Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition

The degradation of organic contaminants under high salinity condition is still a challenge for environmental remediation due to the inhibiting effect resulted from the side reactions between radicals and anions. Here, we demonstrate the non-radical oxidation process via peroxymonosulfate (PMS) activ...

Full description

Saved in:
Bibliographic Details
Published in:Water research (Oxford) Vol. 148; pp. 416 - 424
Main Authors: Luo, Rui, Li, Miaoqing, Wang, Chaohai, Zhang, Ming, Nasir Khan, Muhammad Abdul, Sun, Xiuyun, Shen, Jinyou, Han, Weiqing, Wang, Lianjun, Li, Jiansheng
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01.01.2019
Subjects:
ISSN:0043-1354, 1879-2448, 1879-2448
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The degradation of organic contaminants under high salinity condition is still a challenge for environmental remediation due to the inhibiting effect resulted from the side reactions between radicals and anions. Here, we demonstrate the non-radical oxidation process via peroxymonosulfate (PMS) activation by metal-free carbon catalyst for efficiently decomposing bisphenol A (BPA) in saline water. The nitrogen-doped graphitic carbon (NGC700) exhibits excellent catalytic activity for depredating BPA at acid and neutral pH. Based on the scavenger experiments and electron paramagnetic resonance (EPR) analyses, the mechanism of catalytic oxidation was elucidated as the non-radical pathway, and singlet oxygen was identified as the primary reactive species. Experiments on the influence of anions (5–500 mM) further show that the inhibiting effect was overcame due to the non-radical process. Interestingly, Cl− markedly facilitated the catalytic performance by generating HOCl in the catalytic process. The results highlight leveraging the non-radical pathway dominated by singlet oxygen to conquer the inhibitory effect of anions in NGC700/PMS system, which represents a crucial step towards environmental remediation under high salinity condition. [Display omitted] •The non-radical oxidation process under high salinity condition was investigated.•Excellent performance on bisphenol A degradation was achieved in saline water.•Singlet oxygen was identified as the dominated reactive species.•The inhibiting effect of anions can be suppressed by the non-radical process.
AbstractList The degradation of organic contaminants under high salinity condition is still a challenge for environmental remediation due to the inhibiting effect resulted from the side reactions between radicals and anions. Here, we demonstrate the non-radical oxidation process via peroxymonosulfate (PMS) activation by metal-free carbon catalyst for efficiently decomposing bisphenol A (BPA) in saline water. The nitrogen-doped graphitic carbon (NGC700) exhibits excellent catalytic activity for depredating BPA at acid and neutral pH. Based on the scavenger experiments and electron paramagnetic resonance (EPR) analyses, the mechanism of catalytic oxidation was elucidated as the non-radical pathway, and singlet oxygen was identified as the primary reactive species. Experiments on the influence of anions (5-500 mM) further show that the inhibiting effect was overcame due to the non-radical process. Interestingly, Cl markedly facilitated the catalytic performance by generating HOCl in the catalytic process. The results highlight leveraging the non-radical pathway dominated by singlet oxygen to conquer the inhibitory effect of anions in NGC700/PMS system, which represents a crucial step towards environmental remediation under high salinity condition.
The degradation of organic contaminants under high salinity condition is still a challenge for environmental remediation due to the inhibiting effect resulted from the side reactions between radicals and anions. Here, we demonstrate the non-radical oxidation process via peroxymonosulfate (PMS) activation by metal-free carbon catalyst for efficiently decomposing bisphenol A (BPA) in saline water. The nitrogen-doped graphitic carbon (NGC700) exhibits excellent catalytic activity for depredating BPA at acid and neutral pH. Based on the scavenger experiments and electron paramagnetic resonance (EPR) analyses, the mechanism of catalytic oxidation was elucidated as the non-radical pathway, and singlet oxygen was identified as the primary reactive species. Experiments on the influence of anions (5-500 mM) further show that the inhibiting effect was overcame due to the non-radical process. Interestingly, Cl- markedly facilitated the catalytic performance by generating HOCl in the catalytic process. The results highlight leveraging the non-radical pathway dominated by singlet oxygen to conquer the inhibitory effect of anions in NGC700/PMS system, which represents a crucial step towards environmental remediation under high salinity condition.The degradation of organic contaminants under high salinity condition is still a challenge for environmental remediation due to the inhibiting effect resulted from the side reactions between radicals and anions. Here, we demonstrate the non-radical oxidation process via peroxymonosulfate (PMS) activation by metal-free carbon catalyst for efficiently decomposing bisphenol A (BPA) in saline water. The nitrogen-doped graphitic carbon (NGC700) exhibits excellent catalytic activity for depredating BPA at acid and neutral pH. Based on the scavenger experiments and electron paramagnetic resonance (EPR) analyses, the mechanism of catalytic oxidation was elucidated as the non-radical pathway, and singlet oxygen was identified as the primary reactive species. Experiments on the influence of anions (5-500 mM) further show that the inhibiting effect was overcame due to the non-radical process. Interestingly, Cl- markedly facilitated the catalytic performance by generating HOCl in the catalytic process. The results highlight leveraging the non-radical pathway dominated by singlet oxygen to conquer the inhibitory effect of anions in NGC700/PMS system, which represents a crucial step towards environmental remediation under high salinity condition.
The degradation of organic contaminants under high salinity condition is still a challenge for environmental remediation due to the inhibiting effect resulted from the side reactions between radicals and anions. Here, we demonstrate the non-radical oxidation process via peroxymonosulfate (PMS) activation by metal-free carbon catalyst for efficiently decomposing bisphenol A (BPA) in saline water. The nitrogen-doped graphitic carbon (NGC700) exhibits excellent catalytic activity for depredating BPA at acid and neutral pH. Based on the scavenger experiments and electron paramagnetic resonance (EPR) analyses, the mechanism of catalytic oxidation was elucidated as the non-radical pathway, and singlet oxygen was identified as the primary reactive species. Experiments on the influence of anions (5–500 mM) further show that the inhibiting effect was overcame due to the non-radical process. Interestingly, Cl⁻ markedly facilitated the catalytic performance by generating HOCl in the catalytic process. The results highlight leveraging the non-radical pathway dominated by singlet oxygen to conquer the inhibitory effect of anions in NGC700/PMS system, which represents a crucial step towards environmental remediation under high salinity condition.
The degradation of organic contaminants under high salinity condition is still a challenge for environmental remediation due to the inhibiting effect resulted from the side reactions between radicals and anions. Here, we demonstrate the non-radical oxidation process via peroxymonosulfate (PMS) activation by metal-free carbon catalyst for efficiently decomposing bisphenol A (BPA) in saline water. The nitrogen-doped graphitic carbon (NGC700) exhibits excellent catalytic activity for depredating BPA at acid and neutral pH. Based on the scavenger experiments and electron paramagnetic resonance (EPR) analyses, the mechanism of catalytic oxidation was elucidated as the non-radical pathway, and singlet oxygen was identified as the primary reactive species. Experiments on the influence of anions (5–500 mM) further show that the inhibiting effect was overcame due to the non-radical process. Interestingly, Cl− markedly facilitated the catalytic performance by generating HOCl in the catalytic process. The results highlight leveraging the non-radical pathway dominated by singlet oxygen to conquer the inhibitory effect of anions in NGC700/PMS system, which represents a crucial step towards environmental remediation under high salinity condition. [Display omitted] •The non-radical oxidation process under high salinity condition was investigated.•Excellent performance on bisphenol A degradation was achieved in saline water.•Singlet oxygen was identified as the dominated reactive species.•The inhibiting effect of anions can be suppressed by the non-radical process.
Author Nasir Khan, Muhammad Abdul
Wang, Chaohai
Wang, Lianjun
Luo, Rui
Li, Jiansheng
Han, Weiqing
Li, Miaoqing
Sun, Xiuyun
Shen, Jinyou
Zhang, Ming
Author_xml – sequence: 1
  givenname: Rui
  surname: Luo
  fullname: Luo, Rui
– sequence: 2
  givenname: Miaoqing
  surname: Li
  fullname: Li, Miaoqing
– sequence: 3
  givenname: Chaohai
  surname: Wang
  fullname: Wang, Chaohai
– sequence: 4
  givenname: Ming
  surname: Zhang
  fullname: Zhang, Ming
– sequence: 5
  givenname: Muhammad Abdul
  surname: Nasir Khan
  fullname: Nasir Khan, Muhammad Abdul
– sequence: 6
  givenname: Xiuyun
  surname: Sun
  fullname: Sun, Xiuyun
– sequence: 7
  givenname: Jinyou
  orcidid: 0000-0002-0753-6612
  surname: Shen
  fullname: Shen, Jinyou
– sequence: 8
  givenname: Weiqing
  surname: Han
  fullname: Han, Weiqing
– sequence: 9
  givenname: Lianjun
  surname: Wang
  fullname: Wang, Lianjun
– sequence: 10
  givenname: Jiansheng
  orcidid: 0000-0002-3708-3677
  surname: Li
  fullname: Li, Jiansheng
  email: lijsh@njust.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30399556$$D View this record in MEDLINE/PubMed
BookMark eNqNkTtvFDEUhS0URDaBf4CQS5pZ_JqHKZCiiABSJAqgtjz29a5Xs_ZiewNb8N_jYZKGAqgsXX_n3KtzLtBZiAEQeknJmhLavdmtf-iSIK8ZoUMdrcnQP0ErOvSyYUIMZ2hFiOAN5a04Rxc57wghjHH5DJ1zwqVs226Ffn3xYTNBwfHnaQOhsXHvgy5gcV3XJG290VP99FYXHwM-pGggZ-xiwuCcNx5CwRY2FV2I6PDo82ELIU74Ch-DhYS3frPFWU8--HLCJgbrZ_g5eur0lOHFw3uJvt28_3r9sbn9_OHT9dVtY7hsS8PBQNs7Lo0xom-NcJINbHBW0t7wXnScwsiEtBScdVwIIV0HtBvBDMyNA79Erxffev73I-Si9j4bmCYdIB6zYrTveEuY7P4D5WQghEpa0VcP6HHcg1WH5Pc6ndRjuhV4uwAmxZwTOGV8-Z1SSdpPihI1V6l2aqlSzVXO01plFYs_xI_-_5C9W2RQ87zzkFSeOzJgfQJTlI3-7wb3-hW9AA
CitedBy_id crossref_primary_10_1016_j_cej_2020_125498
crossref_primary_10_1016_j_jwpe_2022_103184
crossref_primary_10_1016_j_jece_2024_113422
crossref_primary_10_1016_j_jhazmat_2021_125305
crossref_primary_10_1021_acs_nanolett_5c00785
crossref_primary_10_1016_j_molliq_2024_125536
crossref_primary_10_1038_s41467_024_49266_1
crossref_primary_10_1016_j_psep_2024_12_060
crossref_primary_10_1016_j_jwpe_2025_107381
crossref_primary_10_1016_j_apcatb_2020_119484
crossref_primary_10_1016_j_envres_2024_120398
crossref_primary_10_1007_s42823_025_00901_x
crossref_primary_10_1016_j_jhazmat_2020_123084
crossref_primary_10_1016_j_apsusc_2023_158501
crossref_primary_10_1016_j_jwpe_2025_107139
crossref_primary_10_1016_j_ces_2025_122148
crossref_primary_10_1016_j_jwpe_2025_107375
crossref_primary_10_1016_j_jclepro_2024_143392
crossref_primary_10_1002_adfm_202203001
crossref_primary_10_1016_j_apcatb_2021_120532
crossref_primary_10_1007_s11356_024_34095_y
crossref_primary_10_1016_j_watres_2023_120785
crossref_primary_10_1016_j_watres_2022_119277
crossref_primary_10_1016_j_jhazmat_2020_124199
crossref_primary_10_1016_j_cej_2023_145922
crossref_primary_10_1016_j_cej_2020_126128
crossref_primary_10_1016_j_cej_2023_144832
crossref_primary_10_1016_j_cej_2023_144834
crossref_primary_10_1016_j_cej_2024_150553
crossref_primary_10_1016_j_watres_2020_116244
crossref_primary_10_1016_j_apcatb_2024_124989
crossref_primary_10_1016_j_seppur_2019_116170
crossref_primary_10_1016_j_cej_2022_135883
crossref_primary_10_1016_j_watres_2020_116246
crossref_primary_10_1002_smtd_202402072
crossref_primary_10_1016_j_envres_2023_115750
crossref_primary_10_1016_j_jwpe_2024_105910
crossref_primary_10_1016_j_jece_2024_112584
crossref_primary_10_1016_j_ccr_2024_216241
crossref_primary_10_1016_j_cej_2024_158031
crossref_primary_10_1007_s11164_024_05451_x
crossref_primary_10_1016_j_cherd_2023_03_015
crossref_primary_10_1016_j_jcis_2021_04_074
crossref_primary_10_1016_j_mtchem_2022_100818
crossref_primary_10_1021_acs_est_5c02729
crossref_primary_10_1016_j_seppur_2021_120136
crossref_primary_10_1016_j_seppur_2022_122402
crossref_primary_10_1016_j_apcatb_2025_125054
crossref_primary_10_1002_smll_202311552
crossref_primary_10_1016_j_cej_2021_128605
crossref_primary_10_1002_ange_202507349
crossref_primary_10_3390_membranes10120428
crossref_primary_10_1016_j_jenvman_2022_115971
crossref_primary_10_1016_j_seppur_2025_133785
crossref_primary_10_1016_j_apcatb_2021_119963
crossref_primary_10_1016_j_jwpe_2023_104354
crossref_primary_10_1016_j_seppur_2023_125193
crossref_primary_10_1016_j_chemosphere_2022_137120
crossref_primary_10_1016_j_jclepro_2023_138713
crossref_primary_10_1016_j_jece_2025_116173
crossref_primary_10_1016_j_cej_2025_167255
crossref_primary_10_1016_j_seppur_2022_121557
crossref_primary_10_1016_j_surfin_2025_106269
crossref_primary_10_1016_j_watres_2023_120378
crossref_primary_10_1016_j_apcatb_2024_123819
crossref_primary_10_1016_j_cej_2024_156074
crossref_primary_10_1016_j_cej_2021_134286
crossref_primary_10_1038_s41467_024_51878_6
crossref_primary_10_1016_j_chemosphere_2022_137131
crossref_primary_10_1016_j_jtice_2023_104815
crossref_primary_10_1016_j_apcatb_2023_123323
crossref_primary_10_1016_j_jece_2022_108702
crossref_primary_10_1016_j_ijbiomac_2024_130922
crossref_primary_10_1016_j_carbon_2021_05_033
crossref_primary_10_1016_j_envres_2025_121742
crossref_primary_10_1016_j_jece_2024_112557
crossref_primary_10_1016_j_cej_2022_138958
crossref_primary_10_1016_j_apcatb_2019_03_048
crossref_primary_10_1016_j_cej_2020_126158
crossref_primary_10_1016_j_jcis_2025_138268
crossref_primary_10_1016_j_jtice_2020_10_022
crossref_primary_10_1016_j_seppur_2022_120471
crossref_primary_10_1016_j_jece_2025_118388
crossref_primary_10_1007_s11705_023_2327_7
crossref_primary_10_1016_j_apsusc_2025_163614
crossref_primary_10_1016_j_jhazmat_2022_128282
crossref_primary_10_1016_j_cej_2023_147050
crossref_primary_10_1007_s42773_022_00155_0
crossref_primary_10_1002_tcr_202000143
crossref_primary_10_1016_j_jwpe_2024_105946
crossref_primary_10_1039_D0EN00848F
crossref_primary_10_1016_j_clay_2021_106327
crossref_primary_10_1016_j_cej_2020_125063
crossref_primary_10_1016_j_chemosphere_2022_136023
crossref_primary_10_1016_j_seppur_2021_119791
crossref_primary_10_1073_pnas_2313387121
crossref_primary_10_1016_j_jece_2024_113022
crossref_primary_10_3390_su141610128
crossref_primary_10_1016_j_apcatb_2019_118302
crossref_primary_10_1016_j_surfin_2023_102957
crossref_primary_10_1016_j_apcatb_2021_119921
crossref_primary_10_1016_j_apcatb_2019_118549
crossref_primary_10_1016_j_seppur_2024_127210
crossref_primary_10_1016_j_ces_2023_118979
crossref_primary_10_1016_j_mtcomm_2024_108694
crossref_primary_10_1016_j_seppur_2025_133190
crossref_primary_10_1016_j_envres_2022_112815
crossref_primary_10_1016_j_jhazmat_2023_130869
crossref_primary_10_1016_j_envres_2023_117313
crossref_primary_10_1016_j_apcatb_2021_119914
crossref_primary_10_1016_j_watres_2023_119744
crossref_primary_10_1016_j_cclet_2021_01_019
crossref_primary_10_1016_j_apcatb_2021_119910
crossref_primary_10_1016_j_seppur_2024_128771
crossref_primary_10_1016_j_chemosphere_2022_135317
crossref_primary_10_1016_j_jhazmat_2022_129357
crossref_primary_10_1016_j_seppur_2023_123147
crossref_primary_10_1016_j_apcatb_2021_120375
crossref_primary_10_1016_j_seppur_2023_124479
crossref_primary_10_1016_j_seppur_2023_125326
crossref_primary_10_1016_j_apcatb_2022_122136
crossref_primary_10_1016_j_chemosphere_2022_135791
crossref_primary_10_1016_j_scitotenv_2024_173206
crossref_primary_10_1016_j_seppur_2025_133161
crossref_primary_10_1016_j_cej_2020_127619
crossref_primary_10_1016_j_jallcom_2023_172208
crossref_primary_10_1016_j_cej_2021_133581
crossref_primary_10_1016_j_jhazmat_2021_128191
crossref_primary_10_1016_j_cej_2021_133102
crossref_primary_10_1016_j_jhazmat_2022_130562
crossref_primary_10_1016_j_jwpe_2025_108094
crossref_primary_10_1016_j_jwpe_2024_105737
crossref_primary_10_1039_D4MH01479K
crossref_primary_10_1016_j_chemosphere_2021_133069
crossref_primary_10_1016_j_seppur_2023_124249
crossref_primary_10_1016_j_apcatb_2023_122883
crossref_primary_10_1016_j_seppur_2025_133391
crossref_primary_10_1016_j_inoche_2025_115252
crossref_primary_10_1016_j_jcis_2025_137533
crossref_primary_10_1016_j_scitotenv_2024_173211
crossref_primary_10_1360_TB_2024_0583
crossref_primary_10_1016_j_scitotenv_2020_141999
crossref_primary_10_1016_j_envres_2025_121155
crossref_primary_10_1016_j_jece_2022_108322
crossref_primary_10_1016_j_catcom_2021_106281
crossref_primary_10_1016_j_cej_2022_135815
crossref_primary_10_1016_j_watres_2023_119725
crossref_primary_10_1016_j_scitotenv_2021_151611
crossref_primary_10_1016_j_seppur_2022_120862
crossref_primary_10_1016_j_cej_2023_142479
crossref_primary_10_1016_j_ces_2025_122357
crossref_primary_10_1016_j_jhazmat_2024_136880
crossref_primary_10_1016_j_jece_2024_112379
crossref_primary_10_1016_j_jes_2021_10_030
crossref_primary_10_1007_s10853_023_08174_3
crossref_primary_10_1016_j_jwpe_2024_105567
crossref_primary_10_1016_j_jece_2023_110903
crossref_primary_10_1016_j_apsusc_2022_152705
crossref_primary_10_1016_j_jece_2025_119286
crossref_primary_10_1016_j_cej_2024_152568
crossref_primary_10_1016_j_cej_2025_160462
crossref_primary_10_1016_j_seppur_2023_124029
crossref_primary_10_1016_j_jhazmat_2022_130549
crossref_primary_10_1016_j_jcis_2021_07_130
crossref_primary_10_1016_j_cej_2020_127863
crossref_primary_10_1016_j_jwpe_2024_106423
crossref_primary_10_1016_j_envres_2022_115035
crossref_primary_10_1016_j_colsurfa_2022_129520
crossref_primary_10_1016_j_psep_2022_10_002
crossref_primary_10_1016_j_jhazmat_2020_122883
crossref_primary_10_1016_j_chemosphere_2020_126053
crossref_primary_10_1016_j_seppur_2021_119369
crossref_primary_10_1016_j_ceramint_2021_04_072
crossref_primary_10_1016_j_clay_2022_106802
crossref_primary_10_1016_j_cej_2022_141037
crossref_primary_10_1016_j_cej_2023_142450
crossref_primary_10_1016_j_jece_2024_112151
crossref_primary_10_1016_j_jwpe_2024_105781
crossref_primary_10_1016_j_jhazmat_2020_122414
crossref_primary_10_1016_j_watres_2023_120502
crossref_primary_10_1016_j_jece_2024_114338
crossref_primary_10_1016_j_apcatb_2022_122321
crossref_primary_10_1021_acsestwater_5c00402
crossref_primary_10_1016_j_cej_2021_132299
crossref_primary_10_1016_j_chemosphere_2022_135326
crossref_primary_10_1016_j_jece_2021_106276
crossref_primary_10_1016_j_jece_2023_109909
crossref_primary_10_1016_j_horiz_2024_100091
crossref_primary_10_1016_j_jece_2024_113480
crossref_primary_10_1016_j_watres_2020_116605
crossref_primary_10_1016_j_cej_2020_124382
crossref_primary_10_1016_j_apsusc_2023_157676
crossref_primary_10_1016_j_watres_2022_119462
crossref_primary_10_1016_j_envres_2023_117971
crossref_primary_10_1007_s11356_022_23063_z
crossref_primary_10_1016_j_watres_2023_120992
crossref_primary_10_1016_j_cej_2023_143778
crossref_primary_10_1016_j_scitotenv_2024_176762
crossref_primary_10_1016_j_chemosphere_2022_136419
crossref_primary_10_1016_j_jece_2022_108523
crossref_primary_10_1016_j_jhazmat_2021_127054
crossref_primary_10_1016_j_apsusc_2019_143770
crossref_primary_10_1016_j_jhazmat_2021_127292
crossref_primary_10_1016_j_seppur_2021_120334
crossref_primary_10_1016_j_colsurfa_2023_130958
crossref_primary_10_1016_j_ecoenv_2023_115592
crossref_primary_10_1016_j_seppur_2022_120874
crossref_primary_10_1016_j_seppur_2023_123779
crossref_primary_10_1016_j_cej_2020_124725
crossref_primary_10_1016_j_chemosphere_2023_140331
crossref_primary_10_1016_j_cej_2022_138219
crossref_primary_10_1016_j_apcatb_2025_125537
crossref_primary_10_1016_j_jhazmat_2022_128773
crossref_primary_10_1016_j_seppur_2024_128029
crossref_primary_10_1016_j_jhazmat_2020_122560
crossref_primary_10_1016_j_chemosphere_2020_127747
crossref_primary_10_1016_j_chemosphere_2023_140563
crossref_primary_10_1039_D0CY00102C
crossref_primary_10_1016_j_cclet_2023_109437
crossref_primary_10_1016_j_cej_2022_138468
crossref_primary_10_1016_j_apcatb_2021_120093
crossref_primary_10_1016_j_apcatb_2025_125303
crossref_primary_10_1016_j_seppur_2023_123783
crossref_primary_10_1016_j_cej_2021_131777
crossref_primary_10_1016_j_seppur_2023_125965
crossref_primary_10_1016_j_watres_2024_122007
crossref_primary_10_1016_j_jwpe_2024_105221
crossref_primary_10_1002_apj_3156
crossref_primary_10_1016_j_nantod_2024_102462
crossref_primary_10_1016_j_seppur_2022_123034
crossref_primary_10_1016_j_jhazmat_2020_122578
crossref_primary_10_1016_j_chemosphere_2022_133735
crossref_primary_10_1016_j_cej_2022_136051
crossref_primary_10_1016_j_chemosphere_2022_133737
crossref_primary_10_1016_j_seppur_2021_119934
crossref_primary_10_1016_j_jhazmat_2023_133399
crossref_primary_10_1016_j_ecoenv_2023_114908
crossref_primary_10_1016_j_seppur_2024_129578
crossref_primary_10_1016_j_seppur_2024_127394
crossref_primary_10_1016_j_envpol_2023_122807
crossref_primary_10_1016_j_jhazmat_2021_127380
crossref_primary_10_1016_j_seppur_2023_123556
crossref_primary_10_1016_j_cej_2023_144386
crossref_primary_10_1016_j_jhazmat_2022_129613
crossref_primary_10_1016_j_carbpol_2025_124373
crossref_primary_10_1016_j_cej_2024_148800
crossref_primary_10_1016_j_jwpe_2022_102681
crossref_primary_10_3390_molecules28104237
crossref_primary_10_1016_j_cej_2022_136069
crossref_primary_10_1016_j_seppur_2024_129563
crossref_primary_10_1016_j_apcata_2019_117170
crossref_primary_10_1016_j_seppur_2021_118664
crossref_primary_10_1016_j_apcatb_2019_118348
crossref_primary_10_1016_j_cej_2024_156402
crossref_primary_10_1016_j_cej_2021_129498
crossref_primary_10_1016_j_cej_2021_133767
crossref_primary_10_1039_D1EN00841B
crossref_primary_10_1016_j_cej_2019_03_046
crossref_primary_10_1016_j_envpol_2022_119386
crossref_primary_10_1016_j_jcis_2022_11_079
crossref_primary_10_1016_j_cej_2023_145698
crossref_primary_10_1016_j_envres_2021_112060
crossref_primary_10_1016_j_cej_2020_124512
crossref_primary_10_1016_j_cej_2020_124752
crossref_primary_10_1016_j_jhazmat_2021_128204
crossref_primary_10_1016_j_cej_2023_146309
crossref_primary_10_1016_j_cej_2021_130250
crossref_primary_10_1021_acs_est_5c04008
crossref_primary_10_1016_j_chemosphere_2021_131091
crossref_primary_10_1016_j_cej_2022_140103
crossref_primary_10_1016_j_colsurfa_2024_134312
crossref_primary_10_1016_j_dwt_2024_100559
crossref_primary_10_1016_j_jhazmat_2021_127111
crossref_primary_10_1016_j_jenvman_2023_117978
crossref_primary_10_3390_w14203318
crossref_primary_10_1016_j_seppur_2025_135280
crossref_primary_10_1016_j_chemosphere_2022_134868
crossref_primary_10_1016_j_cej_2020_127818
crossref_primary_10_1016_j_seppur_2024_129533
crossref_primary_10_1007_s11356_024_33035_0
crossref_primary_10_1016_j_chemosphere_2022_135961
crossref_primary_10_1016_j_jallcom_2020_157739
crossref_primary_10_3390_app14083181
crossref_primary_10_1016_j_seppur_2023_123111
crossref_primary_10_1016_j_cej_2021_133789
crossref_primary_10_1016_j_jhazmat_2021_126495
crossref_primary_10_1016_j_optmat_2024_115218
crossref_primary_10_1016_j_watres_2025_123891
crossref_primary_10_1016_j_indcrop_2024_118569
crossref_primary_10_1016_j_jiec_2024_03_016
crossref_primary_10_1016_j_jhazmat_2022_128968
crossref_primary_10_1016_j_watres_2019_05_059
crossref_primary_10_1016_j_eti_2025_104517
crossref_primary_10_1016_j_cej_2020_127805
crossref_primary_10_1039_D2RA02970G
crossref_primary_10_1016_j_jhazmat_2023_131183
crossref_primary_10_1177_00405175231195897
crossref_primary_10_1016_j_jwpe_2022_102639
crossref_primary_10_1016_j_jece_2022_107276
crossref_primary_10_1016_j_seppur_2024_127349
crossref_primary_10_1039_D1EN00426C
crossref_primary_10_1016_j_cej_2019_123247
crossref_primary_10_1016_j_cej_2019_123244
crossref_primary_10_1016_j_cej_2025_161020
crossref_primary_10_1016_j_jhazmat_2020_122395
crossref_primary_10_1016_j_watres_2023_120164
crossref_primary_10_1016_j_jwpe_2025_107549
crossref_primary_10_1016_j_diamond_2024_111430
crossref_primary_10_1016_j_jcis_2023_08_017
crossref_primary_10_1016_j_jece_2023_110395
crossref_primary_10_1016_j_envpol_2022_120176
crossref_primary_10_1016_j_jclepro_2021_129642
crossref_primary_10_1038_s41598_023_38958_1
crossref_primary_10_1016_j_colsurfa_2021_126608
crossref_primary_10_1016_j_cej_2022_137765
crossref_primary_10_1016_j_jcis_2022_12_072
crossref_primary_10_1016_j_cej_2024_157136
crossref_primary_10_1016_j_jhazmat_2020_122164
crossref_primary_10_1016_j_seppur_2022_121461
crossref_primary_10_1039_D4EN00194J
crossref_primary_10_1016_j_jes_2020_06_003
crossref_primary_10_1016_j_envres_2022_114789
crossref_primary_10_1016_j_jece_2022_107933
crossref_primary_10_1016_j_cej_2019_03_097
crossref_primary_10_1016_j_jhazmat_2021_126215
crossref_primary_10_1016_j_seppur_2022_122105
crossref_primary_10_1016_j_envres_2024_120579
crossref_primary_10_1016_j_jece_2024_112872
crossref_primary_10_1016_j_jhazmat_2021_127784
crossref_primary_10_1016_j_envres_2024_118258
crossref_primary_10_1016_j_jhazmat_2020_123024
crossref_primary_10_1016_j_cej_2025_166109
crossref_primary_10_1016_j_envres_2024_118259
crossref_primary_10_1016_j_cej_2024_149724
crossref_primary_10_1016_j_colsurfa_2023_131173
crossref_primary_10_1016_j_jece_2024_114810
crossref_primary_10_1016_j_jwpe_2025_108655
crossref_primary_10_1016_j_jwpe_2025_108653
crossref_primary_10_1016_j_jes_2023_01_010
crossref_primary_10_1016_j_cej_2023_141719
crossref_primary_10_1016_j_apcatb_2023_123178
crossref_primary_10_1016_j_cej_2019_122584
crossref_primary_10_1016_j_seppur_2022_122107
crossref_primary_10_1016_j_watres_2024_122631
crossref_primary_10_1002_smll_202403804
crossref_primary_10_1016_j_envres_2022_114521
crossref_primary_10_1016_j_jhazmat_2020_123039
crossref_primary_10_1016_j_matdes_2022_110817
crossref_primary_10_1016_j_seppur_2025_132623
crossref_primary_10_1016_j_gee_2023_10_005
crossref_primary_10_1016_j_cej_2022_138403
crossref_primary_10_1016_j_cej_2022_138888
crossref_primary_10_1016_j_chemosphere_2021_131433
crossref_primary_10_1016_j_cej_2025_167441
crossref_primary_10_1016_j_cej_2019_03_075
crossref_primary_10_1016_j_jhazmat_2020_123043
crossref_primary_10_1016_j_carbon_2019_09_050
crossref_primary_10_1016_j_jcis_2021_05_080
crossref_primary_10_1016_j_apcatb_2021_120714
crossref_primary_10_1016_j_seppur_2024_128075
crossref_primary_10_1016_j_scitotenv_2020_143333
crossref_primary_10_1016_j_cej_2019_122568
crossref_primary_10_1039_D3EN00971H
crossref_primary_10_1016_j_chemosphere_2021_132597
crossref_primary_10_1016_j_cej_2025_166563
crossref_primary_10_1016_j_jhazmat_2020_124145
crossref_primary_10_1016_j_seppur_2022_122113
crossref_primary_10_1016_j_jece_2025_115377
crossref_primary_10_1039_D1RE00259G
crossref_primary_10_1016_j_scitotenv_2021_144953
crossref_primary_10_1016_j_jes_2022_09_037
crossref_primary_10_1016_j_seppur_2024_130372
crossref_primary_10_1016_j_cej_2020_126090
crossref_primary_10_1016_j_jhazmat_2024_133806
crossref_primary_10_1007_s11356_022_23364_3
crossref_primary_10_1016_j_cej_2023_145298
crossref_primary_10_1016_j_cclet_2021_06_027
crossref_primary_10_1016_j_apcatb_2019_118160
crossref_primary_10_1016_j_jhazmat_2021_127503
crossref_primary_10_1016_j_envres_2022_113882
crossref_primary_10_1016_j_chemosphere_2019_125539
crossref_primary_10_1016_j_seppur_2022_122141
crossref_primary_10_1016_j_seppur_2024_129140
crossref_primary_10_1016_j_apcatb_2020_119222
crossref_primary_10_1016_j_memsci_2021_120204
crossref_primary_10_1016_j_jhazmat_2023_132662
crossref_primary_10_1016_j_cej_2024_158885
crossref_primary_10_1016_j_seppur_2025_131508
crossref_primary_10_1016_j_jhazmat_2023_131333
crossref_primary_10_1016_j_cej_2021_132611
crossref_primary_10_1016_j_jcis_2021_11_178
crossref_primary_10_1016_j_cej_2021_129671
crossref_primary_10_1016_j_jece_2025_118428
crossref_primary_10_1016_j_jhazmat_2021_125796
crossref_primary_10_1016_j_seppur_2022_121048
crossref_primary_10_1016_j_cej_2023_146124
crossref_primary_10_1016_j_jhazmat_2021_125552
crossref_primary_10_1016_j_jcis_2021_11_186
crossref_primary_10_1016_j_jece_2025_118423
crossref_primary_10_1016_j_envres_2021_112242
crossref_primary_10_1016_j_cej_2022_136024
crossref_primary_10_1016_j_seppur_2025_131972
crossref_primary_10_1016_j_cej_2020_124936
crossref_primary_10_1016_j_seppur_2020_117669
crossref_primary_10_3390_nano12162842
crossref_primary_10_1016_j_envpol_2024_123825
crossref_primary_10_1016_j_chemosphere_2023_140534
crossref_primary_10_1016_j_apcatb_2022_121900
crossref_primary_10_1016_j_cej_2021_132844
crossref_primary_10_1016_j_ijbiomac_2024_130519
crossref_primary_10_1016_j_cej_2021_129441
crossref_primary_10_3390_app13053182
crossref_primary_10_1016_j_jhazmat_2021_126998
crossref_primary_10_1016_j_chemosphere_2024_143202
crossref_primary_10_1016_j_cclet_2021_07_029
crossref_primary_10_1016_j_inoche_2023_110791
crossref_primary_10_1016_j_jcis_2025_137262
crossref_primary_10_1016_j_seppur_2023_126122
crossref_primary_10_1016_j_apcatb_2024_124848
crossref_primary_10_1016_j_apcatb_2020_119361
crossref_primary_10_1016_j_seppur_2023_125036
crossref_primary_10_1002_smll_202205583
crossref_primary_10_1016_j_cej_2022_140097
crossref_primary_10_1016_j_apcatb_2024_123753
crossref_primary_10_1016_j_microc_2025_114580
crossref_primary_10_1016_j_cej_2020_127545
crossref_primary_10_1016_j_jcis_2025_137277
crossref_primary_10_1016_j_jclepro_2020_124645
crossref_primary_10_1016_j_cej_2023_142782
crossref_primary_10_1016_j_molliq_2024_125427
crossref_primary_10_1016_j_watres_2023_120697
crossref_primary_10_1016_j_ces_2025_121178
crossref_primary_10_1016_j_apcatb_2020_119136
crossref_primary_10_1002_anie_202507349
crossref_primary_10_1080_26395940_2021_1974949
crossref_primary_10_1016_j_chemosphere_2019_125444
crossref_primary_10_1016_j_colsurfa_2025_136361
crossref_primary_10_1016_j_apsusc_2021_150335
crossref_primary_10_1016_j_jhazmat_2023_131202
crossref_primary_10_1016_j_seppur_2024_127961
crossref_primary_10_3390_molecules29071525
crossref_primary_10_1016_j_scitotenv_2020_142794
crossref_primary_10_1002_adfm_202207723
crossref_primary_10_1016_j_jhazmat_2023_132538
crossref_primary_10_1016_j_apsusc_2021_151429
crossref_primary_10_1016_j_jechem_2020_10_011
crossref_primary_10_1016_j_jhazmat_2021_126735
crossref_primary_10_1007_s10311_024_01798_0
crossref_primary_10_1016_j_jhazmat_2021_125646
crossref_primary_10_1016_j_jece_2023_111067
crossref_primary_10_1016_j_envres_2021_111986
crossref_primary_10_1016_j_cej_2023_148075
crossref_primary_10_1016_j_chemosphere_2022_134392
crossref_primary_10_1016_j_jhazmat_2019_121584
crossref_primary_10_1016_j_cej_2020_124065
crossref_primary_10_1016_j_scitotenv_2021_149490
crossref_primary_10_1016_S1872_2067_21_64050_0
crossref_primary_10_1073_pnas_2305706120
crossref_primary_10_1016_j_jhazmat_2024_135086
crossref_primary_10_1016_j_jece_2024_114647
crossref_primary_10_1016_j_apcatb_2023_123468
crossref_primary_10_1021_acsestengg_5c00022
crossref_primary_10_1016_j_cej_2021_134385
crossref_primary_10_1016_j_seppur_2022_122762
crossref_primary_10_1016_j_cej_2019_123936
crossref_primary_10_1016_j_cej_2019_123935
crossref_primary_10_1016_j_jcis_2021_12_153
crossref_primary_10_1016_j_jhazmat_2025_137971
crossref_primary_10_1016_j_jece_2024_113743
crossref_primary_10_1016_j_cej_2022_138814
crossref_primary_10_1016_j_cej_2022_135784
crossref_primary_10_1016_j_cej_2022_135788
crossref_primary_10_1016_j_cej_2022_139900
crossref_primary_10_1039_D1EW00731A
crossref_primary_10_1016_j_seppur_2024_126841
crossref_primary_10_1016_j_envres_2021_112618
crossref_primary_10_1016_j_cej_2020_126499
crossref_primary_10_1016_j_jhazmat_2019_121518
crossref_primary_10_1039_D2RA02491H
crossref_primary_10_1002_cnma_202500150
crossref_primary_10_1016_j_chemosphere_2021_131404
crossref_primary_10_1016_j_jhazmat_2019_121998
crossref_primary_10_1016_j_envres_2025_121858
crossref_primary_10_1016_j_jece_2024_112647
crossref_primary_10_1016_j_apcatb_2023_123204
crossref_primary_10_1016_j_cej_2022_135553
crossref_primary_10_1016_j_apcatb_2021_120694
crossref_primary_10_1016_j_jece_2022_107734
crossref_primary_10_1016_j_jhazmat_2024_135291
crossref_primary_10_1016_j_seppur_2021_120288
crossref_primary_10_1016_j_seppur_2022_121694
crossref_primary_10_1016_j_envpol_2023_122059
crossref_primary_10_1016_j_watres_2022_119191
crossref_primary_10_1016_j_jwpe_2023_104214
crossref_primary_10_1016_j_scitotenv_2019_136447
crossref_primary_10_1016_j_jallcom_2020_158026
crossref_primary_10_1016_j_jclepro_2022_131540
crossref_primary_10_1016_j_cej_2020_125189
crossref_primary_10_1016_j_cej_2021_128996
crossref_primary_10_1016_j_colsurfa_2022_128731
crossref_primary_10_1016_j_envres_2024_120488
crossref_primary_10_3390_catal12091058
crossref_primary_10_1016_j_apsusc_2025_162643
crossref_primary_10_1016_j_cej_2023_141638
crossref_primary_10_1016_j_cej_2022_136424
crossref_primary_10_1016_j_watres_2020_116799
crossref_primary_10_1016_j_jwpe_2025_107070
crossref_primary_10_1016_j_apcatb_2023_123428
crossref_primary_10_1016_j_apsusc_2023_156616
crossref_primary_10_1016_j_cej_2023_148026
crossref_primary_10_1016_j_seppur_2024_130070
crossref_primary_10_1016_j_jece_2024_114471
crossref_primary_10_1039_D3EN00729D
crossref_primary_10_3390_catal12091004
crossref_primary_10_1016_j_cej_2020_127957
crossref_primary_10_1016_j_apsusc_2021_149984
crossref_primary_10_1016_j_cej_2021_133443
crossref_primary_10_1016_j_seppur_2023_124101
crossref_primary_10_1016_j_scitotenv_2022_159725
crossref_primary_10_1016_j_cej_2023_143476
crossref_primary_10_1016_j_jece_2024_114224
crossref_primary_10_1016_j_envres_2025_121258
crossref_primary_10_1016_j_watres_2023_120614
crossref_primary_10_1016_j_jece_2023_110842
crossref_primary_10_1016_j_chemosphere_2020_128796
crossref_primary_10_1016_j_jece_2024_114228
crossref_primary_10_1016_j_jtice_2024_105643
crossref_primary_10_1016_j_jece_2022_107137
crossref_primary_10_1016_j_seppur_2023_124591
crossref_primary_10_1016_j_jece_2021_105492
crossref_primary_10_1016_j_chemosphere_2022_135439
crossref_primary_10_1016_j_jhazmat_2024_136799
crossref_primary_10_1016_j_seppur_2023_124110
crossref_primary_10_1007_s10570_021_03717_w
crossref_primary_10_1016_j_coche_2023_100940
crossref_primary_10_1016_j_scitotenv_2021_150867
crossref_primary_10_1016_j_seppur_2021_120437
crossref_primary_10_1016_j_cej_2021_132106
crossref_primary_10_1016_j_chemosphere_2022_134100
crossref_primary_10_1016_j_jhazmat_2023_131847
crossref_primary_10_1002_anie_202310934
crossref_primary_10_1016_j_seppur_2025_134135
crossref_primary_10_1016_j_cej_2020_127738
crossref_primary_10_1016_j_matt_2020_02_013
crossref_primary_10_1002_adma_202505128
crossref_primary_10_1016_j_cej_2021_132374
crossref_primary_10_1016_j_colsurfa_2024_135133
crossref_primary_10_1016_j_seppur_2022_122909
crossref_primary_10_1016_j_seppur_2024_128881
crossref_primary_10_1016_j_apcatb_2022_121390
crossref_primary_10_1016_j_seppur_2022_120964
crossref_primary_10_1016_j_apcatb_2022_122245
crossref_primary_10_1016_j_jcis_2024_11_122
crossref_primary_10_1016_j_jece_2024_113155
crossref_primary_10_1016_j_jtice_2020_07_001
crossref_primary_10_1016_j_jece_2025_118900
crossref_primary_10_1016_j_jece_2024_112062
crossref_primary_10_1016_j_cej_2023_146724
crossref_primary_10_1016_j_cej_2020_124458
crossref_primary_10_1016_j_cej_2020_126877
crossref_primary_10_1016_j_jhazmat_2024_135002
crossref_primary_10_1016_j_cej_2023_147815
crossref_primary_10_1016_j_cej_2024_149052
crossref_primary_10_1007_s11356_024_32962_2
crossref_primary_10_1016_j_cej_2022_134609
crossref_primary_10_1016_j_micromeso_2021_111259
crossref_primary_10_1016_j_colsurfa_2023_131711
crossref_primary_10_1016_j_cej_2021_131295
crossref_primary_10_1016_j_ijbiomac_2024_134352
crossref_primary_10_1016_j_cej_2025_161675
crossref_primary_10_1016_j_jhazmat_2022_129420
crossref_primary_10_1016_j_jes_2025_02_031
crossref_primary_10_1016_j_cej_2024_149265
crossref_primary_10_1016_j_matchemphys_2022_126257
crossref_primary_10_1016_j_jenvman_2023_119403
crossref_primary_10_1016_j_envpol_2024_125439
crossref_primary_10_1016_j_jwpe_2024_105219
crossref_primary_10_1016_j_cej_2020_127507
crossref_primary_10_1016_j_cej_2021_133477
crossref_primary_10_1016_j_jcis_2023_10_096
crossref_primary_10_1016_j_jece_2022_107572
crossref_primary_10_1007_s42114_025_01394_y
crossref_primary_10_1016_j_cej_2022_136806
crossref_primary_10_1016_j_scitotenv_2023_163054
crossref_primary_10_3390_nano15110865
crossref_primary_10_1016_j_seppur_2021_119492
crossref_primary_10_1016_j_seppur_2024_129704
crossref_primary_10_1016_j_seppur_2022_121851
crossref_primary_10_1016_j_cej_2020_126445
crossref_primary_10_1016_j_seppur_2021_119697
crossref_primary_10_3390_ijms251910528
crossref_primary_10_1016_j_seppur_2021_118367
crossref_primary_10_1016_j_seppur_2025_132396
crossref_primary_10_1016_j_seppur_2021_119457
crossref_primary_10_1016_j_jece_2024_113126
crossref_primary_10_1016_j_apcatb_2022_121594
crossref_primary_10_1016_j_watres_2020_115876
crossref_primary_10_1016_j_cej_2022_134877
crossref_primary_10_1016_j_apcatb_2019_117783
crossref_primary_10_1016_j_seppur_2022_122706
crossref_primary_10_1016_j_cej_2024_149003
crossref_primary_10_1016_j_jclepro_2022_135500
crossref_primary_10_1016_j_seppur_2023_125259
crossref_primary_10_1016_j_jallcom_2023_172370
crossref_primary_10_1016_j_seppur_2022_120525
crossref_primary_10_1016_j_cej_2020_124015
crossref_primary_10_1016_j_jece_2024_113351
crossref_primary_10_1016_j_watres_2022_118259
crossref_primary_10_1007_s12649_020_01009_1
crossref_primary_10_1007_s11270_023_06259_y
crossref_primary_10_1016_j_apcatb_2022_121584
crossref_primary_10_1016_j_cej_2022_134882
crossref_primary_10_1016_j_jhazmat_2024_135449
crossref_primary_10_1016_j_cej_2021_131080
crossref_primary_10_1016_j_jwpe_2024_106519
crossref_primary_10_1016_j_cej_2025_163841
crossref_primary_10_1016_j_cej_2024_154836
crossref_primary_10_1016_j_jece_2022_107559
crossref_primary_10_1016_j_cej_2023_146234
crossref_primary_10_1016_j_jwpe_2024_105120
crossref_primary_10_1016_j_cej_2022_138574
crossref_primary_10_1016_j_cej_2022_138576
crossref_primary_10_1002_ange_202422892
crossref_primary_10_1016_j_cej_2024_157892
crossref_primary_10_1016_j_seppur_2024_129237
crossref_primary_10_1016_j_seppur_2025_131847
crossref_primary_10_1016_j_jhazmat_2024_134420
crossref_primary_10_1016_j_jhazmat_2024_136600
crossref_primary_10_1016_j_jwpe_2025_107817
crossref_primary_10_1016_j_cej_2025_162289
crossref_primary_10_1016_j_cej_2023_145141
crossref_primary_10_1016_j_scitotenv_2019_133836
crossref_primary_10_1016_j_scitotenv_2022_158917
crossref_primary_10_1016_j_scitotenv_2022_158919
crossref_primary_10_1016_j_watres_2024_121486
crossref_primary_10_1016_j_cej_2020_125921
crossref_primary_10_1016_j_jes_2023_11_021
crossref_primary_10_1002_ange_202310934
crossref_primary_10_1016_j_jhazmat_2020_122448
crossref_primary_10_1016_j_seppur_2024_129472
crossref_primary_10_1016_j_jcis_2022_08_022
crossref_primary_10_1016_j_chemosphere_2023_140436
crossref_primary_10_1016_j_cej_2021_133834
crossref_primary_10_1002_adma_202311419
crossref_primary_10_1016_j_cej_2023_143194
crossref_primary_10_1016_j_micromeso_2019_109810
crossref_primary_10_1016_j_jwpe_2025_107843
crossref_primary_10_1016_j_nantod_2025_102663
crossref_primary_10_1016_j_jece_2025_116796
crossref_primary_10_1016_j_jece_2024_115188
crossref_primary_10_1016_j_apcatb_2020_118850
crossref_primary_10_1073_pnas_2220608120
crossref_primary_10_1016_j_jece_2023_110656
crossref_primary_10_1002_smll_202405012
crossref_primary_10_1016_j_cej_2021_129590
crossref_primary_10_1016_j_seppur_2024_129458
crossref_primary_10_1016_j_apcata_2023_119543
crossref_primary_10_1016_j_jallcom_2023_172856
crossref_primary_10_1016_j_cej_2019_124009
crossref_primary_10_1016_j_envpol_2022_120669
crossref_primary_10_1016_j_memsci_2021_119782
crossref_primary_10_1016_j_cej_2022_140671
crossref_primary_10_1016_j_procbio_2024_09_023
crossref_primary_10_1016_j_cej_2021_129111
crossref_primary_10_1016_j_scitotenv_2020_140828
crossref_primary_10_1016_j_cej_2021_131447
crossref_primary_10_1016_j_cej_2022_136180
crossref_primary_10_1016_j_efmat_2023_08_001
crossref_primary_10_1016_j_jhazmat_2020_122228
crossref_primary_10_1016_j_cej_2024_156532
crossref_primary_10_1016_j_psep_2025_107543
crossref_primary_10_1016_j_cej_2021_132767
crossref_primary_10_1016_j_cej_2023_146683
crossref_primary_10_1016_j_seppur_2023_123204
crossref_primary_10_1016_j_wasman_2019_07_016
crossref_primary_10_1038_s41545_024_00383_w
crossref_primary_10_1016_j_cej_2025_166843
crossref_primary_10_1016_j_seppur_2020_118025
crossref_primary_10_1016_j_cej_2023_147525
crossref_primary_10_1016_j_ces_2024_120058
crossref_primary_10_1016_j_chemosphere_2023_140253
crossref_primary_10_1016_j_checat_2025_101299
crossref_primary_10_1016_j_seppur_2024_130663
crossref_primary_10_1016_j_cej_2022_140216
crossref_primary_10_1016_j_cej_2024_156769
crossref_primary_10_1016_j_seppur_2024_129432
crossref_primary_10_1016_j_seppur_2025_131807
crossref_primary_10_1016_j_jwpe_2025_108708
crossref_primary_10_1016_j_seppur_2023_124303
crossref_primary_10_1016_j_cej_2019_123377
crossref_primary_10_1016_j_cej_2023_142075
crossref_primary_10_1016_j_cej_2023_144494
crossref_primary_10_1016_j_seppur_2023_124789
crossref_primary_10_1016_j_watres_2022_118792
crossref_primary_10_1007_s12274_022_4640_8
crossref_primary_10_1016_j_jece_2025_118921
crossref_primary_10_1016_j_jece_2025_118920
crossref_primary_10_1016_j_apcatb_2024_124471
crossref_primary_10_1016_j_cej_2023_147758
crossref_primary_10_1016_j_seppur_2021_119882
crossref_primary_10_1016_j_apcatb_2019_118232
crossref_primary_10_1016_j_cej_2022_139233
crossref_primary_10_1016_j_cherd_2024_09_030
crossref_primary_10_1016_j_cej_2022_137052
crossref_primary_10_1016_j_scitotenv_2021_145522
crossref_primary_10_1016_j_seppur_2024_130412
crossref_primary_10_1016_j_jece_2022_109116
crossref_primary_10_1016_j_biortech_2025_133033
crossref_primary_10_1016_j_seppur_2024_127486
crossref_primary_10_1016_j_jwpe_2025_107608
crossref_primary_10_1016_j_chemosphere_2023_138164
crossref_primary_10_1016_j_jhazmat_2020_123103
crossref_primary_10_1016_j_cej_2025_164407
crossref_primary_10_1016_j_jece_2022_108251
crossref_primary_10_1016_j_cej_2019_04_187
crossref_primary_10_1016_j_chemosphere_2022_134509
crossref_primary_10_1016_j_jmst_2022_05_023
crossref_primary_10_1016_j_seppur_2022_120922
crossref_primary_10_1016_j_seppur_2022_120921
crossref_primary_10_1016_j_chemosphere_2020_127400
crossref_primary_10_1038_s41545_024_00415_5
crossref_primary_10_1016_j_cej_2020_127921
crossref_primary_10_1016_j_jece_2024_114286
crossref_primary_10_1016_j_chemosphere_2022_136937
crossref_primary_10_1002_anie_202422892
crossref_primary_10_1016_j_jece_2023_110863
crossref_primary_10_1016_j_jece_2025_115438
crossref_primary_10_1016_j_cej_2019_122274
crossref_primary_10_1016_j_scitotenv_2019_134715
crossref_primary_10_1016_j_seppur_2024_126378
crossref_primary_10_1016_j_jcis_2025_01_099
crossref_primary_10_1016_j_ecss_2019_106381
crossref_primary_10_1016_j_watres_2023_119925
crossref_primary_10_1016_j_jece_2024_115130
crossref_primary_10_1016_j_jhazmat_2021_126363
crossref_primary_10_1016_j_envint_2019_105128
crossref_primary_10_1016_j_jhazmat_2021_126113
crossref_primary_10_1016_j_chemosphere_2021_132427
crossref_primary_10_1016_j_envpol_2020_114053
crossref_primary_10_1016_j_cej_2022_137407
crossref_primary_10_1016_j_watres_2024_121891
crossref_primary_10_1016_j_colsurfa_2024_134867
crossref_primary_10_1016_j_seppur_2022_121358
crossref_primary_10_1016_j_dwt_2024_100806
crossref_primary_10_1016_j_indcrop_2025_121740
crossref_primary_10_1016_j_seppur_2022_121346
crossref_primary_10_1016_j_jhazmat_2022_129912
crossref_primary_10_1016_j_jclepro_2023_136054
crossref_primary_10_1016_j_jhazmat_2021_126101
crossref_primary_10_1016_j_cej_2021_129504
crossref_primary_10_1016_j_jhazmat_2025_137146
crossref_primary_10_1016_j_cej_2022_138504
crossref_primary_10_1016_j_reactfunctpolym_2022_105482
crossref_primary_10_3390_ijerph18073344
crossref_primary_10_1016_j_apcatb_2024_124430
crossref_primary_10_1016_j_apcatb_2024_124432
crossref_primary_10_1016_j_seppur_2022_121379
crossref_primary_10_1016_j_jenvman_2024_121799
crossref_primary_10_1016_j_jhazmat_2020_122055
crossref_primary_10_1002_smll_202204793
crossref_primary_10_1016_j_chemosphere_2022_136291
crossref_primary_10_3390_catal13101321
crossref_primary_10_1007_s11356_021_15391_3
crossref_primary_10_1016_j_jece_2024_113844
crossref_primary_10_1016_j_jhazmat_2024_133996
crossref_primary_10_1016_j_jece_2022_107806
crossref_primary_10_1016_j_cej_2019_122223
crossref_primary_10_1016_j_jes_2021_08_002
crossref_primary_10_1016_j_cej_2020_128143
crossref_primary_10_1016_j_cej_2025_164044
crossref_primary_10_1016_j_seppur_2023_124935
crossref_primary_10_1016_j_seppur_2023_123846
crossref_primary_10_1016_j_seppur_2023_124936
crossref_primary_10_1016_j_jhazmat_2020_123157
crossref_primary_10_1016_j_watres_2024_122750
crossref_primary_10_1016_j_jece_2023_110265
crossref_primary_10_1016_j_apcatb_2020_119551
crossref_primary_10_1016_j_cej_2023_142922
crossref_primary_10_1016_j_cej_2022_136589
crossref_primary_10_1016_j_apcatb_2021_120832
crossref_primary_10_1016_j_chemosphere_2022_137394
crossref_primary_10_1016_j_jhazmat_2021_127641
crossref_primary_10_1016_j_seppur_2024_129284
crossref_primary_10_1016_j_seppur_2025_132730
crossref_primary_10_1016_j_chemosphere_2022_133838
crossref_primary_10_1016_j_seppur_2021_118705
crossref_primary_10_1039_D4RA06537A
crossref_primary_10_1016_j_cej_2022_137686
crossref_primary_10_1016_j_envres_2025_122094
crossref_primary_10_1016_j_jtice_2021_10_009
crossref_primary_10_1007_s42773_023_00254_6
crossref_primary_10_1016_j_jece_2022_109190
crossref_primary_10_1016_j_cherd_2024_06_042
crossref_primary_10_1016_j_jclepro_2022_135064
crossref_primary_10_1016_j_jece_2023_110481
crossref_primary_10_1016_j_cej_2021_128459
crossref_primary_10_1016_j_watres_2022_118710
crossref_primary_10_1016_j_jece_2024_112923
crossref_primary_10_1038_s41598_022_13489_3
crossref_primary_10_1016_j_seppur_2021_118717
crossref_primary_10_1016_j_cej_2023_147591
crossref_primary_10_1016_j_cej_2020_128150
crossref_primary_10_1016_j_cej_2020_127066
crossref_primary_10_1016_j_jhazmat_2024_133924
crossref_primary_10_1016_j_jhazmat_2021_126535
crossref_primary_10_1016_j_seppur_2023_125817
crossref_primary_10_1016_j_seppur_2022_122265
crossref_primary_10_1016_j_fmre_2022_12_007
crossref_primary_10_1016_j_cej_2020_125915
crossref_primary_10_1016_j_cej_2024_155495
crossref_primary_10_1016_j_carbon_2022_05_027
crossref_primary_10_1016_j_seppur_2023_125811
crossref_primary_10_1016_j_seppur_2022_122016
crossref_primary_10_1016_j_jhazmat_2021_125679
crossref_primary_10_1016_j_cej_2020_125903
crossref_primary_10_1016_j_chemosphere_2023_140663
crossref_primary_10_1016_j_jhazmat_2021_125438
crossref_primary_10_1016_j_seppur_2024_129252
crossref_primary_10_1016_j_jwpe_2025_108325
crossref_primary_10_1016_j_cej_2022_136385
crossref_primary_10_1016_j_cej_2019_122670
crossref_primary_10_1016_j_apcatb_2023_123029
crossref_primary_10_1016_j_jclepro_2023_136468
crossref_primary_10_3390_w14101583
crossref_primary_10_1016_j_jhazmat_2023_132316
crossref_primary_10_1016_j_jhazmat_2024_133946
crossref_primary_10_1016_j_seppur_2023_125823
Cites_doi 10.1021/acs.est.5b02022
10.1021/es4005202
10.1039/c1ee01463c
10.1016/j.watres.2014.10.006
10.1016/j.jhazmat.2016.07.038
10.1016/j.apcatb.2016.04.003
10.1039/C6CS00391E
10.1016/j.cej.2017.07.156
10.1016/j.jhazmat.2017.01.032
10.1021/es501218f
10.1021/acsami.7b09707
10.1039/cs9811000205
10.1021/es400781r
10.1016/j.chemosphere.2015.05.027
10.1016/S0045-6535(01)00086-8
10.1021/acs.est.8b00959
10.1016/j.talanta.2011.04.078
10.1021/acscatal.5b00774
10.1016/j.electacta.2013.05.088
10.1039/c0ce00851f
10.1039/C7TA11052A
10.1016/j.chemosphere.2010.04.067
10.1006/bbrc.2000.3689
10.1021/es506362e
10.1007/s11783-012-0453-4
10.1021/acs.est.7b02519
10.1002/anie.201603198
10.1016/j.jhazmat.2010.03.039
10.1021/acs.est.7b03014
10.1016/S0891-5849(99)00049-0
10.1007/s11356-013-1678-x
10.1016/j.envint.2008.07.009
10.1016/j.apcatb.2017.02.032
10.1016/j.watres.2006.08.027
10.1002/cssc.201402753
10.1021/j100386a015
10.1016/S0141-0229(96)00070-1
10.1007/s007260170026
10.1002/jctb.1873
10.1021/acs.est.6b02079
10.1016/j.jhazmat.2011.04.016
10.1016/j.cej.2015.01.010
10.1016/j.carbon.2016.02.048
10.1021/acs.est.6b00701
10.1038/nrm2256
10.1039/C5RA16094D
10.1016/j.apcatb.2012.03.021
10.1039/C8TA02282H
10.1021/cs5017613
10.1021/es050634b
10.1016/j.carbon.2017.01.060
10.1021/jf000766i
10.1039/C5CC03008K
10.1021/am503063m
10.1038/srep02065
10.1021/es1010225
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.watres.2018.10.087
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
EndPage 424
ExternalDocumentID 30399556
10_1016_j_watres_2018_10_087
S0043135418309047
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
~HD
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-3ece57f39ccc475c4f92828fd917c374631eb249d1efdf34449f6e16bec82fb83
ISICitedReferencesCount 903
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452931600041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1354
1879-2448
IngestDate Wed Oct 01 14:36:43 EDT 2025
Thu Oct 02 16:02:51 EDT 2025
Wed Feb 19 02:33:24 EST 2025
Sat Nov 29 07:28:39 EST 2025
Tue Nov 18 21:21:09 EST 2025
Fri Feb 23 02:48:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Anions
Singlet oxygen
Non-radical
Inhibiting effect
High salinity condition
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-3ece57f39ccc475c4f92828fd917c374631eb249d1efdf34449f6e16bec82fb83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0753-6612
0000-0002-3708-3677
PMID 30399556
PQID 2130800191
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2176350296
proquest_miscellaneous_2130800191
pubmed_primary_30399556
crossref_citationtrail_10_1016_j_watres_2018_10_087
crossref_primary_10_1016_j_watres_2018_10_087
elsevier_sciencedirect_doi_10_1016_j_watres_2018_10_087
PublicationCentury 2000
PublicationDate 2019-01-01
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhou, Xiao, Xiao, Guo, Fang, Lou, Wang, Liu (bib59) 2015; 134
Lee, Gerrity, Lee, Bogeat, Salhi, Gamage, Trenholm, Wert, Snyder, von Gunten (bib23) 2013; 47
Gong, Wang, Li, Zhou, Yao, Lu, Huang, Chen (bib12) 2015; 267
Chen, Zhang, Huang, Li, Wang, Wang (bib3) 2016; 320
Liang, Zhang, Duan, Sun, Liu, Tade, Wang (bib29) 2017; 4
Hu, Zhai, Liu, Zhao, Jiang, Qu (bib17) 2013; 3
Wang, Liu, Li, Luo, Hu, Sun, Shen, Han, Wang (bib46) 2017; 207
Oh, Dong, Lim (bib38) 2016; 194
Kargi, Dincer (bib21) 1996; 19
Yun, Yoo, Bae, Kim, Lee (bib53) 2017; 51
Gutiérrez, Carriazo, Ania, Parra, Ferrer, del Monte (bib15) 2011; 4
Duan, Sun, Kang, Wang, Indrawirawan, Wang (bib10) 2015; 5
Lutze, Kerlin, Schmidt (bib36) 2015; 72
He, Weniger, Neumann, Beller (bib16) 2016; 55
Wang, Ma, Ren, Du, Xu, Han (bib49) 2018; 6
Alia, Mohanty, Matysik (bib2) 2001; 21
Grebel, Pignatello, Mitch (bib14) 2010; 44
Lou, Guo, Xiao, Wang, Lu, Liu (bib32) 2013; 20
Lee, Kim, Weon, Choi, Hwang, Seo, Lee, Kim (bib24) 2016; 50
Duan, Sun, Wang, Kang, Wang (bib9) 2015; 5
Lefebvre, Moletta (bib25) 2006; 40
Wang, Wang, Luo, Liu, Li, Sun, Shen, Han, Wang (bib47) 2017; 330
Zhang, Chen, Wang, Le Roux, Yang, Croué (bib57) 2014; 48
Lopez-Salas, del Monte, Tamayo, Fierro, De Lacey, Ferrer, Gutierrez (bib31) 2014; 7
Zhang, Zheng, Hang, Yan, Zhao (bib55) 2011; 85
Zhang, Chen, Leiknes (bib58) 2016; 50
Li, Wan, Ma, Wang, Guan (bib27) 2015; 5
Ai, Gao, Zhang, He, Yin (bib1) 2013; 47
Huang, Jiang, Huang, Yu (bib19) 2018; 6
Wang, Chen, Quan, Yu, Zhang (bib48) 2017; 115
Luo, Liu, Li, Wang, Hu, Sun, Shen, Han, Wang (bib34) 2017; 329
Luo, Liu, Li, Wang, Sun, Shen, Han, Wang (bib33) 2017; 9
Das, Das (bib8) 2000; 277
Wang, Yuan, Guo, Xu, Liu (bib43) 2011; 190
Luo, Liu, Li, Wang, Sun, Shen, Han, Wang (bib35) 2018; 6
D'Autréaux, Toledano (bib7) 2007; 8
Timmins, Liu, Bechara, Kotake, Swartz (bib40) 1999; 27
Yun, Lee, Kim, Park, Lee (bib54) 2018; 52
Wang, Kang, Sun, Ang, Tadé, Wang (bib45) 2016; 102
Yang, Wang, Yang, Shan, Zhang, Shao, Niu (bib51) 2010; 179
Li, Zhu, Xu (bib26) 2015; 51
Zhang, Li, Croué (bib56) 2012; 121–122
Li, Huang, Xi, Miao, Ding, Cai, Liu, Yang, Yang, Gao, Wang, Huang, Zhang, Liu (bib28) 2018
Yan, Du, Xu, Liao (bib50) 2012; 6
Tian, Chen, Zhou, Pan, Tian, Huang, Fu (bib39) 2011; 13
Clifton (bib4) 1990; 94
Wang, Jiao (bib41) 2000; 48
Yang, Jiang, Lu, Ma, Liu (bib52) 2015; 49
Hu, Su, Chen, Yu, Li, Zhou, Alvarez, Long (bib18) 2017; 51
Klavarioti, Mantzavinos, Kassinos (bib22) 2009; 35
Matilainen, Sillanpää (bib37) 2010; 80
Jin, Wang, Sun, Ai, Wang (bib20) 2015; 49
Wang, Xiong, Qie, Huang (bib44) 2013; 106
George, D.D.D., Gonzalez (bib11) 2006; 40
Wang, Yediler, Lienert, Wang, Kettrup (bib42) 2002; 46
Cychosz, Guillet-Nicolas, García-Martínez, Thommes (bib6) 2016; 46
Liu, Li, Qi, Wang, Luo, Shen, Sun, Han, Wang (bib30) 2014; 6
Comninellis, Kapalka, Malato, Parsons, Poulios, Mantzavinos (bib5) 2008; 83
Gorman, Rodgers (bib13) 1981; 10
Grebel (10.1016/j.watres.2018.10.087_bib14) 2010; 44
Gorman (10.1016/j.watres.2018.10.087_bib13) 1981; 10
Ai (10.1016/j.watres.2018.10.087_bib1) 2013; 47
He (10.1016/j.watres.2018.10.087_bib16) 2016; 55
Liang (10.1016/j.watres.2018.10.087_bib29) 2017; 4
Li (10.1016/j.watres.2018.10.087_bib27) 2015; 5
Liu (10.1016/j.watres.2018.10.087_bib30) 2014; 6
Wang (10.1016/j.watres.2018.10.087_bib42) 2002; 46
Yun (10.1016/j.watres.2018.10.087_bib54) 2018; 52
Luo (10.1016/j.watres.2018.10.087_bib33) 2017; 9
Matilainen (10.1016/j.watres.2018.10.087_bib37) 2010; 80
Cychosz (10.1016/j.watres.2018.10.087_bib6) 2016; 46
Lee (10.1016/j.watres.2018.10.087_bib23) 2013; 47
Alia (10.1016/j.watres.2018.10.087_bib2) 2001; 21
Luo (10.1016/j.watres.2018.10.087_bib35) 2018; 6
Luo (10.1016/j.watres.2018.10.087_bib34) 2017; 329
Duan (10.1016/j.watres.2018.10.087_bib10) 2015; 5
Wang (10.1016/j.watres.2018.10.087_bib49) 2018; 6
Oh (10.1016/j.watres.2018.10.087_bib38) 2016; 194
Chen (10.1016/j.watres.2018.10.087_bib3) 2016; 320
Gutiérrez (10.1016/j.watres.2018.10.087_bib15) 2011; 4
Jin (10.1016/j.watres.2018.10.087_bib20) 2015; 49
Lutze (10.1016/j.watres.2018.10.087_bib36) 2015; 72
Hu (10.1016/j.watres.2018.10.087_bib18) 2017; 51
Kargi (10.1016/j.watres.2018.10.087_bib21) 1996; 19
Tian (10.1016/j.watres.2018.10.087_bib39) 2011; 13
Zhang (10.1016/j.watres.2018.10.087_bib55) 2011; 85
Li (10.1016/j.watres.2018.10.087_bib26) 2015; 51
Das (10.1016/j.watres.2018.10.087_bib8) 2000; 277
Hu (10.1016/j.watres.2018.10.087_bib17) 2013; 3
Lee (10.1016/j.watres.2018.10.087_bib24) 2016; 50
Wang (10.1016/j.watres.2018.10.087_bib48) 2017; 115
Lefebvre (10.1016/j.watres.2018.10.087_bib25) 2006; 40
Zhang (10.1016/j.watres.2018.10.087_bib57) 2014; 48
Wang (10.1016/j.watres.2018.10.087_bib46) 2017; 207
Gong (10.1016/j.watres.2018.10.087_bib12) 2015; 267
Yan (10.1016/j.watres.2018.10.087_bib50) 2012; 6
Wang (10.1016/j.watres.2018.10.087_bib47) 2017; 330
Yang (10.1016/j.watres.2018.10.087_bib51) 2010; 179
George (10.1016/j.watres.2018.10.087_bib11) 2006; 40
Wang (10.1016/j.watres.2018.10.087_bib44) 2013; 106
Wang (10.1016/j.watres.2018.10.087_bib41) 2000; 48
Huang (10.1016/j.watres.2018.10.087_bib19) 2018; 6
D'Autréaux (10.1016/j.watres.2018.10.087_bib7) 2007; 8
Clifton (10.1016/j.watres.2018.10.087_bib4) 1990; 94
Lou (10.1016/j.watres.2018.10.087_bib32) 2013; 20
Zhou (10.1016/j.watres.2018.10.087_bib59) 2015; 134
Lopez-Salas (10.1016/j.watres.2018.10.087_bib31) 2014; 7
Wang (10.1016/j.watres.2018.10.087_bib43) 2011; 190
Yun (10.1016/j.watres.2018.10.087_bib53) 2017; 51
Zhang (10.1016/j.watres.2018.10.087_bib58) 2016; 50
Klavarioti (10.1016/j.watres.2018.10.087_bib22) 2009; 35
Wang (10.1016/j.watres.2018.10.087_bib45) 2016; 102
Comninellis (10.1016/j.watres.2018.10.087_bib5) 2008; 83
Timmins (10.1016/j.watres.2018.10.087_bib40) 1999; 27
Yang (10.1016/j.watres.2018.10.087_bib52) 2015; 49
Zhang (10.1016/j.watres.2018.10.087_bib56) 2012; 121–122
Li (10.1016/j.watres.2018.10.087_bib28) 2018
Duan (10.1016/j.watres.2018.10.087_bib9) 2015; 5
References_xml – volume: 19
  start-page: 529
  year: 1996
  end-page: 537
  ident: bib21
  article-title: Effect of salt concentration on biological treatment of saline wastewater by fed-batch operation
  publication-title: Enzym. Microb. Technol.
– volume: 6
  start-page: 884
  year: 2018
  end-page: 895
  ident: bib49
  article-title: Prussian blue analogues derived porous nitrogen-doped carbon microspheres as high-performance metal-free peroxymonosulfate activators for non-radical-dominated degradation of organic pollutants
  publication-title: J. Mater. Chem.
– volume: 47
  start-page: 5872
  year: 2013
  end-page: 5881
  ident: bib23
  article-title: Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information
  publication-title: Environ. Sci. Technol.
– volume: 329
  start-page: 92
  year: 2017
  end-page: 101
  ident: bib34
  article-title: Nanostructured CoP: an efficient catalyst for degradation of organic pollutants by activating peroxymonosulfate
  publication-title: J. Hazard. Mater.
– volume: 49
  start-page: 7330
  year: 2015
  end-page: 7339
  ident: bib52
  article-title: Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process
  publication-title: Environ. Sci. Technol.
– volume: 8
  start-page: 813
  year: 2007
  ident: bib7
  article-title: ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 83
  start-page: 769
  year: 2008
  end-page: 776
  ident: bib5
  article-title: Advanced oxidation processes for water treatment: advances and trends for R&D
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 48
  start-page: 5868
  year: 2014
  end-page: 5875
  ident: bib57
  article-title: Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation
  publication-title: Environ. Sci. Technol.
– volume: 277
  start-page: 443
  year: 2000
  end-page: 447
  ident: bib8
  article-title: Thioredoxin, a singlet oxygen quencher and hydroxyl radical scavenger: redox independent functions
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 51
  start-page: 10827
  year: 2015
  end-page: 10830
  ident: bib26
  article-title: Pd nanoparticles supported on hierarchically porous carbons derived from assembled nanoparticles of a zeolitic imidazolate framework (ZIF-8) for methanol electrooxidation
  publication-title: Chem. Commun.
– volume: 49
  start-page: 9168
  year: 2015
  end-page: 9175
  ident: bib20
  article-title: Adsorption of 4-n-nonylphenol and bisphenol-a on magnetic reduced graphene oxides: a combined experimental and theoretical studies
  publication-title: Environ. Sci. Technol.
– volume: 3
  start-page: 2065
  year: 2013
  ident: bib17
  article-title: Spontaneous reduction and assembly of graphene oxide into three-dimensional graphene network on arbitrary conductive substrates
  publication-title: Sci. Rep.
– volume: 134
  start-page: 446
  year: 2015
  end-page: 451
  ident: bib59
  article-title: Transformations of chloro and nitro groups during the peroxymonosulfate-based oxidation of 4-chloro-2-nitrophenol
  publication-title: Chemosphere
– volume: 115
  start-page: 730
  year: 2017
  end-page: 739
  ident: bib48
  article-title: Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants
  publication-title: Carbon
– volume: 40
  start-page: 3671
  year: 2006
  end-page: 3682
  ident: bib25
  article-title: Treatment of organic pollution in industrial saline wastewater: a literature review
  publication-title: Water Res.
– volume: 55
  start-page: 12582
  year: 2016
  end-page: 12594
  ident: bib16
  article-title: Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 3535
  year: 2011
  end-page: 3544
  ident: bib15
  article-title: Deep eutectic solvents as both precursors and structure directing agents in the synthesis of nitrogen doped hierarchical carbons highly suitable for CO
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 2994
  year: 2011
  end-page: 3000
  ident: bib39
  article-title: 3D hierarchical flower-like TiO
  publication-title: CrystEngComm
– volume: 194
  start-page: 169
  year: 2016
  end-page: 201
  ident: bib38
  article-title: Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects
  publication-title: Appl. Catal. B Environ.
– volume: 4
  start-page: 315
  year: 2017
  end-page: 324
  ident: bib29
  article-title: An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate
  publication-title: Environ. Sci.: Nano
– volume: 72
  start-page: 349
  year: 2015
  end-page: 360
  ident: bib36
  article-title: Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate
  publication-title: Water Res.
– volume: 47
  start-page: 5344
  year: 2013
  end-page: 5352
  ident: bib1
  article-title: Core-shell structure dependent reactivity of Fe@Fe(2)O(3) nanowires on aerobic degradation of 4-chlorophenol
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 3347
  year: 2014
  end-page: 3355
  ident: bib31
  article-title: Sulfur-doped carbons prepared from eutectic mixtures containing hydroxymethylthiophene as metal-free oxygen reduction catalysts
  publication-title: ChemSusChem
– volume: 190
  start-page: 1083
  year: 2011
  end-page: 1087
  ident: bib43
  article-title: Effects of chloride ions on bleaching of azo dyes by Co
  publication-title: J. Hazard. Mater.
– volume: 6
  start-page: 806
  year: 2012
  end-page: 814
  ident: bib50
  article-title: Decolorization of azo dyes by a salt-tolerant
  publication-title: Front. Environ. Sci. Eng.
– volume: 40
  start-page: 1000
  year: 2006
  end-page: 1007
  ident: bib11
  article-title: Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions
  publication-title: Environ. Sci. Technol.
– volume: 21
  start-page: 195
  year: 2001
  end-page: 200
  ident: bib2
  article-title: Effect of proline on the production of singlet oxygen
  publication-title: Amino Acids
– volume: 46
  start-page: 389
  year: 2016
  end-page: 414
  ident: bib6
  article-title: Recent advances in the textural characterization of hierarchically structured nanoporous materials
  publication-title: Chem. Soc. Rev.
– volume: 50
  start-page: 5864
  year: 2016
  end-page: 5873
  ident: bib58
  article-title: Oxidation of refractory benzothiazoles with PMS/CuFe
  publication-title: Environ. Sci. Technol.
– year: 2018
  ident: bib28
  article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis
  publication-title: J. Am. Chem. Soc.
– volume: 207
  start-page: 316
  year: 2017
  end-page: 325
  ident: bib46
  article-title: In-situ incorporation of iron-copper bimetallic particles in electrospun carbon nanofibers as an efficient Fenton catalyst
  publication-title: Appl. Catal. B Environ.
– volume: 27
  start-page: 329
  year: 1999
  end-page: 333
  ident: bib40
  article-title: Trapping of free radicals with direct in vivo EPR detection: a comparison of 5,5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO and SO
  publication-title: Free Radical Biol. Med.
– volume: 35
  start-page: 402
  year: 2009
  end-page: 417
  ident: bib22
  article-title: Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes
  publication-title: Environ. Int.
– volume: 44
  start-page: 6822
  year: 2010
  end-page: 6828
  ident: bib14
  article-title: Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 553
  year: 2015
  end-page: 559
  ident: bib9
  article-title: N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation
  publication-title: ACS Catal.
– volume: 5
  start-page: 4629
  year: 2015
  end-page: 4636
  ident: bib10
  article-title: Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons
  publication-title: ACS Catal.
– volume: 9
  start-page: 32737
  year: 2017
  end-page: 32744
  ident: bib33
  article-title: Deep-eutectic solvents derived nitrogen-doped graphitic carbon as a superior electrocatalyst for oxygen reduction
  publication-title: ACS Appl. Mater. Interfaces
– volume: 106
  start-page: 320
  year: 2013
  end-page: 326
  ident: bib44
  article-title: High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole
  publication-title: Electrochim. Acta
– volume: 52
  start-page: 7032
  year: 2018
  end-page: 7042
  ident: bib54
  article-title: Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 10134
  year: 2016
  end-page: 10142
  ident: bib24
  article-title: Activation of persulfates by graphitized nanodiamonds for removal of organic compounds
  publication-title: Environ. Sci. Technol.
– volume: 179
  start-page: 552
  year: 2010
  end-page: 558
  ident: bib51
  article-title: Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide
  publication-title: J. Hazard. Mater.
– volume: 20
  start-page: 6317
  year: 2013
  end-page: 6323
  ident: bib32
  article-title: Rapid dye degradation with reactive oxidants generated by chloride-induced peroxymonosulfate activation
  publication-title: Environ. Sci. Pollut. Res.
– volume: 80
  start-page: 351
  year: 2010
  end-page: 365
  ident: bib37
  article-title: Removal of natural organic matter from drinking water by advanced oxidation processes
  publication-title: Chemosphere
– volume: 102
  start-page: 279
  year: 2016
  end-page: 287
  ident: bib45
  article-title: One-pot synthesis of N-doped graphene for metal-free advanced oxidation processes
  publication-title: Carbon
– volume: 121–122
  start-page: 88
  year: 2012
  end-page: 94
  ident: bib56
  article-title: A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water
  publication-title: Appl. Catal. B Environ.
– volume: 6
  start-page: 8978
  year: 2018
  end-page: 8985
  ident: bib19
  article-title: Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate
  publication-title: J. Mater. Chem. A.
– volume: 5
  start-page: 99935
  year: 2015
  end-page: 99943
  ident: bib27
  article-title: Role of inorganic ions and dissolved natural organic matters on persulfate oxidation of acid orange 7 with zero-valent iron
  publication-title: RSC Adv.
– volume: 6
  start-page: 3454
  year: 2018
  end-page: 3461
  ident: bib35
  article-title: Convenient synthesis and engineering of ultrafine Co
  publication-title: J. Mater. Chem.
– volume: 94
  start-page: 8561
  year: 1990
  end-page: 8567
  ident: bib4
  article-title: Temperature dependence of the rate constants for reactions of the sulfate radical, S04-, with anions
  publication-title: J. Phys. Chem.
– volume: 10
  start-page: 205
  year: 1981
  end-page: 231
  ident: bib13
  article-title: Singlet molecular oxygen
  publication-title: Chem. Soc. Rev.
– volume: 330
  start-page: 262
  year: 2017
  end-page: 271
  ident: bib47
  article-title: Metal-organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate
  publication-title: Chem. Eng. J.
– volume: 320
  start-page: 571
  year: 2016
  end-page: 580
  ident: bib3
  article-title: Decolorization of azo dye by peroxymonosulfate activated by carbon nanotube: radical versus non-radical mechanism
  publication-title: J. Hazard. Mater.
– volume: 51
  start-page: 11288
  year: 2017
  end-page: 11296
  ident: bib18
  article-title: Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation
  publication-title: Environ. Sci. Technol.
– volume: 267
  start-page: 102
  year: 2015
  end-page: 110
  ident: bib12
  article-title: An effective heterogeneous iron-based catalyst to activate peroxymonosulfate for organic contaminants removal
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 13167
  year: 2014
  end-page: 13173
  ident: bib30
  article-title: Yolk-shell Fe(0)@SiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 85
  start-page: 779
  year: 2011
  end-page: 786
  ident: bib55
  article-title: Sensitive and selective off-on rhodamine hydrazide fluorescent chemosensor for hypochlorous acid detection and bioimaging
  publication-title: Talanta
– volume: 46
  start-page: 339
  year: 2002
  end-page: 344
  ident: bib42
  article-title: Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri
  publication-title: Chemosphere
– volume: 48
  start-page: 5677
  year: 2000
  end-page: 5684
  ident: bib41
  article-title: Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen
  publication-title: J. Agric. Food Chem.
– volume: 51
  start-page: 10090
  year: 2017
  end-page: 10099
  ident: bib53
  article-title: Exploring the role of persulfate in the activation process: radical precursor versus electron acceptor
  publication-title: Environ. Sci. Technol.
