Thomson’s multitaper approach combined with coherent plane-wave compounding to reduce speckle in ultrasound imaging

•Thomson’s multitaper combined with coherent plane-wave compounding is evaluated.•The best image quality is obtained with 11 plane waves and 3 Thomson’s tapers.•The resolution outside the focal area is improved compared to a single focal method.•The speckle noise is reduced and cyst edges are well d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ultrasonics Ročník 56; s. 390 - 398
Hlavní autoři: Toulemonde, Matthieu, Basset, Olivier, Tortoli, Piero, Cachard, Christian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.02.2015
Témata:
ISSN:0041-624X, 1874-9968, 1874-9968
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Thomson’s multitaper combined with coherent plane-wave compounding is evaluated.•The best image quality is obtained with 11 plane waves and 3 Thomson’s tapers.•The resolution outside the focal area is improved compared to a single focal method.•The speckle noise is reduced and cyst edges are well delineated.•The frame rate is increased compared to that of the single focal method. In ultrasound imaging, the speckle pattern limits the image quality. Spatial and frequency compounding are commonly used to reduce speckle noise or improve the contrast. Although recent implementations can preserve a frame rate that is compatible with real-time imaging (e.g., synthetic aperture compounding), most classic compounding techniques are based on the coherent combination of several radiofrequency images from the same investigated area, which reduces the frame rate. Furthermore, Thomson’s multitaper approach aims to smooth the speckle by incoherently combining the obtained B-mode images after applying different apodization windows on the same original data. With only one acquisition, the frame rate remains high, but the spatial resolution is decreased. To improve the resolution and contrast while reducing the speckle noise, this paper proposes combining the coherent plane-wave compounding technique (CPWC) with Thomson’s multitaper method. The resulting multitaper coherent plane-wave compounding (MCPWC) takes advantage of coherent and incoherent approaches. Simulations and experimental results demonstrate that in terms of the signal-to-noise ratio, contrast, and resolution, the image quality is increased using plane wave emissions at approximately ten steering angles with three Thomson’s tapers. Outside the focal area, the lateral resolution is improved by a factor of 2, and the contrast is increased by approximately 2dB compared with images obtained using a single focalization technique and Thomson’s multitaper approach.
AbstractList In ultrasound imaging, the speckle pattern limits the image quality. Spatial and frequency compounding are commonly used to reduce speckle noise or improve the contrast. Although recent implementations can preserve a frame rate that is compatible with real-time imaging (e.g., synthetic aperture compounding), most classic compounding techniques are based on the coherent combination of several radiofrequency images from the same investigated area, which reduces the frame rate. Furthermore, Thomson's multitaper approach aims to smooth the speckle by incoherently combining the obtained B-mode images after applying different apodization windows on the same original data. With only one acquisition, the frame rate remains high, but the spatial resolution is decreased. To improve the resolution and contrast while reducing the speckle noise, this paper proposes combining the coherent plane-wave compounding technique (CPWC) with Thomson's multitaper method. The resulting multitaper coherent plane-wave compounding (MCPWC) takes advantage of coherent and incoherent approaches. Simulations and experimental results demonstrate that in terms of the signal-to-noise ratio, contrast, and resolution, the image quality is increased using plane wave emissions at approximately ten steering angles with three Thomson's tapers. Outside the focal area, the lateral resolution is improved by a factor of 2, and the contrast is increased by approximately 2dB compared with images obtained using a single focalization technique and Thomson's multitaper approach.In ultrasound imaging, the speckle pattern limits the image quality. Spatial and frequency compounding are commonly used to reduce speckle noise or improve the contrast. Although recent implementations can preserve a frame rate that is compatible with real-time imaging (e.g., synthetic aperture compounding), most classic compounding techniques are based on the coherent combination of several radiofrequency images from the same investigated area, which reduces the frame rate. Furthermore, Thomson's multitaper approach aims to smooth the speckle by incoherently combining the obtained B-mode images after applying different apodization windows on the same original data. With only one acquisition, the frame rate remains high, but the spatial resolution is decreased. To improve the resolution and contrast while reducing the speckle noise, this paper proposes combining the coherent plane-wave compounding technique (CPWC) with Thomson's multitaper method. The resulting multitaper coherent plane-wave compounding (MCPWC) takes advantage of coherent and incoherent approaches. Simulations and experimental results demonstrate that in terms of the signal-to-noise ratio, contrast, and resolution, the image quality is increased using plane wave emissions at approximately ten steering angles with three Thomson's tapers. Outside the focal area, the lateral resolution is improved by a factor of 2, and the contrast is increased by approximately 2dB compared with images obtained using a single focalization technique and Thomson's multitaper approach.
•Thomson’s multitaper combined with coherent plane-wave compounding is evaluated.•The best image quality is obtained with 11 plane waves and 3 Thomson’s tapers.•The resolution outside the focal area is improved compared to a single focal method.•The speckle noise is reduced and cyst edges are well delineated.•The frame rate is increased compared to that of the single focal method. In ultrasound imaging, the speckle pattern limits the image quality. Spatial and frequency compounding are commonly used to reduce speckle noise or improve the contrast. Although recent implementations can preserve a frame rate that is compatible with real-time imaging (e.g., synthetic aperture compounding), most classic compounding techniques are based on the coherent combination of several radiofrequency images from the same investigated area, which reduces the frame rate. Furthermore, Thomson’s multitaper approach aims to smooth the speckle by incoherently combining the obtained B-mode images after applying different apodization windows on the same original data. With only one acquisition, the frame rate remains high, but the spatial resolution is decreased. To improve the resolution and contrast while reducing the speckle noise, this paper proposes combining the coherent plane-wave compounding technique (CPWC) with Thomson’s multitaper method. The resulting multitaper coherent plane-wave compounding (MCPWC) takes advantage of coherent and incoherent approaches. Simulations and experimental results demonstrate that in terms of the signal-to-noise ratio, contrast, and resolution, the image quality is increased using plane wave emissions at approximately ten steering angles with three Thomson’s tapers. Outside the focal area, the lateral resolution is improved by a factor of 2, and the contrast is increased by approximately 2dB compared with images obtained using a single focalization technique and Thomson’s multitaper approach.
In ultrasound imaging, the speckle pattern limits the image quality. Spatial and frequency compounding are commonly used to reduce speckle noise or improve the contrast. Although recent implementations can preserve a frame rate that is compatible with real-time imaging (e.g., synthetic aperture compounding), most classic compounding techniques are based on the coherent combination of several radiofrequency images from the same investigated area, which reduces the frame rate. Furthermore, Thomson's multitaper approach aims to smooth the speckle by incoherently combining the obtained B-mode images after applying different apodization windows on the same original data. With only one acquisition, the frame rate remains high, but the spatial resolution is decreased. To improve the resolution and contrast while reducing the speckle noise, this paper proposes combining the coherent plane-wave compounding technique (CPWC) with Thomson's multitaper method. The resulting multitaper coherent plane-wave compounding (MCPWC) takes advantage of coherent and incoherent approaches. Simulations and experimental results demonstrate that in terms of the signal-to-noise ratio, contrast, and resolution, the image quality is increased using plane wave emissions at approximately ten steering angles with three Thomson's tapers. Outside the focal area, the lateral resolution is improved by a factor of 2, and the contrast is increased by approximately 2dB compared with images obtained using a single focalization technique and Thomson's multitaper approach.
In ultrasound imaging, the speckle pattern limits the image quality. Spatial and frequency compounding are commonly used to reduce speckle noise or improve the contrast. Although recent implementations can preserve a frame rate that is compatible with real-time imaging (e.g., synthetic aperture compounding), most classic compounding techniques are based on the coherent combination of several radiofrequency images from the same investigated area, which reduces the frame rate. Furthermore, Thomson's multitaper approach aims to smooth the speckle by incoherently combining the obtained B-mode images after applying different apodization windows on the same original data. With only one acquisition, the frame rate remains high, but the spatial resolution is decreased. To improve the resolution and contrast while reducing the speckle noise, this paper proposes combining the coherent plane-wave compounding technique (CPWC) with Thomson's multitaper method. The resulting multitaper coherent plane-wave compounding (MCPWC) takes advantage of coherent and incoherent approaches. Simulations and experimental results demonstrate that in terms of the signal-to-noise ratio, contrast, and resolution, the image quality is increased using plane wave emissions at approximately ten steering angles with three Thomson's tapers. Outside the focal area, the lateral resolution is improved by a factor of 2, and the contrast is increased by approximately 2 dB compared with images obtained using a single focalization technique and Thomson's multitaper approach.
Author Cachard, Christian
Toulemonde, Matthieu
Tortoli, Piero
Basset, Olivier
Author_xml – sequence: 1
  givenname: Matthieu
  surname: Toulemonde
  fullname: Toulemonde, Matthieu
  email: matthieu.toulemonde@creatis.insa-lyon.fr
  organization: CREATIS, Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5220, Inserm U630, Villeurbanne, France
– sequence: 2
  givenname: Olivier
  surname: Basset
  fullname: Basset, Olivier
  organization: CREATIS, Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5220, Inserm U630, Villeurbanne, France
– sequence: 3
  givenname: Piero
  surname: Tortoli
  fullname: Tortoli, Piero
  organization: Microelectronics Systems Design Laboratory, Information Engineering Department, Università di Firenze, Italy
– sequence: 4
  givenname: Christian
  surname: Cachard
  fullname: Cachard, Christian
  organization: CREATIS, Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5220, Inserm U630, Villeurbanne, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25262843$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1TAQhS1URG8Lb4CQl2wS_BfHYYGEKv6kSmyKxM6ynWmvL4kd7KRVd7wGr9cnqaO0GxbAymPpO0cz55ygoxADIPSSkpoSKt8c6mWYk8k1I1TUpKsJkU_QjqpWVF0n1RHaESJoJZn4foxOcj6QAirKn6Fj1jDJlOA7tFzs45hjuPv1O-OxOPrZTJCwmaYUjdtjF0frA_T4xs_rbw8JwoynwQSobsw1rMQUl9D7cIXniBP0iwOcJ3A_BsA-4G3PFcF-NFeFe46eXpohw4uH9xR9-_jh4uxzdf7105ez9-eV410zV7yjlgnom46orrGyZ61RfSttK6m01FhhlXSidcwqDtYJ2hjKJNgyALeEn6LXm2855ucCedajzw6Gdfm4ZE1l23aCcMr_A-WCtURxVdBXD-hiR-j1lMpZ6VY_plqAtxvgUsw5waV2JdbZx1CC8IOmRK8V6oPeotFrhZp0ulRYxOIP8aP_P2TvNhmUPK89JJ2dh-Cg9wncrPvo_25wDx5murY
CitedBy_id crossref_primary_10_1016_j_irbm_2015_01_013
crossref_primary_10_1109_TUFFC_2016_2566920
crossref_primary_10_1088_1748_0221_13_07_P07004
crossref_primary_10_3390_app6110359
crossref_primary_10_1016_j_measurement_2020_108708
crossref_primary_10_1109_TUFFC_2018_2820747
crossref_primary_10_1134_S1063771018030156
crossref_primary_10_1016_j_bspc_2021_103267
Cites_doi 10.1109/TMI.2013.2255310
10.1002/j.1538-7305.1978.tb02104.x
10.1109/TUFFC.2012.2444
10.1109/58.4145
10.1109/10.771197
10.1016/S0167-8655(02)00173-3
10.1109/TUFFC.2012.2427
10.1109/PROC.1982.12433
10.1109/ACSSC.2007.4487424
10.1109/TUFFC.2009.1067
10.1109/T-SU.1983.31404
10.1177/016173468200400303
10.7863/jum.2007.26.8.1041
10.1109/TAU.1967.1161901
10.1109/TUFFC.2012.2338
10.1109/42.611351
10.1016/j.ultrasmedbio.2013.04.005
10.1109/TUFFC.2009.1303
10.7763/IJET.2010.V2.174
10.1111/j.1365-246X.2007.03592.x
10.1177/016173469802000201
10.1109/TUFFC.2006.1632680
10.1177/016173468100300306
10.1016/S0887-2171(01)90018-6
10.1109/58.655200
10.1109/T-SU.1978.30978
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright © 2014 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: Copyright © 2014 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7SP
7U5
8FD
H8D
L7M
DOI 10.1016/j.ultras.2014.09.006
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList MEDLINE - Academic

PubMed
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1874-9968
EndPage 398
ExternalDocumentID 25262843
10_1016_j_ultras_2014_09_006
S0041624X14002704
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABEFU
ABFNM
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
C45
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SPG
SSH
SSQ
SSZ
T5K
TAE
TEORI
UHS
WH7
WUQ
XPP
ZGI
ZMT
ZXP
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7X8
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c395t-391b24ed590895b6d27a8d76b7616b1ab4b86c47c2b83ebc415a126eb415e3b03
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345386000045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0041-624X
1874-9968
IngestDate Sun Sep 28 07:06:39 EDT 2025
Sun Sep 28 00:56:14 EDT 2025
Thu Apr 03 07:09:54 EDT 2025
Sat Nov 29 07:28:00 EST 2025
Tue Nov 18 22:27:46 EST 2025
Fri Feb 23 02:36:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Speckle
Coherent plane-wave compounding
Thomson’s multitaper
Ultrasound imaging
Language English
License Copyright © 2014 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-391b24ed590895b6d27a8d76b7616b1ab4b86c47c2b83ebc415a126eb415e3b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25262843
PQID 1634270838
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1677940313
proquest_miscellaneous_1634270838
pubmed_primary_25262843
crossref_citationtrail_10_1016_j_ultras_2014_09_006
crossref_primary_10_1016_j_ultras_2014_09_006
elsevier_sciencedirect_doi_10_1016_j_ultras_2014_09_006
PublicationCentury 2000
PublicationDate February 2015
2015-02-00
2015-Feb
20150201
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: February 2015
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ultrasonics
PublicationTitleAlternate Ultrasonics
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wagner, Smith, Sandrik, Lopez (b0020) 1983; 30
Thijssen (b0010) 2003; 24
Jespersen, Wilhjelm, Sillesen (b0035) 1998; 20
Sivakumar, Gayathri, Nedumaran (b0065) 2010; 2
Jensen, Nasholm, Nilsen, Austeng, Holm (b0070) 2012; 59
Xu, Haykin, Racine (b0090) 1999; 46
Lu (b0115) 1997; 44
Entrekin, Jackson, Jago, Porter (b0040) 1999; 43
Prieto, Parker, Thomson, Vernon, Graham (b0095) 2007; 171
Hansen, Jensen (b0060) 2012; 59
Wagner, Insana, Smith (b0015) Jan 1988; 35
Magnin, Von Ramm, Thurstone (b0050) 1982; 4
Boni, Bassi, Dallai, Guidi, Ramalli, Ricci, Housden, Tortoli (b0135) 2012; 59
Slepian (b0120) 1978; 57
Berson, Roncin, Pourcelot (b0025) 1981; 3
Entrekin, Porter, Sillesen, Wong, Cooperberg, Fix (b0045) 2001; 22
Welch (b0080) 1967; 15
Denarie, Tangen, Ekroll, Rolim, Torp, Bjastad, Lovstakken (b0140) 2013; 32
Mesurolle, Helou, El-Khoury, Edwardes, Sutton, Fau Kao (b0055) 2007; 26
Cheng, Lu (b0110) 2006; 53
Burckhardt (b0005) 1978; 25
Stetson, Graham Sommer, Macovski (b0030) 1997; 16
Varray, Basset, Tortoli, Cachard (b0125) 2013; 39
Tortoli, Bassi, Boni, Dallai, Guidi, Ricci (b0130) 2009; 56
K.E. Wage, Multitaper array processing, in: Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, 2007. ACSSC 2007, 2007, pp. 1242–1246.
Percival, Walden (b0085) 1993
Montaldo, Tanter, Bercoff, Benech, Fink (b0105) 2009; 56
Thomson (b0075) 1982; 70
Thijssen (10.1016/j.ultras.2014.09.006_b0010) 2003; 24
Entrekin (10.1016/j.ultras.2014.09.006_b0045) 2001; 22
Hansen (10.1016/j.ultras.2014.09.006_b0060) 2012; 59
Welch (10.1016/j.ultras.2014.09.006_b0080) 1967; 15
Varray (10.1016/j.ultras.2014.09.006_b0125) 2013; 39
Berson (10.1016/j.ultras.2014.09.006_b0025) 1981; 3
Stetson (10.1016/j.ultras.2014.09.006_b0030) 1997; 16
Wagner (10.1016/j.ultras.2014.09.006_b0020) 1983; 30
Entrekin (10.1016/j.ultras.2014.09.006_b0040) 1999; 43
Lu (10.1016/j.ultras.2014.09.006_b0115) 1997; 44
Sivakumar (10.1016/j.ultras.2014.09.006_b0065) 2010; 2
Slepian (10.1016/j.ultras.2014.09.006_b0120) 1978; 57
Jespersen (10.1016/j.ultras.2014.09.006_b0035) 1998; 20
Magnin (10.1016/j.ultras.2014.09.006_b0050) 1982; 4
Percival (10.1016/j.ultras.2014.09.006_b0085) 1993
Tortoli (10.1016/j.ultras.2014.09.006_b0130) 2009; 56
10.1016/j.ultras.2014.09.006_b0100
Cheng (10.1016/j.ultras.2014.09.006_b0110) 2006; 53
Wagner (10.1016/j.ultras.2014.09.006_b0015) 1988; 35
Prieto (10.1016/j.ultras.2014.09.006_b0095) 2007; 171
Montaldo (10.1016/j.ultras.2014.09.006_b0105) 2009; 56
Denarie (10.1016/j.ultras.2014.09.006_b0140) 2013; 32
Jensen (10.1016/j.ultras.2014.09.006_b0070) 2012; 59
Thomson (10.1016/j.ultras.2014.09.006_b0075) 1982; 70
Mesurolle (10.1016/j.ultras.2014.09.006_b0055) 2007; 26
Xu (10.1016/j.ultras.2014.09.006_b0090) 1999; 46
Burckhardt (10.1016/j.ultras.2014.09.006_b0005) 1978; 25
Boni (10.1016/j.ultras.2014.09.006_b0135) 2012; 59
References_xml – volume: 56
  start-page: 489
  year: 2009
  end-page: 506
  ident: b0105
  article-title: Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 24
  start-page: 659
  year: 2003
  end-page: 675
  ident: b0010
  article-title: Ultrasonic speckle formation, analysis and processing applied to tissue characterization
  publication-title: Pattern Recogn. Lett.
– volume: 30
  start-page: 156
  year: 1983
  end-page: 163
  ident: b0020
  article-title: Statistics of speckle in ultrasound B-scans
  publication-title: IEEE Trans. Son. Ultrason.
– volume: 35
  start-page: 34
  year: Jan 1988
  end-page: 44
  ident: b0015
  article-title: Fundamental correlation lengths of coherent speckle in medical ultrasonic images
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 2
  start-page: 514
  year: 2010
  end-page: 523
  ident: b0065
  article-title: Speckle filtering of ultrasound B-scan images – a comparative study of single scale spatial adaptive filters, multiscale filter and diffusion filters
  publication-title: Int. J. Eng. Technol. IJET
– volume: 56
  start-page: 2207
  year: 2009
  end-page: 2216
  ident: b0130
  article-title: ULA-OP: an advanced open platform for ultrasound research
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 59
  year: 2012
  ident: b0060
  article-title: Compounding in synthetic aperture imaging
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 3
  start-page: 303
  year: 1981
  end-page: 308
  ident: b0025
  article-title: Compound scanning with an electrically steered beam
  publication-title: Ultrason. Imaging
– reference: K.E. Wage, Multitaper array processing, in: Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, 2007. ACSSC 2007, 2007, pp. 1242–1246.
– volume: 16
  start-page: 416
  year: 1997
  end-page: 425
  ident: b0030
  article-title: Lesion contrast enhancement in medical ultrasound imaging
  publication-title: IEEE Trans. Med. Imaging
– volume: 22
  start-page: 50
  year: 2001
  end-page: 64
  ident: b0045
  article-title: Real-time spatial compound imaging: application to breast, vascular, and musculoskeletal ultrasound
  publication-title: Semin. Ultrasound CT MRI
– volume: 59
  start-page: 2178
  year: 2012
  end-page: 2185
  ident: b0070
  article-title: Applying Thomson’s multitaper approach to reduce speckle in medical ultrasound imaging
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– year: 1993
  ident: b0085
  article-title: Spectral Analysis for Physical Applications, Multitaper and Conventional Univariate Techniques
– volume: 20
  start-page: 81
  year: 1998
  end-page: 102
  ident: b0035
  article-title: Multi-angle compound imaging
  publication-title: Ultrason. Imaging
– volume: 15
  start-page: 70
  year: 1967
  end-page: 73
  ident: b0080
  article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms
  publication-title: IEEE Trans. Audio Electroacoust.
– volume: 44
  start-page: 839
  year: 1997
  end-page: 856
  ident: b0115
  article-title: 2D and 3D high frame rate imaging with limited diffraction beams
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 25
  start-page: 1
  year: 1978
  end-page: 6
  ident: b0005
  article-title: Speckle in ultrasound B-mode scans
  publication-title: IEEE Trans. Son. Ultrason.
– volume: 43
  start-page: 35
  year: 1999
  end-page: 43
  ident: b0040
  article-title: Real time spatial compound imaging in breast ultrasound: technology and early clinical experience
  publication-title: Medicamundi
– volume: 4
  start-page: 267
  year: 1982
  end-page: 281
  ident: b0050
  article-title: Frequency compounding for speckle contrast reduction in phased array images
  publication-title: Ultrason. Imaging
– volume: 46
  start-page: 861
  year: 1999
  end-page: 866
  ident: b0090
  article-title: Multiple window time-frequency distribution and coherence of EEG using Slepian sequences and Hermite functions
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 70
  start-page: 1055
  year: 1982
  end-page: 1096
  ident: b0075
  article-title: Spectrum estimation and harmonic analysis
  publication-title: Proc. IEEE
– volume: 26
  start-page: 1041
  year: 2007
  end-page: 1051
  ident: b0055
  article-title: Tissue harmonic imaging, frequency compound imaging, and conventional imaging
  publication-title: J. Ultrasound Med.
– volume: 32
  start-page: 1265
  year: 2013
  end-page: 1276
  ident: b0140
  article-title: Coherent plane wave compounding for very high frame rate ultrasonography of rapidly moving targets
  publication-title: IEEE Trans. Med. Imaging
– volume: 39
  start-page: 1915
  year: 2013
  end-page: 1924
  ident: b0125
  article-title: CREANUIS: a non-linear radiofrequency ultrasound image simulator
  publication-title: Ultrasound Med. Biol.
– volume: 57
  start-page: 1371
  year: 1978
  end-page: 1429
  ident: b0120
  article-title: Prolate spheroidal wave functions, Fourier analysis and uncertainty
  publication-title: Bell Syst. Tech. J.
– volume: 171
  start-page: 1269
  year: 2007
  end-page: 1281
  ident: b0095
  article-title: Reducing the bias of multitaper spectrum estimates
  publication-title: Geophys. J. Int.
– volume: 59
  start-page: 1378
  year: 2012
  end-page: 1385
  ident: b0135
  article-title: A reconfigurable and programmable FPGA-based system for nonstandard ultrasound methods
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 53
  start-page: 880
  year: 2006
  end-page: 899
  ident: b0110
  article-title: Extended high-frame rate imaging method with limited-diffraction beams
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 32
  start-page: 1265
  issue: 7
  year: 2013
  ident: 10.1016/j.ultras.2014.09.006_b0140
  article-title: Coherent plane wave compounding for very high frame rate ultrasonography of rapidly moving targets
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2255310
– volume: 57
  start-page: 1371
  issue: 5
  year: 1978
  ident: 10.1016/j.ultras.2014.09.006_b0120
  article-title: Prolate spheroidal wave functions, Fourier analysis and uncertainty
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1978.tb02104.x
– volume: 43
  start-page: 35
  issue: 3
  year: 1999
  ident: 10.1016/j.ultras.2014.09.006_b0040
  article-title: Real time spatial compound imaging in breast ultrasound: technology and early clinical experience
  publication-title: Medicamundi
– volume: 59
  start-page: 2178
  issue: 10
  year: 2012
  ident: 10.1016/j.ultras.2014.09.006_b0070
  article-title: Applying Thomson’s multitaper approach to reduce speckle in medical ultrasound imaging
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2012.2444
– volume: 35
  start-page: 34
  issue: 1
  year: 1988
  ident: 10.1016/j.ultras.2014.09.006_b0015
  article-title: Fundamental correlation lengths of coherent speckle in medical ultrasonic images
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.4145
– volume: 46
  start-page: 861
  issue: 7
  year: 1999
  ident: 10.1016/j.ultras.2014.09.006_b0090
  article-title: Multiple window time-frequency distribution and coherence of EEG using Slepian sequences and Hermite functions
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.771197
– volume: 24
  start-page: 659
  issue: 4–5
  year: 2003
  ident: 10.1016/j.ultras.2014.09.006_b0010
  article-title: Ultrasonic speckle formation, analysis and processing applied to tissue characterization
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/S0167-8655(02)00173-3
– volume: 59
  issue: 9
  year: 2012
  ident: 10.1016/j.ultras.2014.09.006_b0060
  article-title: Compounding in synthetic aperture imaging
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2012.2427
– volume: 70
  start-page: 1055
  issue: 9
  year: 1982
  ident: 10.1016/j.ultras.2014.09.006_b0075
  article-title: Spectrum estimation and harmonic analysis
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1982.12433
– ident: 10.1016/j.ultras.2014.09.006_b0100
  doi: 10.1109/ACSSC.2007.4487424
– volume: 56
  start-page: 489
  issue: 3
  year: 2009
  ident: 10.1016/j.ultras.2014.09.006_b0105
  article-title: Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2009.1067
– volume: 30
  start-page: 156
  issue: 3
  year: 1983
  ident: 10.1016/j.ultras.2014.09.006_b0020
  article-title: Statistics of speckle in ultrasound B-scans
  publication-title: IEEE Trans. Son. Ultrason.
  doi: 10.1109/T-SU.1983.31404
– volume: 4
  start-page: 267
  issue: 3
  year: 1982
  ident: 10.1016/j.ultras.2014.09.006_b0050
  article-title: Frequency compounding for speckle contrast reduction in phased array images
  publication-title: Ultrason. Imaging
  doi: 10.1177/016173468200400303
– volume: 26
  start-page: 1041
  issue: 8
  year: 2007
  ident: 10.1016/j.ultras.2014.09.006_b0055
  article-title: Tissue harmonic imaging, frequency compound imaging, and conventional imaging
  publication-title: J. Ultrasound Med.
  doi: 10.7863/jum.2007.26.8.1041
– volume: 15
  start-page: 70
  issue: 2
  year: 1967
  ident: 10.1016/j.ultras.2014.09.006_b0080
  article-title: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms
  publication-title: IEEE Trans. Audio Electroacoust.
  doi: 10.1109/TAU.1967.1161901
– volume: 59
  start-page: 1378
  issue: 7
  year: 2012
  ident: 10.1016/j.ultras.2014.09.006_b0135
  article-title: A reconfigurable and programmable FPGA-based system for nonstandard ultrasound methods
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2012.2338
– volume: 16
  start-page: 416
  issue: 4
  year: 1997
  ident: 10.1016/j.ultras.2014.09.006_b0030
  article-title: Lesion contrast enhancement in medical ultrasound imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.611351
– volume: 39
  start-page: 1915
  issue: 10
  year: 2013
  ident: 10.1016/j.ultras.2014.09.006_b0125
  article-title: CREANUIS: a non-linear radiofrequency ultrasound image simulator
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2013.04.005
– volume: 56
  start-page: 2207
  issue: 10
  year: 2009
  ident: 10.1016/j.ultras.2014.09.006_b0130
  article-title: ULA-OP: an advanced open platform for ultrasound research
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2009.1303
– volume: 2
  start-page: 514
  issue: 6
  year: 2010
  ident: 10.1016/j.ultras.2014.09.006_b0065
  article-title: Speckle filtering of ultrasound B-scan images – a comparative study of single scale spatial adaptive filters, multiscale filter and diffusion filters
  publication-title: Int. J. Eng. Technol. IJET
  doi: 10.7763/IJET.2010.V2.174
– year: 1993
  ident: 10.1016/j.ultras.2014.09.006_b0085
– volume: 171
  start-page: 1269
  issue: 3
  year: 2007
  ident: 10.1016/j.ultras.2014.09.006_b0095
  article-title: Reducing the bias of multitaper spectrum estimates
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2007.03592.x
– volume: 20
  start-page: 81
  year: 1998
  ident: 10.1016/j.ultras.2014.09.006_b0035
  article-title: Multi-angle compound imaging
  publication-title: Ultrason. Imaging
  doi: 10.1177/016173469802000201
– volume: 53
  start-page: 880
  issue: 5
  year: 2006
  ident: 10.1016/j.ultras.2014.09.006_b0110
  article-title: Extended high-frame rate imaging method with limited-diffraction beams
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2006.1632680
– volume: 3
  start-page: 303
  issue: 3
  year: 1981
  ident: 10.1016/j.ultras.2014.09.006_b0025
  article-title: Compound scanning with an electrically steered beam
  publication-title: Ultrason. Imaging
  doi: 10.1177/016173468100300306
– volume: 22
  start-page: 50
  issue: 1
  year: 2001
  ident: 10.1016/j.ultras.2014.09.006_b0045
  article-title: Real-time spatial compound imaging: application to breast, vascular, and musculoskeletal ultrasound
  publication-title: Semin. Ultrasound CT MRI
  doi: 10.1016/S0887-2171(01)90018-6
– volume: 44
  start-page: 839
  issue: 4
  year: 1997
  ident: 10.1016/j.ultras.2014.09.006_b0115
  article-title: 2D and 3D high frame rate imaging with limited diffraction beams
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.655200
– volume: 25
  start-page: 1
  issue: 1
  year: 1978
  ident: 10.1016/j.ultras.2014.09.006_b0005
  article-title: Speckle in ultrasound B-mode scans
  publication-title: IEEE Trans. Son. Ultrason.
  doi: 10.1109/T-SU.1978.30978
SSID ssj0014813
Score 2.1640275
Snippet •Thomson’s multitaper combined with coherent plane-wave compounding is evaluated.•The best image quality is obtained with 11 plane waves and 3 Thomson’s...
In ultrasound imaging, the speckle pattern limits the image quality. Spatial and frequency compounding are commonly used to reduce speckle noise or improve the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 390
SubjectTerms Apodization
Coherence
Coherent plane-wave compounding
Compounding
Frames
Image quality
Imaging
Noise reduction
Speckle
Thomson’s multitaper
Ultrasound imaging
Title Thomson’s multitaper approach combined with coherent plane-wave compounding to reduce speckle in ultrasound imaging
URI https://dx.doi.org/10.1016/j.ultras.2014.09.006
https://www.ncbi.nlm.nih.gov/pubmed/25262843
https://www.proquest.com/docview/1634270838
https://www.proquest.com/docview/1677940313
Volume 56
WOSCitedRecordID wos000345386000045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2LUhwQFBey6MyEoJDFZSn7RwrtBWg1baHXbQ3K3Fcdcs2WZJs6e_gFzN-JSu1peXAJYq8dmJ5vp2MPTPfIPSe-SfKEpeeTBPfiyUpPAafCY-QUEo_EumJzq_4PqaTCZvP0-PB4LfLhblY0rJkl5fp6r-KGtpA2Cp19h_E3T0UGuAehA5XEDtc7yj46lxHeNDGhAu22UrWHXm4CiKH3XAfdX4qNUHTSkW9er9UMSIVZq6qLelMqmq_Vuyucl_lZP5Yao4ReGqdNarL_uJclznatHFn5tdyI45-Wq2XElbAcPzqGuMLue5PUZvG-ESOlgv1ne6H1W1l8rePobnqHSY6WawnR3AYt8cXQeIinjuNy2jswabLKGF5TZtV08mmno1MjdEr-t8cRZx9MuugIvcMja1_Dd325IgfzsZjPh3Npx9WPz1ViUx57G1Zli20E9IkBU25c_B1NP_W-aZipotud5N0CZk6avDqi28yeG7a0GjDZvoYPbI7EnxgkPQEDWS5ix5u8FTuovs6Tlg0T1Fj0fWxwT22sMMWdtjCClvYYQv32MIb2MJthQ22sMUWXpS4xxa22HqGZoej6ecvnq3b4YkoTVovSoM8jGWRKJ9ykpMipBkrKMkpCUgeZHmcMyJiKsKcRTIXYENmQUhkDjcyyv3oOdouq1K-RLhQjluSRkWWirgAa1n4Iigyn5IsozQqhihyi8uFJbVXtVWW3EUvnnEzb65Ewv2Ug0iGyOtGrQypyy39qZMbt4apMTg54O6Wke-cmDnobeWMgwWv1g2HfVAcUtgAsb_1ofC5VOyqQ_TCYKSbb5iEBEzL6NUd3vAaPej_em_Qdluv5Vt0T1y0i6beQ1t0zvYsyv8ALxvWMw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thomson%27s+multitaper+approach+combined+with+coherent+plane-wave+compounding+to+reduce+speckle+in+ultrasound+imaging&rft.jtitle=Ultrasonics&rft.au=Toulemonde%2C+Matthieu&rft.au=Basset%2C+Olivier&rft.au=Tortoli%2C+Piero&rft.au=Cachard%2C+Christian&rft.date=2015-02-01&rft.issn=1874-9968&rft.eissn=1874-9968&rft.volume=56&rft.spage=390&rft_id=info:doi/10.1016%2Fj.ultras.2014.09.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-624X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-624X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-624X&client=summon