic activity chlorides electron paramagnetic resonance spectroscopy free radicals graphene High salinity condition Inhibiting effect Non-radical oxidation predation remediation saline water salinity Singlet oxygen |
| Title | Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition |
| URI | https://dx.doi.org/10.1016/j.watres.2018.10.087 https://www.ncbi.nlm.nih.gov/pubmed/30399556 https://www.proquest.com/docview/2130800191 https://www.proquest.com/docview/2176350296 |
| Volume | 148 |
| WOSCitedRecordID | wos000452931600041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2448 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002239 issn: 0043-1354 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lKQc4IN6UR7VI3CJXtnft9R6rqghQqRAUlJu1sXcVR1Uc8ijhwK_hjzLjfRBataUHLlG0Wq_sfF9mZ8Yz3xLyWoi44maURbVkEKBkkkdSmzpSJkOh6jzmnTr_1yNxfFwMh_Jjr_fL98KcnYrptFiv5ey_Qg1jADa2zt4A7rAoDMB3AB0-AXb4_CfgP8NmBGAM2vUPmBPVLRa7oF8JgX40V_a9TLtu7GFKg5ntFLDS352eBFYH1KghUQd3ctQssBasBTi7g3PnA5Q5HiwU9lWCGw9Bdd0EiCf-ZBkUYHRqQuNO13RtS-lD8uFo1WVqP62aMNLYYn7VfvObapfutybpYKzasQqTQ7b7g5_r8hfYMhXyF84mo0gqs1LSwSZb-U1nVXmSb2zQ3DZdX7D9Ng0x2fuusMsGq_aKPSzccxv6X1Lb57bAUJjoa94mpV2lxFVgqIRVtsh2KjJZ9Mn2_rvD4fuw4YOHJX0hAz6I79Dsyggv3s1lHtBlEU7n6ZzcI3ddiEL3LbXuk56ePiB3NoQrH5KfjmT0PMnoBsloIBl1JKMAPw0koxsko62hgWR0n3Yko0gy6klGA8kekS9vDk8O3kbuII-oYjJbRkxXOhOGyaqquMjAOEiM9E0tE1ExwXOW6FHKZZ2AmTCMcy5NrpMc7EuRmlHBHpM-3L5-SqguhOa6TlNjFFdxpYyMGWPglas6Lkb5DmH-xy0rp3KPh62clldBu0OicNXMqrxcM1943ErnqVoPtAQyXnPlKw9zCYYc386pqW5XMAm8yQIjruSqOagfGacSnvOJ5Ui4X_BFpcyy_NkNn-U5uf3nb_mC9JfzlX5JblVny2Yx3yVbYljsOsb_BnQs3UY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Singlet+oxygen-dominated+non-radical+oxidation+process+for+efficient+degradation+of+bisphenol+A+under+high+salinity+condition&rft.jtitle=Water+research+%28Oxford%29&rft.au=Luo%2C+Rui&rft.au=Li%2C+Miaoqing&rft.au=Wang%2C+Chaohai&rft.au=Zhang%2C+Ming&rft.date=2019-01-01&rft.issn=0043-1354&rft.volume=148&rft.spage=416&rft.epage=424&rft_id=info:doi/10.1016%2Fj.watres.2018.10.087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_watres_2018_10_087 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |