Thomson’s multitaper approach combined with coherent plane-wave compounding to reduce speckle in ultrasound imaging
•Thomson’s multitaper combined with coherent plane-wave compounding is evaluated.•The best image quality is obtained with 11 plane waves and 3 Thomson’s tapers.•The resolution outside the focal area is improved compared to a single focal method.•The speckle noise is reduced and cyst edges are well d...
Uloženo v:
| Vydáno v: | Ultrasonics Ročník 56; s. 390 - 398 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
01.02.2015
|
| Témata: | |
| ISSN: | 0041-624X, 1874-9968, 1874-9968 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Thomson’s multitaper combined with coherent plane-wave compounding is evaluated.•The best image quality is obtained with 11 plane waves and 3 Thomson’s tapers.•The resolution outside the focal area is improved compared to a single focal method.•The speckle noise is reduced and cyst edges are well delineated.•The frame rate is increased compared to that of the single focal method.
In ultrasound imaging, the speckle pattern limits the image quality. Spatial and frequency compounding are commonly used to reduce speckle noise or improve the contrast. Although recent implementations can preserve a frame rate that is compatible with real-time imaging (e.g., synthetic aperture compounding), most classic compounding techniques are based on the coherent combination of several radiofrequency images from the same investigated area, which reduces the frame rate. Furthermore, Thomson’s multitaper approach aims to smooth the speckle by incoherently combining the obtained B-mode images after applying different apodization windows on the same original data. With only one acquisition, the frame rate remains high, but the spatial resolution is decreased.
To improve the resolution and contrast while reducing the speckle noise, this paper proposes combining the coherent plane-wave compounding technique (CPWC) with Thomson’s multitaper method. The resulting multitaper coherent plane-wave compounding (MCPWC) takes advantage of coherent and incoherent approaches.
Simulations and experimental results demonstrate that in terms of the signal-to-noise ratio, contrast, and resolution, the image quality is increased using plane wave emissions at approximately ten steering angles with three Thomson’s tapers. Outside the focal area, the lateral resolution is improved by a factor of 2, and the contrast is increased by approximately 2dB compared with images obtained using a single focalization technique and Thomson’s multitaper approach. |
|---|---|
| AbstractList | In ultrasound imaging, the speckle pattern limits the image quality. Spatial and frequency compounding are commonly used to reduce speckle noise or improve the contrast. Although recent implementations can preserve a frame rate that is compatible with real-time imaging (e.g., synthetic aperture compounding), most classic compounding techniques are based on the coherent combination of several radiofrequency images from the same investigated area, which reduces the frame rate. Furthermore, Thomson's multitaper approach aims to smooth the speckle by incoherently combining the obtained B-mode images after applying different apodization windows on the same original data. With only one acquisition, the frame rate remains high, but the spatial resolution is decreased. To improve the resolution and contrast while reducing the speckle noise, this paper proposes combining the coherent plane-wave compounding technique (CPWC) with Thomson's multitaper method. The resulting multitaper coherent plane-wave compounding (MCPWC) takes advantage of coherent and incoherent approaches. Simulations and experimental results demonstrate that in terms of the signal-to-noise ratio, contrast, and resolution, the image quality is increased using plane wave emissions at approximately ten steering angles with three Thomson's tapers. Outside the focal area, the lateral resolution is improved by a factor of 2, and the contrast is increased by approximately 2dB compared with images obtained using a single focalization technique and Thomson's multitaper approach.In ultrasound imaging, the speckle pattern limits the image quality. Spatial and frequency compounding are commonly used to reduce speckle noise or improve the contrast. Although recent implementations can preserve a frame rate that is compatible with real-time imaging (e.g., synthetic aperture compounding), most classic compounding techniques are based on the coherent combination of several radiofrequency images from the same investigated area, which reduces the frame rate. Furthermore, Thomson's multitaper approach aims to smooth the speckle by incoherently combining the obtained B-mode images after applying different apodization windows on the same original data. With only one acquisition, the frame rate remains high, but the spatial resolution is decreased. To improve the resolution and contrast while reducing the speckle noise, this paper proposes combining the coherent plane-wave compounding technique (CPWC) with Thomson's multitaper method. The resulting multitaper coherent plane-wave compounding (MCPWC) takes advantage of coherent and incoherent approaches. Simulations and experimental results demonstrate that in terms of the signal-to-noise ratio, contrast, and resolution, the image quality is increased using plane wave emissions at approximately ten steering angles with three Thomson's tapers. Outside the focal area, the lateral resolution is improved by a factor of 2, and the contrast is increased by approximately 2dB compared with images obtained using a single focalization technique and Thomson's multitaper approach. •Thomson’s multitaper combined with coherent plane-wave compounding is evaluated.•The best image quality is obtained with 11 plane waves and 3 Thomson’s tapers.•The resolution outside the focal area is improved compared to a single focal method.•The speckle noise is reduced and cyst edges are well delineated.•The frame rate is increased compared to that of the single focal method. In ultrasound imaging, the speckle pattern limits the image quality. Spatial and frequency compounding are commonly used to reduce speckle noise or improve the contrast. Although recent implementations can preserve a frame rate that is compatible with real-time imaging (e.g., synthetic aperture compounding), most classic compounding techniques are based on the coherent combination of several radiofrequency images from the same investigated area, which reduces the frame rate. Furthermore, Thomson’s multitaper approach aims to smooth the speckle by incoherently combining the obtained B-mode images after applying different apodization windows on the same original data. With only one acquisition, the frame rate remains high, but the spatial resolution is decreased. To improve the resolution and contrast while reducing the speckle noise, this paper proposes combining the coherent plane-wave compounding technique (CPWC) with Thomson’s multitaper method. The resulting multitaper coherent plane-wave compounding (MCPWC) takes advantage of coherent and incoherent approaches. Simulations and experimental results demonstrate that in terms of the signal-to-noise ratio, contrast, and resolution, the image quality is increased using plane wave emissions at approximately ten steering angles with three Thomson’s tapers. Outside the focal area, the lateral resolution is improved by a factor of 2, and the contrast is increased by approximately 2dB compared with images obtained using a single focalization technique and Thomson’s multitaper approach. In ultrasound imaging, the speckle pattern limits the image quality. Spatial and frequency compounding are commonly used to reduce speckle noise or improve the contrast. Although recent implementations can preserve a frame rate that is compatible with real-time imaging (e.g., synthetic aperture compounding), most classic compounding techniques are based on the coherent combination of several radiofrequency images from the same investigated area, which reduces the frame rate. Furthermore, Thomson's multitaper approach aims to smooth the speckle by incoherently combining the obtained B-mode images after applying different apodization windows on the same original data. With only one acquisition, the frame rate remains high, but the spatial resolution is decreased. To improve the resolution and contrast while reducing the speckle noise, this paper proposes combining the coherent plane-wave compounding technique (CPWC) with Thomson's multitaper method. The resulting multitaper coherent plane-wave compounding (MCPWC) takes advantage of coherent and incoherent approaches. Simulations and experimental results demonstrate that in terms of the signal-to-noise ratio, contrast, and resolution, the image quality is increased using plane wave emissions at approximately ten steering angles with three Thomson's tapers. Outside the focal area, the lateral resolution is improved by a factor of 2, and the contrast is increased by approximately 2dB compared with images obtained using a single focalization technique and Thomson's multitaper approach. In ultrasound imaging, the speckle pattern limits the image quality. Spatial and frequency compounding are commonly used to reduce speckle noise or improve the contrast. Although recent implementations can preserve a frame rate that is compatible with real-time imaging (e.g., synthetic aperture compounding), most classic compounding techniques are based on the coherent combination of several radiofrequency images from the same investigated area, which reduces the frame rate. Furthermore, Thomson's multitaper approach aims to smooth the speckle by incoherently combining the obtained B-mode images after applying different apodization windows on the same original data. With only one acquisition, the frame rate remains high, but the spatial resolution is decreased. To improve the resolution and contrast while reducing the speckle noise, this paper proposes combining the coherent plane-wave compounding technique (CPWC) with Thomson's multitaper method. The resulting multitaper coherent plane-wave compounding (MCPWC) takes advantage of coherent and incoherent approaches. Simulations and experimental results demonstrate that in terms of the signal-to-noise ratio, contrast, and resolution, the image quality is increased using plane wave emissions at approximately ten steering angles with three Thomson's tapers. Outside the focal area, the lateral resolution is improved by a factor of 2, and the contrast is increased by approximately 2 dB compared with images obtained using a single focalization technique and Thomson's multitaper approach. |
| Author | Cachard, Christian Toulemonde, Matthieu Tortoli, Piero Basset, Olivier |
| Author_xml | – sequence: 1 givenname: Matthieu surname: Toulemonde fullname: Toulemonde, Matthieu email: matthieu.toulemonde@creatis.insa-lyon.fr organization: CREATIS, Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5220, Inserm U630, Villeurbanne, France – sequence: 2 givenname: Olivier surname: Basset fullname: Basset, Olivier organization: CREATIS, Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5220, Inserm U630, Villeurbanne, France – sequence: 3 givenname: Piero surname: Tortoli fullname: Tortoli, Piero organization: Microelectronics Systems Design Laboratory, Information Engineering Department, Università di Firenze, Italy – sequence: 4 givenname: Christian surname: Cachard fullname: Cachard, Christian organization: CREATIS, Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5220, Inserm U630, Villeurbanne, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25262843$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1u1TAQhS1URG8Lb4CQl2wS_BfHYYGEKv6kSmyKxM6ynWmvL4kd7KRVd7wGr9cnqaO0GxbAymPpO0cz55ygoxADIPSSkpoSKt8c6mWYk8k1I1TUpKsJkU_QjqpWVF0n1RHaESJoJZn4foxOcj6QAirKn6Fj1jDJlOA7tFzs45hjuPv1O-OxOPrZTJCwmaYUjdtjF0frA_T4xs_rbw8JwoynwQSobsw1rMQUl9D7cIXniBP0iwOcJ3A_BsA-4G3PFcF-NFeFe46eXpohw4uH9xR9-_jh4uxzdf7105ez9-eV410zV7yjlgnom46orrGyZ61RfSttK6m01FhhlXSidcwqDtYJ2hjKJNgyALeEn6LXm2855ucCedajzw6Gdfm4ZE1l23aCcMr_A-WCtURxVdBXD-hiR-j1lMpZ6VY_plqAtxvgUsw5waV2JdbZx1CC8IOmRK8V6oPeotFrhZp0ulRYxOIP8aP_P2TvNhmUPK89JJ2dh-Cg9wncrPvo_25wDx5murY |
| CitedBy_id | crossref_primary_10_1016_j_irbm_2015_01_013 crossref_primary_10_1109_TUFFC_2016_2566920 crossref_primary_10_1088_1748_0221_13_07_P07004 crossref_primary_10_3390_app6110359 crossref_primary_10_1016_j_measurement_2020_108708 crossref_primary_10_1109_TUFFC_2018_2820747 crossref_primary_10_1134_S1063771018030156 crossref_primary_10_1016_j_bspc_2021_103267 |
| Cites_doi | 10.1109/TMI.2013.2255310 10.1002/j.1538-7305.1978.tb02104.x 10.1109/TUFFC.2012.2444 10.1109/58.4145 10.1109/10.771197 10.1016/S0167-8655(02)00173-3 10.1109/TUFFC.2012.2427 10.1109/PROC.1982.12433 10.1109/ACSSC.2007.4487424 10.1109/TUFFC.2009.1067 10.1109/T-SU.1983.31404 10.1177/016173468200400303 10.7863/jum.2007.26.8.1041 10.1109/TAU.1967.1161901 10.1109/TUFFC.2012.2338 10.1109/42.611351 10.1016/j.ultrasmedbio.2013.04.005 10.1109/TUFFC.2009.1303 10.7763/IJET.2010.V2.174 10.1111/j.1365-246X.2007.03592.x 10.1177/016173469802000201 10.1109/TUFFC.2006.1632680 10.1177/016173468100300306 10.1016/S0887-2171(01)90018-6 10.1109/58.655200 10.1109/T-SU.1978.30978 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier B.V. Copyright © 2014 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2014 Elsevier B.V. – notice: Copyright © 2014 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 7SP 7U5 8FD H8D L7M |
| DOI | 10.1016/j.ultras.2014.09.006 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | MEDLINE - Academic PubMed Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1874-9968 |
| EndPage | 398 |
| ExternalDocumentID | 25262843 10_1016_j_ultras_2014_09_006 S0041624X14002704 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABEFU ABFNM ABJNI ABLJU ABLVK ABMAC ABMZM ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV C45 CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W KOM LCYCR M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SPG SSH SSQ SSZ T5K TAE TEORI UHS WH7 WUQ XPP ZGI ZMT ZXP ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM 7X8 7SP 7U5 8FD H8D L7M |
| ID | FETCH-LOGICAL-c395t-391b24ed590895b6d27a8d76b7616b1ab4b86c47c2b83ebc415a126eb415e3b03 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345386000045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0041-624X 1874-9968 |
| IngestDate | Sun Sep 28 07:06:39 EDT 2025 Sun Sep 28 00:56:14 EDT 2025 Thu Apr 03 07:09:54 EDT 2025 Sat Nov 29 07:28:00 EST 2025 Tue Nov 18 22:27:46 EST 2025 Fri Feb 23 02:36:21 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Speckle Coherent plane-wave compounding Thomson’s multitaper Ultrasound imaging |
| Language | English |
| License | Copyright © 2014 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c395t-391b24ed590895b6d27a8d76b7616b1ab4b86c47c2b83ebc415a126eb415e3b03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 25262843 |
| PQID | 1634270838 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1677940313 proquest_miscellaneous_1634270838 pubmed_primary_25262843 crossref_citationtrail_10_1016_j_ultras_2014_09_006 crossref_primary_10_1016_j_ultras_2014_09_006 elsevier_sciencedirect_doi_10_1016_j_ultras_2014_09_006 |
| PublicationCentury | 2000 |
| PublicationDate | February 2015 2015-02-00 2015-Feb 20150201 |
| PublicationDateYYYYMMDD | 2015-02-01 |
| PublicationDate_xml | – month: 02 year: 2015 text: February 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Ultrasonics |
| PublicationTitleAlternate | Ultrasonics |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wagner, Smith, Sandrik, Lopez (b0020) 1983; 30 Thijssen (b0010) 2003; 24 Jespersen, Wilhjelm, Sillesen (b0035) 1998; 20 Sivakumar, Gayathri, Nedumaran (b0065) 2010; 2 Jensen, Nasholm, Nilsen, Austeng, Holm (b0070) 2012; 59 Xu, Haykin, Racine (b0090) 1999; 46 Lu (b0115) 1997; 44 Entrekin, Jackson, Jago, Porter (b0040) 1999; 43 Prieto, Parker, Thomson, Vernon, Graham (b0095) 2007; 171 Hansen, Jensen (b0060) 2012; 59 Wagner, Insana, Smith (b0015) Jan 1988; 35 Magnin, Von Ramm, Thurstone (b0050) 1982; 4 Boni, Bassi, Dallai, Guidi, Ramalli, Ricci, Housden, Tortoli (b0135) 2012; 59 Slepian (b0120) 1978; 57 Berson, Roncin, Pourcelot (b0025) 1981; 3 Entrekin, Porter, Sillesen, Wong, Cooperberg, Fix (b0045) 2001; 22 Welch (b0080) 1967; 15 Denarie, Tangen, Ekroll, Rolim, Torp, Bjastad, Lovstakken (b0140) 2013; 32 Mesurolle, Helou, El-Khoury, Edwardes, Sutton, Fau Kao (b0055) 2007; 26 Cheng, Lu (b0110) 2006; 53 Burckhardt (b0005) 1978; 25 Stetson, Graham Sommer, Macovski (b0030) 1997; 16 Varray, Basset, Tortoli, Cachard (b0125) 2013; 39 Tortoli, Bassi, Boni, Dallai, Guidi, Ricci (b0130) 2009; 56 K.E. Wage, Multitaper array processing, in: Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, 2007. ACSSC 2007, 2007, pp. 1242–1246. Percival, Walden (b0085) 1993 Montaldo, Tanter, Bercoff, Benech, Fink (b0105) 2009; 56 Thomson (b0075) 1982; 70 Thijssen (10.1016/j.ultras.2014.09.006_b0010) 2003; 24 Entrekin (10.1016/j.ultras.2014.09.006_b0045) 2001; 22 Hansen (10.1016/j.ultras.2014.09.006_b0060) 2012; 59 Welch (10.1016/j.ultras.2014.09.006_b0080) 1967; 15 Varray (10.1016/j.ultras.2014.09.006_b0125) 2013; 39 Berson (10.1016/j.ultras.2014.09.006_b0025) 1981; 3 Stetson (10.1016/j.ultras.2014.09.006_b0030) 1997; 16 Wagner (10.1016/j.ultras.2014.09.006_b0020) 1983; 30 Entrekin (10.1016/j.ultras.2014.09.006_b0040) 1999; 43 Lu (10.1016/j.ultras.2014.09.006_b0115) 1997; 44 Sivakumar (10.1016/j.ultras.2014.09.006_b0065) 2010; 2 Slepian (10.1016/j.ultras.2014.09.006_b0120) 1978; 57 Jespersen (10.1016/j.ultras.2014.09.006_b0035) 1998; 20 Magnin (10.1016/j.ultras.2014.09.006_b0050) 1982; 4 Percival (10.1016/j.ultras.2014.09.006_b0085) 1993 Tortoli (10.1016/j.ultras.2014.09.006_b0130) 2009; 56 10.1016/j.ultras.2014.09.006_b0100 Cheng (10.1016/j.ultras.2014.09.006_b0110) 2006; 53 Wagner (10.1016/j.ultras.2014.09.006_b0015) 1988; 35 Prieto (10.1016/j.ultras.2014.09.006_b0095) 2007; 171 Montaldo (10.1016/j.ultras.2014.09.006_b0105) 2009; 56 Denarie (10.1016/j.ultras.2014.09.006_b0140) 2013; 32 Jensen (10.1016/j.ultras.2014.09.006_b0070) 2012; 59 Thomson (10.1016/j.ultras.2014.09.006_b0075) 1982; 70 Mesurolle (10.1016/j.ultras.2014.09.006_b0055) 2007; 26 Xu (10.1016/j.ultras.2014.09.006_b0090) 1999; 46 Burckhardt (10.1016/j.ultras.2014.09.006_b0005) 1978; 25 Boni (10.1016/j.ultras.2014.09.006_b0135) 2012; 59 |
| References_xml | – volume: 56 start-page: 489 year: 2009 end-page: 506 ident: b0105 article-title: Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 24 start-page: 659 year: 2003 end-page: 675 ident: b0010 article-title: Ultrasonic speckle formation, analysis and processing applied to tissue characterization publication-title: Pattern Recogn. Lett. – volume: 30 start-page: 156 year: 1983 end-page: 163 ident: b0020 article-title: Statistics of speckle in ultrasound B-scans publication-title: IEEE Trans. Son. Ultrason. – volume: 35 start-page: 34 year: Jan 1988 end-page: 44 ident: b0015 article-title: Fundamental correlation lengths of coherent speckle in medical ultrasonic images publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 2 start-page: 514 year: 2010 end-page: 523 ident: b0065 article-title: Speckle filtering of ultrasound B-scan images – a comparative study of single scale spatial adaptive filters, multiscale filter and diffusion filters publication-title: Int. J. Eng. Technol. IJET – volume: 56 start-page: 2207 year: 2009 end-page: 2216 ident: b0130 article-title: ULA-OP: an advanced open platform for ultrasound research publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 59 year: 2012 ident: b0060 article-title: Compounding in synthetic aperture imaging publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 3 start-page: 303 year: 1981 end-page: 308 ident: b0025 article-title: Compound scanning with an electrically steered beam publication-title: Ultrason. Imaging – reference: K.E. Wage, Multitaper array processing, in: Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, 2007. ACSSC 2007, 2007, pp. 1242–1246. – volume: 16 start-page: 416 year: 1997 end-page: 425 ident: b0030 article-title: Lesion contrast enhancement in medical ultrasound imaging publication-title: IEEE Trans. Med. Imaging – volume: 22 start-page: 50 year: 2001 end-page: 64 ident: b0045 article-title: Real-time spatial compound imaging: application to breast, vascular, and musculoskeletal ultrasound publication-title: Semin. Ultrasound CT MRI – volume: 59 start-page: 2178 year: 2012 end-page: 2185 ident: b0070 article-title: Applying Thomson’s multitaper approach to reduce speckle in medical ultrasound imaging publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – year: 1993 ident: b0085 article-title: Spectral Analysis for Physical Applications, Multitaper and Conventional Univariate Techniques – volume: 20 start-page: 81 year: 1998 end-page: 102 ident: b0035 article-title: Multi-angle compound imaging publication-title: Ultrason. Imaging – volume: 15 start-page: 70 year: 1967 end-page: 73 ident: b0080 article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms publication-title: IEEE Trans. Audio Electroacoust. – volume: 44 start-page: 839 year: 1997 end-page: 856 ident: b0115 article-title: 2D and 3D high frame rate imaging with limited diffraction beams publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 25 start-page: 1 year: 1978 end-page: 6 ident: b0005 article-title: Speckle in ultrasound B-mode scans publication-title: IEEE Trans. Son. Ultrason. – volume: 43 start-page: 35 year: 1999 end-page: 43 ident: b0040 article-title: Real time spatial compound imaging in breast ultrasound: technology and early clinical experience publication-title: Medicamundi – volume: 4 start-page: 267 year: 1982 end-page: 281 ident: b0050 article-title: Frequency compounding for speckle contrast reduction in phased array images publication-title: Ultrason. Imaging – volume: 46 start-page: 861 year: 1999 end-page: 866 ident: b0090 article-title: Multiple window time-frequency distribution and coherence of EEG using Slepian sequences and Hermite functions publication-title: IEEE Trans. Biomed. Eng. – volume: 70 start-page: 1055 year: 1982 end-page: 1096 ident: b0075 article-title: Spectrum estimation and harmonic analysis publication-title: Proc. IEEE – volume: 26 start-page: 1041 year: 2007 end-page: 1051 ident: b0055 article-title: Tissue harmonic imaging, frequency compound imaging, and conventional imaging publication-title: J. Ultrasound Med. – volume: 32 start-page: 1265 year: 2013 end-page: 1276 ident: b0140 article-title: Coherent plane wave compounding for very high frame rate ultrasonography of rapidly moving targets publication-title: IEEE Trans. Med. Imaging – volume: 39 start-page: 1915 year: 2013 end-page: 1924 ident: b0125 article-title: CREANUIS: a non-linear radiofrequency ultrasound image simulator publication-title: Ultrasound Med. Biol. – volume: 57 start-page: 1371 year: 1978 end-page: 1429 ident: b0120 article-title: Prolate spheroidal wave functions, Fourier analysis and uncertainty publication-title: Bell Syst. Tech. J. – volume: 171 start-page: 1269 year: 2007 end-page: 1281 ident: b0095 article-title: Reducing the bias of multitaper spectrum estimates publication-title: Geophys. J. Int. – volume: 59 start-page: 1378 year: 2012 end-page: 1385 ident: b0135 article-title: A reconfigurable and programmable FPGA-based system for nonstandard ultrasound methods publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 53 start-page: 880 year: 2006 end-page: 899 ident: b0110 article-title: Extended high-frame rate imaging method with limited-diffraction beams publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control – volume: 32 start-page: 1265 issue: 7 year: 2013 ident: 10.1016/j.ultras.2014.09.006_b0140 article-title: Coherent plane wave compounding for very high frame rate ultrasonography of rapidly moving targets publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2255310 – volume: 57 start-page: 1371 issue: 5 year: 1978 ident: 10.1016/j.ultras.2014.09.006_b0120 article-title: Prolate spheroidal wave functions, Fourier analysis and uncertainty publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1978.tb02104.x – volume: 43 start-page: 35 issue: 3 year: 1999 ident: 10.1016/j.ultras.2014.09.006_b0040 article-title: Real time spatial compound imaging in breast ultrasound: technology and early clinical experience publication-title: Medicamundi – volume: 59 start-page: 2178 issue: 10 year: 2012 ident: 10.1016/j.ultras.2014.09.006_b0070 article-title: Applying Thomson’s multitaper approach to reduce speckle in medical ultrasound imaging publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2012.2444 – volume: 35 start-page: 34 issue: 1 year: 1988 ident: 10.1016/j.ultras.2014.09.006_b0015 article-title: Fundamental correlation lengths of coherent speckle in medical ultrasonic images publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.4145 – volume: 46 start-page: 861 issue: 7 year: 1999 ident: 10.1016/j.ultras.2014.09.006_b0090 article-title: Multiple window time-frequency distribution and coherence of EEG using Slepian sequences and Hermite functions publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.771197 – volume: 24 start-page: 659 issue: 4–5 year: 2003 ident: 10.1016/j.ultras.2014.09.006_b0010 article-title: Ultrasonic speckle formation, analysis and processing applied to tissue characterization publication-title: Pattern Recogn. Lett. doi: 10.1016/S0167-8655(02)00173-3 – volume: 59 issue: 9 year: 2012 ident: 10.1016/j.ultras.2014.09.006_b0060 article-title: Compounding in synthetic aperture imaging publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2012.2427 – volume: 70 start-page: 1055 issue: 9 year: 1982 ident: 10.1016/j.ultras.2014.09.006_b0075 article-title: Spectrum estimation and harmonic analysis publication-title: Proc. IEEE doi: 10.1109/PROC.1982.12433 – ident: 10.1016/j.ultras.2014.09.006_b0100 doi: 10.1109/ACSSC.2007.4487424 – volume: 56 start-page: 489 issue: 3 year: 2009 ident: 10.1016/j.ultras.2014.09.006_b0105 article-title: Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2009.1067 – volume: 30 start-page: 156 issue: 3 year: 1983 ident: 10.1016/j.ultras.2014.09.006_b0020 article-title: Statistics of speckle in ultrasound B-scans publication-title: IEEE Trans. Son. Ultrason. doi: 10.1109/T-SU.1983.31404 – volume: 4 start-page: 267 issue: 3 year: 1982 ident: 10.1016/j.ultras.2014.09.006_b0050 article-title: Frequency compounding for speckle contrast reduction in phased array images publication-title: Ultrason. Imaging doi: 10.1177/016173468200400303 – volume: 26 start-page: 1041 issue: 8 year: 2007 ident: 10.1016/j.ultras.2014.09.006_b0055 article-title: Tissue harmonic imaging, frequency compound imaging, and conventional imaging publication-title: J. Ultrasound Med. doi: 10.7863/jum.2007.26.8.1041 – volume: 15 start-page: 70 issue: 2 year: 1967 ident: 10.1016/j.ultras.2014.09.006_b0080 article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms publication-title: IEEE Trans. Audio Electroacoust. doi: 10.1109/TAU.1967.1161901 – volume: 59 start-page: 1378 issue: 7 year: 2012 ident: 10.1016/j.ultras.2014.09.006_b0135 article-title: A reconfigurable and programmable FPGA-based system for nonstandard ultrasound methods publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2012.2338 – volume: 16 start-page: 416 issue: 4 year: 1997 ident: 10.1016/j.ultras.2014.09.006_b0030 article-title: Lesion contrast enhancement in medical ultrasound imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.611351 – volume: 39 start-page: 1915 issue: 10 year: 2013 ident: 10.1016/j.ultras.2014.09.006_b0125 article-title: CREANUIS: a non-linear radiofrequency ultrasound image simulator publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2013.04.005 – volume: 56 start-page: 2207 issue: 10 year: 2009 ident: 10.1016/j.ultras.2014.09.006_b0130 article-title: ULA-OP: an advanced open platform for ultrasound research publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2009.1303 – volume: 2 start-page: 514 issue: 6 year: 2010 ident: 10.1016/j.ultras.2014.09.006_b0065 article-title: Speckle filtering of ultrasound B-scan images – a comparative study of single scale spatial adaptive filters, multiscale filter and diffusion filters publication-title: Int. J. Eng. Technol. IJET doi: 10.7763/IJET.2010.V2.174 – year: 1993 ident: 10.1016/j.ultras.2014.09.006_b0085 – volume: 171 start-page: 1269 issue: 3 year: 2007 ident: 10.1016/j.ultras.2014.09.006_b0095 article-title: Reducing the bias of multitaper spectrum estimates publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2007.03592.x – volume: 20 start-page: 81 year: 1998 ident: 10.1016/j.ultras.2014.09.006_b0035 article-title: Multi-angle compound imaging publication-title: Ultrason. Imaging doi: 10.1177/016173469802000201 – volume: 53 start-page: 880 issue: 5 year: 2006 ident: 10.1016/j.ultras.2014.09.006_b0110 article-title: Extended high-frame rate imaging method with limited-diffraction beams publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2006.1632680 – volume: 3 start-page: 303 issue: 3 year: 1981 ident: 10.1016/j.ultras.2014.09.006_b0025 article-title: Compound scanning with an electrically steered beam publication-title: Ultrason. Imaging doi: 10.1177/016173468100300306 – volume: 22 start-page: 50 issue: 1 year: 2001 ident: 10.1016/j.ultras.2014.09.006_b0045 article-title: Real-time spatial compound imaging: application to breast, vascular, and musculoskeletal ultrasound publication-title: Semin. Ultrasound CT MRI doi: 10.1016/S0887-2171(01)90018-6 – volume: 44 start-page: 839 issue: 4 year: 1997 ident: 10.1016/j.ultras.2014.09.006_b0115 article-title: 2D and 3D high frame rate imaging with limited diffraction beams publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.655200 – volume: 25 start-page: 1 issue: 1 year: 1978 ident: 10.1016/j.ultras.2014.09.006_b0005 article-title: Speckle in ultrasound B-mode scans publication-title: IEEE Trans. Son. Ultrason. doi: 10.1109/T-SU.1978.30978 |
| SSID | ssj0014813 |
| Score | 2.1640275 |
| Snippet | •Thomson’s multitaper combined with coherent plane-wave compounding is evaluated.•The best image quality is obtained with 11 plane waves and 3 Thomson’s... In ultrasound imaging, the speckle pattern limits the image quality. Spatial and frequency compounding are commonly used to reduce speckle noise or improve the... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 390 |
| SubjectTerms | Apodization Coherence Coherent plane-wave compounding Compounding Frames Image quality Imaging Noise reduction Speckle Thomson’s multitaper Ultrasound imaging |
| Title | Thomson’s multitaper approach combined with coherent plane-wave compounding to reduce speckle in ultrasound imaging |
| URI | https://dx.doi.org/10.1016/j.ultras.2014.09.006 https://www.ncbi.nlm.nih.gov/pubmed/25262843 https://www.proquest.com/docview/1634270838 https://www.proquest.com/docview/1677940313 |
| Volume | 56 |
| WOSCitedRecordID | wos000345386000045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2LUhwQFBey6MyEoJDFZSn7RwrtBWg1baHXbQ3K3Fcdcs2WZJs6e_gFzN-JSu1peXAJYq8dmJ5vp2MPTPfIPSe-SfKEpeeTBPfiyUpPAafCY-QUEo_EumJzq_4PqaTCZvP0-PB4LfLhblY0rJkl5fp6r-KGtpA2Cp19h_E3T0UGuAehA5XEDtc7yj46lxHeNDGhAu22UrWHXm4CiKH3XAfdX4qNUHTSkW9er9UMSIVZq6qLelMqmq_Vuyucl_lZP5Yao4ReGqdNarL_uJclznatHFn5tdyI45-Wq2XElbAcPzqGuMLue5PUZvG-ESOlgv1ne6H1W1l8rePobnqHSY6WawnR3AYt8cXQeIinjuNy2jswabLKGF5TZtV08mmno1MjdEr-t8cRZx9MuugIvcMja1_Dd325IgfzsZjPh3Npx9WPz1ViUx57G1Zli20E9IkBU25c_B1NP_W-aZipotud5N0CZk6avDqi28yeG7a0GjDZvoYPbI7EnxgkPQEDWS5ix5u8FTuovs6Tlg0T1Fj0fWxwT22sMMWdtjCClvYYQv32MIb2MJthQ22sMUWXpS4xxa22HqGZoej6ecvnq3b4YkoTVovSoM8jGWRKJ9ykpMipBkrKMkpCUgeZHmcMyJiKsKcRTIXYENmQUhkDjcyyv3oOdouq1K-RLhQjluSRkWWirgAa1n4Iigyn5IsozQqhihyi8uFJbVXtVWW3EUvnnEzb65Ewv2Ug0iGyOtGrQypyy39qZMbt4apMTg54O6Wke-cmDnobeWMgwWv1g2HfVAcUtgAsb_1ofC5VOyqQ_TCYKSbb5iEBEzL6NUd3vAaPej_em_Qdluv5Vt0T1y0i6beQ1t0zvYsyv8ALxvWMw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thomson%27s+multitaper+approach+combined+with+coherent+plane-wave+compounding+to+reduce+speckle+in+ultrasound+imaging&rft.jtitle=Ultrasonics&rft.au=Toulemonde%2C+Matthieu&rft.au=Basset%2C+Olivier&rft.au=Tortoli%2C+Piero&rft.au=Cachard%2C+Christian&rft.date=2015-02-01&rft.issn=1874-9968&rft.eissn=1874-9968&rft.volume=56&rft.spage=390&rft_id=info:doi/10.1016%2Fj.ultras.2014.09.006&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-624X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-624X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-624X&client=summon |