– volume: 49
  start-page: 9168
  year: 2015
  ident: 10.1016/j.watres.2018.10.087_bib20
  article-title: Adsorption of 4-n-nonylphenol and bisphenol-a on magnetic reduced graphene oxides: a combined experimental and theoretical studies
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b02022
– volume: 47
  start-page: 5344
  year: 2013
  ident: 10.1016/j.watres.2018.10.087_bib1
  article-title: Core-shell structure dependent reactivity of Fe@Fe(2)O(3) nanowires on aerobic degradation of 4-chlorophenol
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4005202
– volume: 4
  start-page: 3535
  year: 2011
  ident: 10.1016/j.watres.2018.10.087_bib15
  article-title: Deep eutectic solvents as both precursors and structure directing agents in the synthesis of nitrogen doped hierarchical carbons highly suitable for CO2 capture
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01463c
– volume: 72
  start-page: 349
  year: 2015
  ident: 10.1016/j.watres.2018.10.087_bib36
  article-title: Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.10.006
– volume: 320
  start-page: 571
  year: 2016
  ident: 10.1016/j.watres.2018.10.087_bib3
  article-title: Decolorization of azo dye by peroxymonosulfate activated by carbon nanotube: radical versus non-radical mechanism
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.07.038
– volume: 194
  start-page: 169
  year: 2016
  ident: 10.1016/j.watres.2018.10.087_bib38
  article-title: Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.04.003
– volume: 46
  start-page: 389
  year: 2016
  ident: 10.1016/j.watres.2018.10.087_bib6
  article-title: Recent advances in the textural characterization of hierarchically structured nanoporous materials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00391E
– volume: 330
  start-page: 262
  year: 2017
  ident: 10.1016/j.watres.2018.10.087_bib47
  article-title: Metal-organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.156
– volume: 329
  start-page: 92
  year: 2017
  ident: 10.1016/j.watres.2018.10.087_bib34
  article-title: Nanostructured CoP: an efficient catalyst for degradation of organic pollutants by activating peroxymonosulfate
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.01.032
– volume: 48
  start-page: 5868
  year: 2014
  ident: 10.1016/j.watres.2018.10.087_bib57
  article-title: Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es501218f
– volume: 9
  start-page: 32737
  year: 2017
  ident: 10.1016/j.watres.2018.10.087_bib33
  article-title: Deep-eutectic solvents derived nitrogen-doped graphitic carbon as a superior electrocatalyst for oxygen reduction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b09707
– volume: 10
  start-page: 205
  year: 1981
  ident: 10.1016/j.watres.2018.10.087_bib13
  article-title: Singlet molecular oxygen
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/cs9811000205
– volume: 47
  start-page: 5872
  year: 2013
  ident: 10.1016/j.watres.2018.10.087_bib23
  article-title: Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400781r
– volume: 134
  start-page: 446
  year: 2015
  ident: 10.1016/j.watres.2018.10.087_bib59
  article-title: Transformations of chloro and nitro groups during the peroxymonosulfate-based oxidation of 4-chloro-2-nitrophenol
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.05.027
– volume: 46
  start-page: 339
  year: 2002
  ident: 10.1016/j.watres.2018.10.087_bib42
  article-title: Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(01)00086-8
– volume: 52
  start-page: 7032
  year: 2018
  ident: 10.1016/j.watres.2018.10.087_bib54
  article-title: Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00959
– volume: 85
  start-page: 779
  year: 2011
  ident: 10.1016/j.watres.2018.10.087_bib55
  article-title: Sensitive and selective off-on rhodamine hydrazide fluorescent chemosensor for hypochlorous acid detection and bioimaging
  publication-title: Talanta
  doi: 10.1016/j.talanta.2011.04.078
– volume: 5
  start-page: 4629
  year: 2015
  ident: 10.1016/j.watres.2018.10.087_bib10
  article-title: Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00774
– volume: 106
  start-page: 320
  year: 2013
  ident: 10.1016/j.watres.2018.10.087_bib44
  article-title: High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.05.088
– volume: 13
  start-page: 2994
  year: 2011
  ident: 10.1016/j.watres.2018.10.087_bib39
  article-title: 3D hierarchical flower-like TiO2 nanostructure: morphology control and its photocatalytic property
  publication-title: CrystEngComm
  doi: 10.1039/c0ce00851f
– volume: 6
  start-page: 3454
  year: 2018
  ident: 10.1016/j.watres.2018.10.087_bib35
  article-title: Convenient synthesis and engineering of ultrafine Co3O4-incorporated carbon composite: towards practical application of environmental remediation
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA11052A
– volume: 80
  start-page: 351
  year: 2010
  ident: 10.1016/j.watres.2018.10.087_bib37
  article-title: Removal of natural organic matter from drinking water by advanced oxidation processes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.04.067
– volume: 277
  start-page: 443
  year: 2000
  ident: 10.1016/j.watres.2018.10.087_bib8
  article-title: Thioredoxin, a singlet oxygen quencher and hydroxyl radical scavenger: redox independent functions
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2000.3689
– volume: 49
  start-page: 7330
  year: 2015
  ident: 10.1016/j.watres.2018.10.087_bib52
  article-title: Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es506362e
– volume: 6
  start-page: 806
  year: 2012
  ident: 10.1016/j.watres.2018.10.087_bib50
  article-title: Decolorization of azo dyes by a salt-tolerant Staphy-lococcus cohnii strain isolated from textile wastewater
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-012-0453-4
– volume: 51
  start-page: 10090
  year: 2017
  ident: 10.1016/j.watres.2018.10.087_bib53
  article-title: Exploring the role of persulfate in the activation process: radical precursor versus electron acceptor
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02519
– volume: 55
  start-page: 12582
  year: 2016
  ident: 10.1016/j.watres.2018.10.087_bib16
  article-title: Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201603198
– volume: 179
  start-page: 552
  year: 2010
  ident: 10.1016/j.watres.2018.10.087_bib51
  article-title: Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.03.039
– volume: 51
  start-page: 11288
  year: 2017
  ident: 10.1016/j.watres.2018.10.087_bib18
  article-title: Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03014
– year: 2018
  ident: 10.1016/j.watres.2018.10.087_bib28
  article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 329
  year: 1999
  ident: 10.1016/j.watres.2018.10.087_bib40
  article-title: Trapping of free radicals with direct in vivo EPR detection: a comparison of 5,5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO and SO4•−
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/S0891-5849(99)00049-0
– volume: 4
  start-page: 315
  year: 2017
  ident: 10.1016/j.watres.2018.10.087_bib29
  article-title: An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate
  publication-title: Environ. Sci.: Nano
– volume: 20
  start-page: 6317
  year: 2013
  ident: 10.1016/j.watres.2018.10.087_bib32
  article-title: Rapid dye degradation with reactive oxidants generated by chloride-induced peroxymonosulfate activation
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-013-1678-x
– volume: 35
  start-page: 402
  year: 2009
  ident: 10.1016/j.watres.2018.10.087_bib22
  article-title: Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2008.07.009
– volume: 207
  start-page: 316
  year: 2017
  ident: 10.1016/j.watres.2018.10.087_bib46
  article-title: In-situ incorporation of iron-copper bimetallic particles in electrospun carbon nanofibers as an efficient Fenton catalyst
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.02.032
– volume: 40
  start-page: 3671
  year: 2006
  ident: 10.1016/j.watres.2018.10.087_bib25
  article-title: Treatment of organic pollution in industrial saline wastewater: a literature review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.08.027
– volume: 7
  start-page: 3347
  year: 2014
  ident: 10.1016/j.watres.2018.10.087_bib31
  article-title: Sulfur-doped carbons prepared from eutectic mixtures containing hydroxymethylthiophene as metal-free oxygen reduction catalysts
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402753
– volume: 94
  start-page: 8561
  year: 1990
  ident: 10.1016/j.watres.2018.10.087_bib4
  article-title: Temperature dependence of the rate constants for reactions of the sulfate radical, S04-, with anions
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100386a015
– volume: 19
  start-page: 529
  year: 1996
  ident: 10.1016/j.watres.2018.10.087_bib21
  article-title: Effect of salt concentration on biological treatment of saline wastewater by fed-batch operation
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/S0141-0229(96)00070-1
– volume: 21
  start-page: 195
  year: 2001
  ident: 10.1016/j.watres.2018.10.087_bib2
  article-title: Effect of proline on the production of singlet oxygen
  publication-title: Amino Acids
  doi: 10.1007/s007260170026
– volume: 83
  start-page: 769
  year: 2008
  ident: 10.1016/j.watres.2018.10.087_bib5
  article-title: Advanced oxidation processes for water treatment: advances and trends for R&D
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.1873
– volume: 50
  start-page: 10134
  year: 2016
  ident: 10.1016/j.watres.2018.10.087_bib24
  article-title: Activation of persulfates by graphitized nanodiamonds for removal of organic compounds
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02079
– volume: 190
  start-page: 1083
  year: 2011
  ident: 10.1016/j.watres.2018.10.087_bib43
  article-title: Effects of chloride ions on bleaching of azo dyes by Co2+/oxone reagent: kinetic analysis
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.04.016
– volume: 267
  start-page: 102
  year: 2015
  ident: 10.1016/j.watres.2018.10.087_bib12
  article-title: An effective heterogeneous iron-based catalyst to activate peroxymonosulfate for organic contaminants removal
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.01.010
– volume: 102
  start-page: 279
  year: 2016
  ident: 10.1016/j.watres.2018.10.087_bib45
  article-title: One-pot synthesis of N-doped graphene for metal-free advanced oxidation processes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.02.048
– volume: 50
  start-page: 5864
  year: 2016
  ident: 10.1016/j.watres.2018.10.087_bib58
  article-title: Oxidation of refractory benzothiazoles with PMS/CuFe2O4: kinetics and transformation intermediates
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00701
– volume: 8
  start-page: 813
  year: 2007
  ident: 10.1016/j.watres.2018.10.087_bib7
  article-title: ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2256
– volume: 5
  start-page: 99935
  year: 2015
  ident: 10.1016/j.watres.2018.10.087_bib27
  article-title: Role of inorganic ions and dissolved natural organic matters on persulfate oxidation of acid orange 7 with zero-valent iron
  publication-title: RSC Adv.
  doi: 10.1039/C5RA16094D
– volume: 121–122
  start-page: 88
  year: 2012
  ident: 10.1016/j.watres.2018.10.087_bib56
  article-title: A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2012.03.021
– volume: 6
  start-page: 8978
  year: 2018
  ident: 10.1016/j.watres.2018.10.087_bib19
  article-title: Sludge biochar-based catalysts for improved pollutant degradation by activating peroxymonosulfate
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C8TA02282H
– volume: 5
  start-page: 553
  year: 2015
  ident: 10.1016/j.watres.2018.10.087_bib9
  article-title: N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation
  publication-title: ACS Catal.
  doi: 10.1021/cs5017613
– volume: 40
  start-page: 1000
  year: 2006
  ident: 10.1016/j.watres.2018.10.087_bib11
  article-title: Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050634b
– volume: 115
  start-page: 730
  year: 2017
  ident: 10.1016/j.watres.2018.10.087_bib48
  article-title: Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.01.060
– volume: 6
  start-page: 884
  year: 2018
  ident: 10.1016/j.watres.2018.10.087_bib49
  article-title: Prussian blue analogues derived porous nitrogen-doped carbon microspheres as high-performance metal-free peroxymonosulfate activators for non-radical-dominated degradation of organic pollutants
  publication-title: J. Mater. Chem.
– volume: 48
  start-page: 5677
  year: 2000
  ident: 10.1016/j.watres.2018.10.087_bib41
  article-title: Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf000766i
– volume: 51
  start-page: 10827
  year: 2015
  ident: 10.1016/j.watres.2018.10.087_bib26
  article-title: Pd nanoparticles supported on hierarchically porous carbons derived from assembled nanoparticles of a zeolitic imidazolate framework (ZIF-8) for methanol electrooxidation
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC03008K
– volume: 6
  start-page: 13167
  year: 2014
  ident: 10.1016/j.watres.2018.10.087_bib30
  article-title: Yolk-shell Fe(0)@SiO2 nanoparticles as nanoreactors for fenton-like catalytic reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am503063m
– volume: 3
  start-page: 2065
  year: 2013
  ident: 10.1016/j.watres.2018.10.087_bib17
  article-title: Spontaneous reduction and assembly of graphene oxide into three-dimensional graphene network on arbitrary conductive substrates
  publication-title: Sci. Rep.
  doi: 10.1038/srep02065
– volume: 44
  start-page: 6822
  year: 2010
  ident: 10.1016/j.watres.2018.10.087_bib14
  article-title: Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1010225
SSID ssj0002239
Score 2.712656
Snippet The degradation of organic contaminants under high salinity condition is still a challenge for environmental remediation due to the inhibiting effect resulted...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 416
SubjectTerms Anions
bisphenol A
catalysts
catalytic activity
chlorides
electron paramagnetic resonance spectroscopy
free radicals
graphene
High salinity condition
Inhibiting effect
Non-radical
oxidation
predation
remediation
saline water
salinity
Singlet oxygen
Title Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition
URI https://dx.doi.org/10.1016/j.watres.2018.10.087
https://www.ncbi.nlm.nih.gov/pubmed/30399556
https://www.proquest.com/docview/2130800191
https://www.proquest.com/docview/2176350296
Volume 148
WOSCitedRecordID wos000452931600041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2448
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002239
  issn: 0043-1354
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lKQc4IN6UR7VI3CJXtnft9R6rqghQqRAUlJu1sXcVR1Uc8ijhwK_hjzLjfRBataUHLlG0Wq_sfF9mZ8Yz3xLyWoi44maURbVkEKBkkkdSmzpSJkOh6jzmnTr_1yNxfFwMh_Jjr_fL98KcnYrptFiv5ey_Qg1jADa2zt4A7rAoDMB3AB0-AXb4_CfgP8NmBGAM2vUPmBPVLRa7oF8JgX40V_a9TLtu7GFKg5ntFLDS352eBFYH1KghUQd3ctQssBasBTi7g3PnA5Q5HiwU9lWCGw9Bdd0EiCf-ZBkUYHRqQuNO13RtS-lD8uFo1WVqP62aMNLYYn7VfvObapfutybpYKzasQqTQ7b7g5_r8hfYMhXyF84mo0gqs1LSwSZb-U1nVXmSb2zQ3DZdX7D9Ng0x2fuusMsGq_aKPSzccxv6X1Lb57bAUJjoa94mpV2lxFVgqIRVtsh2KjJZ9Mn2_rvD4fuw4YOHJX0hAz6I79Dsyggv3s1lHtBlEU7n6ZzcI3ddiEL3LbXuk56ePiB3NoQrH5KfjmT0PMnoBsloIBl1JKMAPw0koxsko62hgWR0n3Yko0gy6klGA8kekS9vDk8O3kbuII-oYjJbRkxXOhOGyaqquMjAOEiM9E0tE1ExwXOW6FHKZZ2AmTCMcy5NrpMc7EuRmlHBHpM-3L5-SqguhOa6TlNjFFdxpYyMGWPglas6Lkb5DmH-xy0rp3KPh62clldBu0OicNXMqrxcM1943ErnqVoPtAQyXnPlKw9zCYYc386pqW5XMAm8yQIjruSqOagfGacSnvOJ5Ui4X_BFpcyy_NkNn-U5uf3nb_mC9JfzlX5JblVny2Yx3yVbYljsOsb_BnQs3UY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Singlet+oxygen-dominated+non-radical+oxidation+process+for+efficient+degradation+of+bisphenol+A+under+high+salinity+condition&rft.jtitle=Water+research+%28Oxford%29&rft.au=Luo%2C+Rui&rft.au=Li%2C+Miaoqing&rft.au=Wang%2C+Chaohai&rft.au=Zhang%2C+Ming&rft.date=2019-01-01&rft.issn=0043-1354&rft.volume=148&rft.spage=416&rft.epage=424&rft_id=info:doi/10.1016%2Fj.watres.2018.10.087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_watres_2018_10_087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon