Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism
N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of peroxydisulfate (PDS) activation for sulfadiazine (SDZ) degradation. Through both dynamic fitting and density functional theory (DFT) calculations,...
Uloženo v:
| Vydáno v: | Water research (Oxford) Ročník 160; s. 405 - 414 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
01.09.2019
|
| Témata: | |
| ISSN: | 0043-1354, 1879-2448, 1879-2448 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of peroxydisulfate (PDS) activation for sulfadiazine (SDZ) degradation. Through both dynamic fitting and density functional theory (DFT) calculations, the critical role of edge nitrogenation in biochar (BC) structure was revealed for the first time. The incorporation of edge nitrogen configurations (pyridinic N and pyrrolic N rather than graphitic N) generated reactive sites for the PDS activation. Additionally, a thorough investigation was conducted to explicate the PDS activation mechanism by NBC through chemical quenching experiments, electron spin resonance (ESR) detection, oxidant consumption monitoring and electrochemical analysis. Different from the well-reported singlet oxygen (1O2) dominated nonradical mechanism, an electron transfer pathway involving surface-bound reactive complexes was proved to play a major role in the NBC/PDS system. Benefit from the electron transfer mechanism, the NBC/PDS system not only has wide pH adaptation for real application, but also shows high resistance to the inorganic anions in aquatic environment. We believe this study will deepen the understanding of the carbon-driven persulfate activation mechanism and provide strong technical support for the BC-mediated persulfate activation in practical applications.
[Display omitted]
•N-doped biochars exhibited superior performance towards peroxydisulfate activation.•Edge nitrogenation disturbed the electron density and created reactive sites.•Electron transfer pathway rather than singlet oxygen dominated in the redox system.•Negative effect of anions was suppressed by the electron transfer mechanism. |
|---|---|
| AbstractList | N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of peroxydisulfate (PDS) activation for sulfadiazine (SDZ) degradation. Through both dynamic fitting and density functional theory (DFT) calculations, the critical role of edge nitrogenation in biochar (BC) structure was revealed for the first time. The incorporation of edge nitrogen configurations (pyridinic N and pyrrolic N rather than graphitic N) generated reactive sites for the PDS activation. Additionally, a thorough investigation was conducted to explicate the PDS activation mechanism by NBC through chemical quenching experiments, electron spin resonance (ESR) detection, oxidant consumption monitoring and electrochemical analysis. Different from the well-reported singlet oxygen (1O2) dominated nonradical mechanism, an electron transfer pathway involving surface-bound reactive complexes was proved to play a major role in the NBC/PDS system. Benefit from the electron transfer mechanism, the NBC/PDS system not only has wide pH adaptation for real application, but also shows high resistance to the inorganic anions in aquatic environment. We believe this study will deepen the understanding of the carbon-driven persulfate activation mechanism and provide strong technical support for the BC-mediated persulfate activation in practical applications.N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of peroxydisulfate (PDS) activation for sulfadiazine (SDZ) degradation. Through both dynamic fitting and density functional theory (DFT) calculations, the critical role of edge nitrogenation in biochar (BC) structure was revealed for the first time. The incorporation of edge nitrogen configurations (pyridinic N and pyrrolic N rather than graphitic N) generated reactive sites for the PDS activation. Additionally, a thorough investigation was conducted to explicate the PDS activation mechanism by NBC through chemical quenching experiments, electron spin resonance (ESR) detection, oxidant consumption monitoring and electrochemical analysis. Different from the well-reported singlet oxygen (1O2) dominated nonradical mechanism, an electron transfer pathway involving surface-bound reactive complexes was proved to play a major role in the NBC/PDS system. Benefit from the electron transfer mechanism, the NBC/PDS system not only has wide pH adaptation for real application, but also shows high resistance to the inorganic anions in aquatic environment. We believe this study will deepen the understanding of the carbon-driven persulfate activation mechanism and provide strong technical support for the BC-mediated persulfate activation in practical applications. N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of peroxydisulfate (PDS) activation for sulfadiazine (SDZ) degradation. Through both dynamic fitting and density functional theory (DFT) calculations, the critical role of edge nitrogenation in biochar (BC) structure was revealed for the first time. The incorporation of edge nitrogen configurations (pyridinic N and pyrrolic N rather than graphitic N) generated reactive sites for the PDS activation. Additionally, a thorough investigation was conducted to explicate the PDS activation mechanism by NBC through chemical quenching experiments, electron spin resonance (ESR) detection, oxidant consumption monitoring and electrochemical analysis. Different from the well-reported singlet oxygen (1O2) dominated nonradical mechanism, an electron transfer pathway involving surface-bound reactive complexes was proved to play a major role in the NBC/PDS system. Benefit from the electron transfer mechanism, the NBC/PDS system not only has wide pH adaptation for real application, but also shows high resistance to the inorganic anions in aquatic environment. We believe this study will deepen the understanding of the carbon-driven persulfate activation mechanism and provide strong technical support for the BC-mediated persulfate activation in practical applications. [Display omitted] •N-doped biochars exhibited superior performance towards peroxydisulfate activation.•Edge nitrogenation disturbed the electron density and created reactive sites.•Electron transfer pathway rather than singlet oxygen dominated in the redox system.•Negative effect of anions was suppressed by the electron transfer mechanism. N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of peroxydisulfate (PDS) activation for sulfadiazine (SDZ) degradation. Through both dynamic fitting and density functional theory (DFT) calculations, the critical role of edge nitrogenation in biochar (BC) structure was revealed for the first time. The incorporation of edge nitrogen configurations (pyridinic N and pyrrolic N rather than graphitic N) generated reactive sites for the PDS activation. Additionally, a thorough investigation was conducted to explicate the PDS activation mechanism by NBC through chemical quenching experiments, electron spin resonance (ESR) detection, oxidant consumption monitoring and electrochemical analysis. Different from the well-reported singlet oxygen (1O2) dominated nonradical mechanism, an electron transfer pathway involving surface-bound reactive complexes was proved to play a major role in the NBC/PDS system. Benefit from the electron transfer mechanism, the NBC/PDS system not only has wide pH adaptation for real application, but also shows high resistance to the inorganic anions in aquatic environment. We believe this study will deepen the understanding of the carbon-driven persulfate activation mechanism and provide strong technical support for the BC-mediated persulfate activation in practical applications. N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of peroxydisulfate (PDS) activation for sulfadiazine (SDZ) degradation. Through both dynamic fitting and density functional theory (DFT) calculations, the critical role of edge nitrogenation in biochar (BC) structure was revealed for the first time. The incorporation of edge nitrogen configurations (pyridinic N and pyrrolic N rather than graphitic N) generated reactive sites for the PDS activation. Additionally, a thorough investigation was conducted to explicate the PDS activation mechanism by NBC through chemical quenching experiments, electron spin resonance (ESR) detection, oxidant consumption monitoring and electrochemical analysis. Different from the well-reported singlet oxygen ( O ) dominated nonradical mechanism, an electron transfer pathway involving surface-bound reactive complexes was proved to play a major role in the NBC/PDS system. Benefit from the electron transfer mechanism, the NBC/PDS system not only has wide pH adaptation for real application, but also shows high resistance to the inorganic anions in aquatic environment. We believe this study will deepen the understanding of the carbon-driven persulfate activation mechanism and provide strong technical support for the BC-mediated persulfate activation in practical applications. |
| Author | Zhao, Qi Sseguya, Fred Guo, Wanqian Luo, Haichao Ren, Nanqi Si, Qishi Wang, Huazhe Liu, Banghai Wu, Qinglian |
| Author_xml | – sequence: 1 givenname: Huazhe surname: Wang fullname: Wang, Huazhe – sequence: 2 givenname: Wanqian orcidid: 0000-0001-6237-4460 surname: Guo fullname: Guo, Wanqian email: guowanqian@hit.edu.cn – sequence: 3 givenname: Banghai surname: Liu fullname: Liu, Banghai – sequence: 4 givenname: Qinglian surname: Wu fullname: Wu, Qinglian – sequence: 5 givenname: Haichao surname: Luo fullname: Luo, Haichao – sequence: 6 givenname: Qi surname: Zhao fullname: Zhao, Qi – sequence: 7 givenname: Qishi surname: Si fullname: Si, Qishi – sequence: 8 givenname: Fred surname: Sseguya fullname: Sseguya, Fred – sequence: 9 givenname: Nanqi surname: Ren fullname: Ren, Nanqi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31163316$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1LHTEYhUOx1KvtPyiSpZu5zdfMZFwIIlYLgpt2HTLJG81lJrkmuX78e3N7rYsuFA68m-cceM85QHshBkDoOyVLSmj3Y7V81CVBXjJChyVpq4ZPaEFlPzRMCLmHFoQI3lDein10kPOKEMIYH76gfU5pxzntFmi8sLfQBF9SvIWgC1g8-mjudMIuJgzOeeMhFLyGFJ-erc-byVUMa1P8gy4-hhN8FjBMYGpGwCXpkB0kPENNCT7PX9Fnp6cM317vIfrz8-L3-VVzfXP56_zsujF8aEvDRgMdiK6XjjAtu2Fk0oAduKRmFND2vdWG9GNvLSWcguS8vmMkGGnY6Bw_RMe73HWK9xvIRc0-G5gmHSBusmKsp5IIUj__GBVtJwQTtKJHr-hmnMGqdfKzTs_qX4UVEDvApJhzAveGUKK2S6mV2i2ltksp0lYN1Xbyn8348rfP2qCfPjKf7sxQ-3zwkFTerlTr8qnuoGz07we8AKuhswQ |
| CitedBy_id | crossref_primary_10_1016_j_watres_2023_119574 crossref_primary_10_1016_j_jwpe_2025_108359 crossref_primary_10_1016_j_jhazmat_2021_125305 crossref_primary_10_1016_j_biortech_2019_122286 crossref_primary_10_1016_j_cej_2020_125138 crossref_primary_10_3390_catal15040327 crossref_primary_10_1016_j_jcis_2024_08_131 crossref_primary_10_1016_j_cej_2023_142558 crossref_primary_10_1016_j_scitotenv_2023_168679 crossref_primary_10_1016_j_chemosphere_2020_129016 crossref_primary_10_1016_j_scitotenv_2022_155071 crossref_primary_10_1039_D4SE01393J crossref_primary_10_1007_s00128_025_04045_6 crossref_primary_10_1016_j_jece_2022_107781 crossref_primary_10_1016_j_apcatb_2020_119361 crossref_primary_10_1016_j_cej_2022_135864 crossref_primary_10_1016_j_ces_2022_118178 crossref_primary_10_1021_acs_inorgchem_4c03766 crossref_primary_10_1016_j_cej_2022_140097 crossref_primary_10_1016_j_apcatb_2021_120880 crossref_primary_10_1016_j_seppur_2024_128823 crossref_primary_10_1007_s11356_023_29394_9 crossref_primary_10_1016_j_scitotenv_2021_148031 crossref_primary_10_1016_j_seppur_2025_133570 crossref_primary_10_1016_j_jece_2024_112561 crossref_primary_10_1016_j_jwpe_2022_103071 crossref_primary_10_1016_j_cej_2023_141578 crossref_primary_10_1016_j_cej_2023_142548 crossref_primary_10_1016_j_envres_2025_121414 crossref_primary_10_1016_j_jcis_2022_06_078 crossref_primary_10_1016_j_psep_2024_11_038 crossref_primary_10_1016_j_jcis_2021_04_095 crossref_primary_10_1016_j_jece_2022_107654 crossref_primary_10_1016_j_envres_2020_110104 crossref_primary_10_1016_j_cej_2022_135630 crossref_primary_10_1016_j_scitotenv_2020_139267 crossref_primary_10_1016_j_scitotenv_2020_142794 crossref_primary_10_1016_j_envres_2025_121774 crossref_primary_10_1016_j_scenv_2023_100044 crossref_primary_10_1016_j_jhazmat_2023_132538 crossref_primary_10_1016_j_seppur_2024_127965 crossref_primary_10_3390_nano12152586 crossref_primary_10_1016_j_seppur_2024_127842 crossref_primary_10_1016_j_apsusc_2021_151429 crossref_primary_10_1016_j_cej_2020_127698 crossref_primary_10_1016_j_jechem_2020_10_011 crossref_primary_10_1016_j_jece_2024_112470 crossref_primary_10_1016_j_jhazmat_2020_124199 crossref_primary_10_1016_j_seppur_2025_132593 crossref_primary_10_1007_s11270_023_06770_2 crossref_primary_10_1016_j_jece_2024_112358 crossref_primary_10_1016_j_cej_2023_143748 crossref_primary_10_1016_j_cej_2021_128829 crossref_primary_10_1016_j_cej_2024_158046 crossref_primary_10_1016_j_apsusc_2025_164640 crossref_primary_10_1016_j_jece_2022_108975 crossref_primary_10_1016_j_heliyon_2024_e34548 crossref_primary_10_1016_j_scitotenv_2020_142104 crossref_primary_10_1016_j_watres_2025_124023 crossref_primary_10_1016_j_seppur_2024_126740 crossref_primary_10_1016_j_surfin_2025_107421 crossref_primary_10_1016_j_jhazmat_2023_132626 crossref_primary_10_1016_j_seppur_2024_128921 crossref_primary_10_1002_smtd_202402072 crossref_primary_10_1016_j_apcatb_2024_124982 crossref_primary_10_1016_j_seppur_2022_121777 crossref_primary_10_1016_j_envres_2023_115993 crossref_primary_10_1007_s11356_022_20500_x crossref_primary_10_1016_j_cej_2019_123726 crossref_primary_10_1016_j_scitotenv_2021_152673 crossref_primary_10_1016_j_ijbiomac_2023_125902 crossref_primary_10_1016_j_jcis_2020_08_049 crossref_primary_10_3390_w17111700 crossref_primary_10_1016_j_ijbiomac_2024_138322 crossref_primary_10_1016_j_jhazmat_2021_127938 crossref_primary_10_1016_j_jhazmat_2022_129172 crossref_primary_10_1021_acsestengg_5c00022 crossref_primary_10_1016_j_jcis_2021_04_074 crossref_primary_10_1016_j_ijbiomac_2025_139700 crossref_primary_10_1016_j_cej_2021_134026 crossref_primary_10_1016_j_envres_2025_122882 crossref_primary_10_1016_j_cej_2025_160653 crossref_primary_10_1016_j_seppur_2022_122612 crossref_primary_10_1016_j_apcatb_2024_124850 crossref_primary_10_1016_j_cej_2024_152619 crossref_primary_10_1016_j_envpol_2023_121060 crossref_primary_10_5004_dwt_2023_29179 crossref_primary_10_1002_smll_202402449 crossref_primary_10_1016_j_jece_2025_116178 crossref_primary_10_1016_j_biortech_2022_127710 crossref_primary_10_1016_j_envpol_2024_123885 crossref_primary_10_1016_j_chemosphere_2024_143000 crossref_primary_10_1016_j_eti_2023_103413 crossref_primary_10_1007_s11270_024_06966_0 crossref_primary_10_1007_s11356_023_27422_2 crossref_primary_10_1016_j_seppur_2023_125193 crossref_primary_10_1016_j_jcis_2020_10_021 crossref_primary_10_1016_j_cej_2022_135669 crossref_primary_10_1016_j_chemosphere_2023_137766 crossref_primary_10_1016_j_envpol_2024_124607 crossref_primary_10_1016_j_scitotenv_2022_158799 crossref_primary_10_1039_D1EW00731A crossref_primary_10_1016_j_jece_2025_118232 crossref_primary_10_1016_j_scitotenv_2021_151502 crossref_primary_10_1016_j_cej_2024_149541 crossref_primary_10_1016_j_seppur_2024_126725 crossref_primary_10_1016_j_cej_2020_126136 crossref_primary_10_1016_j_cej_2020_128312 crossref_primary_10_1016_j_cej_2024_151878 crossref_primary_10_1016_j_chemosphere_2021_131404 crossref_primary_10_1016_j_jmst_2023_03_027 crossref_primary_10_1016_j_scitotenv_2023_168101 crossref_primary_10_3390_catal15030217 crossref_primary_10_1016_j_apcatb_2024_124909 crossref_primary_10_1016_j_jenvman_2021_112294 crossref_primary_10_1016_j_cej_2024_156075 crossref_primary_10_1016_j_jece_2024_112407 crossref_primary_10_1016_j_cej_2023_143839 crossref_primary_10_1016_j_cej_2024_156078 crossref_primary_10_1016_j_jwpe_2025_108147 crossref_primary_10_1016_j_apcatb_2023_122359 crossref_primary_10_1016_j_cej_2022_135552 crossref_primary_10_1016_j_jenvman_2025_126245 crossref_primary_10_1016_j_envpol_2024_124857 crossref_primary_10_1016_j_cej_2019_123822 crossref_primary_10_1016_j_apcatb_2021_120694 crossref_primary_10_1016_j_jenvman_2022_116945 crossref_primary_10_1016_j_chemosphere_2021_131770 crossref_primary_10_1016_j_jece_2025_116062 crossref_primary_10_1016_j_seppur_2022_121548 crossref_primary_10_1016_j_seppur_2022_122879 crossref_primary_10_1016_j_cclet_2024_110244 crossref_primary_10_3390_catal12101164 crossref_primary_10_1016_j_jhazmat_2024_135291 crossref_primary_10_1016_j_colsurfa_2023_132866 crossref_primary_10_1016_j_apcatb_2025_125072 crossref_primary_10_1016_j_seppur_2025_133881 crossref_primary_10_1016_j_cej_2023_143820 crossref_primary_10_1016_j_jhazmat_2021_125726 crossref_primary_10_1007_s44246_025_00219_3 crossref_primary_10_1016_j_wse_2025_07_003 crossref_primary_10_1016_j_apsusc_2022_154026 crossref_primary_10_1016_j_seppur_2024_130081 crossref_primary_10_1016_j_jece_2024_113630 crossref_primary_10_1016_j_seppur_2022_122773 crossref_primary_10_1016_j_seppur_2023_123803 crossref_primary_10_1002_smll_202504746 crossref_primary_10_1016_j_seppur_2022_120470 crossref_primary_10_1016_j_jwpe_2025_108287 crossref_primary_10_1016_j_jhazmat_2021_126928 crossref_primary_10_1007_s11705_023_2327_7 crossref_primary_10_1016_j_biortech_2022_127718 crossref_primary_10_1016_j_jece_2025_116080 crossref_primary_10_1016_j_jhazmat_2022_128282 crossref_primary_10_1016_j_apcatb_2023_122579 crossref_primary_10_1016_j_envpol_2022_118965 crossref_primary_10_1039_D0EN00848F crossref_primary_10_3390_su14159324 crossref_primary_10_1016_j_jece_2025_117052 crossref_primary_10_1016_j_mtcomm_2024_109496 crossref_primary_10_1016_j_surfin_2022_102551 crossref_primary_10_1016_j_cjche_2024_11_020 crossref_primary_10_3390_ijms26030940 crossref_primary_10_1016_j_jhazmat_2024_135356 crossref_primary_10_1016_j_seppur_2024_127456 crossref_primary_10_1016_j_cej_2024_153698 crossref_primary_10_1016_j_jhazmat_2025_137810 crossref_primary_10_1016_j_seppur_2022_121916 crossref_primary_10_1016_j_seppur_2023_124586 crossref_primary_10_1016_j_cej_2025_163655 crossref_primary_10_1016_j_jhazmat_2022_130108 crossref_primary_10_1016_j_cej_2023_143476 crossref_primary_10_1016_j_seppur_2021_119687 crossref_primary_10_1016_j_cej_2025_164756 crossref_primary_10_1016_j_jece_2024_113132 crossref_primary_10_1016_j_jhazmat_2022_129359 crossref_primary_10_1016_j_chemosphere_2022_135308 crossref_primary_10_1007_s11356_022_22430_0 crossref_primary_10_1016_j_jiec_2025_04_053 crossref_primary_10_1016_j_cej_2024_151156 crossref_primary_10_1016_j_envpol_2024_124788 crossref_primary_10_1016_j_jclepro_2021_130069 crossref_primary_10_1016_j_seppur_2022_121909 crossref_primary_10_1016_j_seppur_2024_129864 crossref_primary_10_1016_j_colsurfa_2025_137845 crossref_primary_10_1016_j_jece_2022_108101 crossref_primary_10_1016_j_jenvman_2025_124665 crossref_primary_10_1016_j_jclepro_2022_130480 crossref_primary_10_1016_j_seppur_2023_125322 crossref_primary_10_1016_j_seppur_2022_120934 crossref_primary_10_1016_j_jclepro_2022_133750 crossref_primary_10_1016_j_apcatb_2023_122794 crossref_primary_10_1016_j_cej_2025_163781 crossref_primary_10_1007_s42773_023_00285_z crossref_primary_10_1016_j_envpol_2023_123064 crossref_primary_10_1016_j_cej_2023_145888 crossref_primary_10_1016_j_jcis_2025_137645 crossref_primary_10_1016_j_jece_2024_114493 crossref_primary_10_1007_s11356_021_18285_6 crossref_primary_10_1016_j_chemosphere_2024_142775 crossref_primary_10_1016_j_cej_2020_127619 crossref_primary_10_1016_j_jece_2022_107481 crossref_primary_10_1016_j_jece_2025_117928 crossref_primary_10_1016_j_biortech_2021_126523 crossref_primary_10_1016_j_cej_2024_152580 crossref_primary_10_1016_j_apcatb_2023_122886 crossref_primary_10_1016_j_jcis_2024_06_033 crossref_primary_10_1016_j_jhazmat_2022_130562 crossref_primary_10_1016_j_jece_2022_108210 crossref_primary_10_1016_j_seppur_2024_128881 crossref_primary_10_3390_ma17194895 crossref_primary_10_1016_j_watres_2022_119316 crossref_primary_10_1016_j_seppur_2023_124005 crossref_primary_10_1016_j_jhazmat_2023_130727 crossref_primary_10_3390_catal13091247 crossref_primary_10_1016_j_cej_2024_157919 crossref_primary_10_1016_j_seppur_2022_120963 crossref_primary_10_1016_j_seppur_2024_128528 crossref_primary_10_1016_j_envres_2023_117773 crossref_primary_10_1016_j_jenvman_2023_117566 crossref_primary_10_1016_j_seppur_2021_118697 crossref_primary_10_1016_j_watres_2025_124436 crossref_primary_10_1016_j_rser_2021_112056 crossref_primary_10_1007_s10562_021_03853_9 crossref_primary_10_1016_j_jhazmat_2020_123837 crossref_primary_10_1016_j_scitotenv_2020_141883 crossref_primary_10_1016_j_cclet_2022_107861 crossref_primary_10_1016_j_cej_2024_149294 crossref_primary_10_1016_j_seppur_2023_124252 crossref_primary_10_1016_j_seppur_2024_126338 crossref_primary_10_1016_j_biortech_2024_130684 crossref_primary_10_1016_j_micromeso_2021_111259 crossref_primary_10_1016_j_seppur_2024_129845 crossref_primary_10_1016_j_surfin_2024_105051 crossref_primary_10_1016_j_chemosphere_2022_134682 crossref_primary_10_1016_j_apcatb_2025_125450 crossref_primary_10_1016_j_cej_2023_144531 crossref_primary_10_1016_j_envres_2022_115166 crossref_primary_10_1016_j_cej_2023_142114 crossref_primary_10_1016_j_biombioe_2025_107742 crossref_primary_10_1016_j_ces_2025_122114 crossref_primary_10_1016_j_cej_2024_151585 crossref_primary_10_1016_j_cclet_2021_10_086 crossref_primary_10_1016_j_scitotenv_2020_140862 crossref_primary_10_1016_j_jclepro_2022_134519 crossref_primary_10_1016_j_cej_2021_133004 crossref_primary_10_1016_j_jece_2025_119166 crossref_primary_10_1016_j_apsusc_2022_153917 crossref_primary_10_1016_j_apsusc_2021_149300 crossref_primary_10_1016_j_cej_2022_141147 crossref_primary_10_1016_j_watres_2023_119659 crossref_primary_10_1016_j_seppur_2024_127899 crossref_primary_10_1016_j_seppur_2022_120625 crossref_primary_10_1016_j_jclepro_2024_142415 crossref_primary_10_1016_j_jece_2025_115810 crossref_primary_10_1016_j_chemosphere_2021_129629 crossref_primary_10_1016_j_jhazmat_2022_129437 crossref_primary_10_1016_j_apcatb_2023_122507 crossref_primary_10_1016_j_jhazmat_2020_122764 crossref_primary_10_1016_j_seppur_2021_119369 crossref_primary_10_1039_D4CS00338A crossref_primary_10_1016_j_jhazmat_2024_136871 crossref_primary_10_3390_ma15175832 crossref_primary_10_1016_j_cej_2024_150263 crossref_primary_10_1007_s11356_023_25182_7 crossref_primary_10_1016_j_jclepro_2023_140133 crossref_primary_10_1016_j_jece_2024_114305 crossref_primary_10_1016_j_jcis_2020_11_106 crossref_primary_10_1016_j_jece_2021_106267 crossref_primary_10_1016_j_cej_2021_133595 crossref_primary_10_1016_j_cej_2021_133477 crossref_primary_10_1016_j_cej_2022_141037 crossref_primary_10_1016_j_scitotenv_2023_163054 crossref_primary_10_1016_j_colsurfa_2025_137804 crossref_primary_10_1016_j_jhazmat_2022_129673 crossref_primary_10_1016_j_seppur_2022_120735 crossref_primary_10_1016_j_jhazmat_2022_129671 crossref_primary_10_1016_j_apcatb_2023_122990 crossref_primary_10_1016_j_seppur_2022_122912 crossref_primary_10_1016_j_apcatb_2023_122992 crossref_primary_10_1016_j_fuproc_2022_107218 crossref_primary_10_1016_j_psep_2022_10_038 crossref_primary_10_1016_j_watres_2023_119631 crossref_primary_10_1016_j_watres_2022_119113 crossref_primary_10_1016_j_cej_2024_150239 crossref_primary_10_1016_j_seppur_2025_133482 crossref_primary_10_1016_j_ces_2025_122496 crossref_primary_10_1016_j_envres_2023_116998 crossref_primary_10_1016_j_hazadv_2022_100171 crossref_primary_10_1016_j_cej_2020_125119 crossref_primary_10_1016_j_jwpe_2024_105668 crossref_primary_10_1016_j_jclepro_2020_125225 crossref_primary_10_1016_j_jece_2024_113126 crossref_primary_10_3390_w17091342 crossref_primary_10_1016_j_apsusc_2025_164442 crossref_primary_10_1016_j_jwpe_2022_102903 crossref_primary_10_1016_j_seppur_2023_125134 crossref_primary_10_1016_j_jece_2021_106276 crossref_primary_10_1016_j_cej_2022_135606 crossref_primary_10_1016_j_cej_2024_149003 crossref_primary_10_1016_j_horiz_2024_100091 crossref_primary_10_1016_j_envpol_2022_120508 crossref_primary_10_1016_j_jallcom_2023_172370 crossref_primary_10_3390_w16060875 crossref_primary_10_1016_j_fuproc_2022_107468 crossref_primary_10_1016_j_watres_2022_119341 crossref_primary_10_1016_j_jwpe_2025_106940 crossref_primary_10_1016_j_hazadv_2023_100244 crossref_primary_10_1016_j_jaap_2023_106310 crossref_primary_10_1016_j_jhazmat_2020_123874 crossref_primary_10_1007_s11356_022_23063_z crossref_primary_10_1016_j_cej_2024_150005 crossref_primary_10_1016_j_watres_2025_123147 crossref_primary_10_1016_j_cej_2019_123091 crossref_primary_10_1016_j_watres_2023_120514 crossref_primary_10_1016_j_jece_2024_112026 crossref_primary_10_1016_j_arabjc_2023_105242 crossref_primary_10_1016_j_watres_2023_120999 crossref_primary_10_1016_j_apcatb_2022_121342 crossref_primary_10_1007_s11356_022_24223_x crossref_primary_10_1016_j_cej_2022_136944 crossref_primary_10_1016_j_jclepro_2022_135514 crossref_primary_10_1016_j_cej_2022_136942 crossref_primary_10_1038_s41467_024_45481_y crossref_primary_10_1016_j_efmat_2023_09_001 crossref_primary_10_1016_j_biortech_2024_131971 crossref_primary_10_1016_j_seppur_2022_120998 crossref_primary_10_1016_j_cej_2023_146115 crossref_primary_10_1016_j_seppur_2022_122047 crossref_primary_10_1016_j_cej_2023_146356 crossref_primary_10_1016_j_watres_2024_121376 crossref_primary_10_1016_j_jclepro_2021_129806 crossref_primary_10_1016_j_seppur_2023_125719 crossref_primary_10_1016_j_cej_2021_131655 crossref_primary_10_1016_j_scitotenv_2021_152089 crossref_primary_10_1016_j_cej_2020_124725 crossref_primary_10_1016_j_cej_2022_138574 crossref_primary_10_5004_dwt_2023_29657 crossref_primary_10_1016_j_cclet_2023_109331 crossref_primary_10_1016_j_cej_2022_138576 crossref_primary_10_1016_j_eti_2021_102002 crossref_primary_10_1016_j_jwpe_2024_105248 crossref_primary_10_1016_j_cclet_2023_109334 crossref_primary_10_1016_j_jhazmat_2023_132086 crossref_primary_10_1016_j_cej_2024_157892 crossref_primary_10_1002_smll_202505082 crossref_primary_10_1016_j_cej_2022_136399 crossref_primary_10_1016_j_cej_2024_155477 crossref_primary_10_1016_j_fuel_2025_134390 crossref_primary_10_1016_j_jhazmat_2022_128773 crossref_primary_10_1016_j_arabjc_2024_105929 crossref_primary_10_1039_D0RA00998A crossref_primary_10_1016_j_cej_2025_164474 crossref_primary_10_1039_D1EW00683E crossref_primary_10_1016_j_cej_2025_164475 crossref_primary_10_1016_j_cej_2025_165564 crossref_primary_10_1016_j_jwpe_2024_106348 crossref_primary_10_1016_j_chemosphere_2020_127987 crossref_primary_10_1016_j_molliq_2023_123505 crossref_primary_10_1039_D3EW00801K crossref_primary_10_1016_j_seppur_2024_129471 crossref_primary_10_1016_j_chemosphere_2023_140563 crossref_primary_10_1016_j_watres_2021_117288 crossref_primary_10_3390_catal12020210 crossref_primary_10_1016_j_jwpe_2024_105016 crossref_primary_10_1016_j_jcis_2023_04_093 crossref_primary_10_1016_j_cclet_2023_108357 crossref_primary_10_1016_j_cej_2024_154133 crossref_primary_10_1016_j_cej_2024_154135 crossref_primary_10_1016_j_jics_2025_101883 crossref_primary_10_1016_j_apcatb_2021_120093 crossref_primary_10_1016_j_cej_2021_133833 crossref_primary_10_1016_j_cej_2025_167740 crossref_primary_10_1016_j_colsurfa_2025_136915 crossref_primary_10_1016_j_ecoenv_2025_117700 crossref_primary_10_1007_s10311_024_01814_3 crossref_primary_10_1016_j_jwpe_2025_107966 crossref_primary_10_1016_j_seppur_2023_124769 crossref_primary_10_1016_j_jhazmat_2022_128757 crossref_primary_10_1016_j_jwpe_2023_104096 crossref_primary_10_1002_admt_202300236 crossref_primary_10_1016_j_jhazmat_2020_124990 crossref_primary_10_1016_j_cej_2023_144038 crossref_primary_10_1016_j_ijbiomac_2023_125579 crossref_primary_10_1016_j_seppur_2022_123034 crossref_primary_10_1016_j_cej_2022_138353 crossref_primary_10_1016_j_cej_2021_130585 crossref_primary_10_1016_j_seppur_2021_118965 crossref_primary_10_1016_j_jece_2023_111740 crossref_primary_10_1016_j_jwpe_2025_107840 crossref_primary_10_1016_j_jece_2023_111502 crossref_primary_10_1016_j_jece_2023_111744 crossref_primary_10_1016_j_jhazmat_2023_133399 crossref_primary_10_1016_j_apcatb_2022_121671 crossref_primary_10_1016_j_ecoenv_2023_114908 crossref_primary_10_1016_j_cej_2021_129590 crossref_primary_10_1016_j_seppur_2024_127157 crossref_primary_10_1016_j_seppur_2023_123674 crossref_primary_10_1016_j_fuel_2022_125948 crossref_primary_10_1016_j_cej_2023_147541 crossref_primary_10_3390_w15152768 crossref_primary_10_1016_j_cej_2023_143298 crossref_primary_10_1016_j_cej_2025_163483 crossref_primary_10_1016_j_seppur_2023_124418 crossref_primary_10_1016_j_jece_2025_116324 crossref_primary_10_1016_j_jece_2025_116687 crossref_primary_10_1016_j_seppur_2022_122177 crossref_primary_10_1016_j_cej_2021_130477 crossref_primary_10_1016_j_chemosphere_2020_127845 crossref_primary_10_1016_j_chemosphere_2019_124812 crossref_primary_10_1002_adsu_201900149 crossref_primary_10_1080_07388551_2022_2119547 crossref_primary_10_1016_j_cej_2022_137277 crossref_primary_10_1016_j_jwpe_2022_102681 crossref_primary_10_1016_j_biortech_2021_124753 crossref_primary_10_1016_j_cclet_2021_12_042 crossref_primary_10_1016_j_envpol_2022_120683 crossref_primary_10_1002_cjce_25707 crossref_primary_10_1016_j_heliyon_2024_e29896 crossref_primary_10_1016_j_psep_2022_11_013 crossref_primary_10_3390_molecules28104237 crossref_primary_10_3390_catal12030342 crossref_primary_10_3390_molecules30051005 crossref_primary_10_1016_j_jece_2022_109134 crossref_primary_10_1016_j_seppur_2024_129564 crossref_primary_10_1016_j_jhazmat_2021_127254 crossref_primary_10_1016_j_envres_2022_113954 crossref_primary_10_1016_j_cclet_2021_04_059 crossref_primary_10_2166_wst_2024_256 crossref_primary_10_1016_j_jece_2024_115291 crossref_primary_10_1007_s42773_025_00433_7 crossref_primary_10_1016_j_jhazmat_2020_124893 crossref_primary_10_1016_j_cej_2023_146795 crossref_primary_10_1016_j_cej_2021_130126 crossref_primary_10_1016_j_seppur_2020_118025 crossref_primary_10_1016_j_cej_2020_125853 crossref_primary_10_1039_D3EN00660C crossref_primary_10_1016_j_chemosphere_2023_140253 crossref_primary_10_1016_j_apcatb_2019_118348 crossref_primary_10_1016_j_jhazmat_2024_133535 crossref_primary_10_1016_j_seppur_2024_129557 crossref_primary_10_1016_j_jece_2021_105685 crossref_primary_10_1016_j_apcatb_2025_125979 crossref_primary_10_1016_j_cej_2021_132313 crossref_primary_10_1016_j_cej_2022_139229 crossref_primary_10_1016_j_micromeso_2022_111848 crossref_primary_10_1016_j_chemosphere_2024_142824 crossref_primary_10_1016_j_jhazmat_2022_129940 crossref_primary_10_1016_j_seppur_2023_124302 crossref_primary_10_1016_j_apcatb_2022_121653 crossref_primary_10_1016_j_jcis_2022_11_079 crossref_primary_10_1016_j_cej_2023_142075 crossref_primary_10_1002_adfm_202212227 crossref_primary_10_1016_j_jece_2024_114262 crossref_primary_10_1016_j_jmst_2024_08_028 crossref_primary_10_1016_j_cherd_2024_09_030 crossref_primary_10_1016_j_watres_2021_117360 crossref_primary_10_1016_j_seppur_2024_130535 crossref_primary_10_1016_j_colsurfa_2020_125895 crossref_primary_10_1016_j_chemosphere_2024_143924 crossref_primary_10_1016_j_cej_2021_129027 crossref_primary_10_1016_j_jenvman_2023_117978 crossref_primary_10_1039_D1EW00279A crossref_primary_10_1016_j_cej_2025_166970 crossref_primary_10_1016_j_ijbiomac_2023_128400 crossref_primary_10_1007_s10562_022_04133_w crossref_primary_10_1016_j_envres_2022_112727 crossref_primary_10_1016_j_jhazmat_2021_125294 crossref_primary_10_1016_j_jwpe_2024_105142 crossref_primary_10_1016_j_molliq_2022_119079 crossref_primary_10_1039_D2EN00418F crossref_primary_10_1016_j_efmat_2022_05_007 crossref_primary_10_1016_j_cej_2025_166704 crossref_primary_10_1016_j_cej_2021_131233 crossref_primary_10_1007_s11356_023_25191_6 crossref_primary_10_1016_j_jece_2022_108251 crossref_primary_10_1016_j_watres_2025_124503 crossref_primary_10_1016_j_jece_2025_118817 crossref_primary_10_1016_j_cej_2022_139484 crossref_primary_10_1016_j_envres_2023_116470 crossref_primary_10_1016_j_jhazmat_2022_129927 crossref_primary_10_1016_j_wasman_2022_06_023 crossref_primary_10_1016_j_jclepro_2021_128781 crossref_primary_10_1016_j_seppur_2024_126263 crossref_primary_10_1016_j_jhazmat_2024_136825 crossref_primary_10_1016_j_chemosphere_2022_135961 crossref_primary_10_1016_j_cej_2025_162228 crossref_primary_10_1016_j_jhazmat_2021_127342 crossref_primary_10_1016_j_seppur_2022_120922 crossref_primary_10_1016_j_cej_2019_122147 crossref_primary_10_1016_j_apcatb_2022_121753 crossref_primary_10_1016_j_scitotenv_2020_144281 crossref_primary_10_1016_j_indcrop_2024_118569 crossref_primary_10_1016_j_seppur_2022_120800 crossref_primary_10_1016_j_jhazmat_2021_126131 crossref_primary_10_1016_j_apsusc_2022_154823 crossref_primary_10_1016_j_chemosphere_2020_127400 crossref_primary_10_1016_j_cej_2023_146769 crossref_primary_10_1016_j_jhazmat_2021_126008 crossref_primary_10_1016_j_cej_2020_127921 crossref_primary_10_1016_j_jece_2025_116407 crossref_primary_10_1016_j_jclepro_2021_128640 crossref_primary_10_1039_D0EN00347F crossref_primary_10_1016_j_jwpe_2022_102639 crossref_primary_10_1016_j_jhazmat_2024_135724 crossref_primary_10_1007_s12274_024_6904_2 crossref_primary_10_1016_j_jhazmat_2021_127692 crossref_primary_10_1016_j_seppur_2023_125301 crossref_primary_10_1016_j_watres_2023_119925 crossref_primary_10_1016_j_jhazmat_2021_126363 crossref_primary_10_1016_j_cej_2025_162355 crossref_primary_10_1016_j_inoche_2025_114920 crossref_primary_10_1016_j_seppur_2023_125302 crossref_primary_10_1016_j_cej_2019_123246 crossref_primary_10_1016_j_mtnano_2021_100116 crossref_primary_10_1016_j_jclepro_2023_139334 crossref_primary_10_1016_j_jhazmat_2021_127568 crossref_primary_10_1016_j_jwpe_2025_108636 crossref_primary_10_1016_j_watres_2023_120166 crossref_primary_10_1016_j_jhazmat_2021_126113 crossref_primary_10_1016_j_jwpe_2024_105087 crossref_primary_10_1016_j_surfin_2024_103880 crossref_primary_10_1016_j_colsurfa_2023_133139 crossref_primary_10_1016_j_jhazmat_2021_127444 crossref_primary_10_1016_j_watres_2024_122621 crossref_primary_10_1016_j_envres_2024_120554 crossref_primary_10_1016_j_jwpe_2024_106053 crossref_primary_10_1016_j_watres_2024_121417 crossref_primary_10_1016_j_chemosphere_2023_140849 crossref_primary_10_1016_j_jcis_2022_12_072 crossref_primary_10_1016_j_jece_2022_108910 crossref_primary_10_1016_j_cej_2022_137407 crossref_primary_10_1016_j_jallcom_2024_176315 crossref_primary_10_1016_j_cej_2022_138733 crossref_primary_10_1016_j_watres_2021_117313 crossref_primary_10_1016_j_jece_2023_109289 crossref_primary_10_1016_j_scitotenv_2020_142282 crossref_primary_10_1016_j_jclepro_2024_140951 crossref_primary_10_1016_j_cej_2025_167468 crossref_primary_10_1016_j_jhazmat_2021_126343 crossref_primary_10_1016_j_cej_2021_129504 crossref_primary_10_1016_j_envres_2024_120301 crossref_primary_10_1016_j_jhazmat_2021_126106 crossref_primary_10_1016_j_jenvman_2023_118196 crossref_primary_10_1016_j_cej_2022_138504 crossref_primary_10_1016_j_jhazmat_2023_132133 crossref_primary_10_5004_dwt_2022_28647 crossref_primary_10_1016_j_jece_2024_113805 crossref_primary_10_1016_j_jhazmat_2023_132377 crossref_primary_10_1016_j_cej_2023_147274 crossref_primary_10_1016_j_psep_2024_06_072 crossref_primary_10_1016_j_jcis_2021_05_176 crossref_primary_10_1016_j_seppur_2022_121379 crossref_primary_10_1016_j_seppur_2022_121255 crossref_primary_10_1016_j_seppur_2024_126905 crossref_primary_10_1016_j_jenvman_2024_121799 crossref_primary_10_1016_j_jhazmat_2021_127663 crossref_primary_10_1016_j_jhazmat_2021_127784 crossref_primary_10_1002_jctb_7882 crossref_primary_10_1016_j_cej_2024_149724 crossref_primary_10_1016_j_envpol_2023_121685 crossref_primary_10_1016_j_jece_2023_111585 crossref_primary_10_1007_s10562_022_04206_w crossref_primary_10_1016_j_jece_2024_112759 crossref_primary_10_1016_j_cej_2024_158686 crossref_primary_10_1016_j_seppur_2025_134813 crossref_primary_10_1016_j_jcis_2022_10_124 crossref_primary_10_1016_j_jwpe_2025_108653 crossref_primary_10_1016_j_cej_2023_145080 crossref_primary_10_1007_s42773_022_00145_2 crossref_primary_10_1016_j_apcatb_2024_124584 crossref_primary_10_1016_j_seppur_2022_122469 crossref_primary_10_1016_j_cclet_2024_110650 crossref_primary_10_1016_j_seppur_2022_122107 crossref_primary_10_1016_j_jhazmat_2021_126446 crossref_primary_10_1016_j_jwpe_2025_107437 crossref_primary_10_1016_j_seppur_2023_124935 crossref_primary_10_1016_j_biombioe_2024_107296 crossref_primary_10_1016_j_cej_2025_167204 crossref_primary_10_1016_j_seppur_2022_121124 crossref_primary_10_1016_j_envres_2024_119579 crossref_primary_10_1016_j_matdes_2022_110817 crossref_primary_10_1016_j_apcatb_2020_119551 crossref_primary_10_1016_j_cej_2023_142801 crossref_primary_10_1016_j_seppur_2024_131007 crossref_primary_10_1016_j_gee_2023_10_005 crossref_primary_10_1016_j_optmat_2024_116111 crossref_primary_10_1016_j_cej_2019_123681 crossref_primary_10_1016_j_cej_2025_159827 crossref_primary_10_1016_j_colsurfa_2025_138037 crossref_primary_10_1016_j_chemosphere_2023_138788 crossref_primary_10_1016_j_seppur_2024_129287 crossref_primary_10_1007_s11356_022_24950_1 crossref_primary_10_1016_j_apcatb_2022_121943 crossref_primary_10_3390_ijerph192214805 crossref_primary_10_1007_s42773_023_00223_z crossref_primary_10_1016_j_surfin_2025_107013 crossref_primary_10_1007_s12649_022_01778_x crossref_primary_10_1016_j_carbon_2019_09_050 crossref_primary_10_1016_j_chemosphere_2023_138690 crossref_primary_10_1016_j_jcis_2021_05_080 crossref_primary_10_1016_j_jhazmat_2021_126794 crossref_primary_10_1016_j_ccr_2024_215749 crossref_primary_10_1016_j_chemosphere_2022_137084 crossref_primary_10_1016_j_jcis_2021_11_196 crossref_primary_10_1016_j_jwpe_2025_107466 crossref_primary_10_1016_j_cej_2022_139989 crossref_primary_10_1016_j_jece_2023_111319 crossref_primary_10_1016_j_cej_2022_138655 crossref_primary_10_1016_j_seppur_2024_129398 crossref_primary_10_1016_j_jenvman_2023_119090 crossref_primary_10_1039_D3EN00971H crossref_primary_10_1016_j_apcatb_2024_123793 crossref_primary_10_1016_j_seppur_2023_123970 crossref_primary_10_1016_j_jhazmat_2024_134907 crossref_primary_10_1016_j_apcatb_2022_121930 crossref_primary_10_1016_j_chemosphere_2021_132597 crossref_primary_10_1016_j_cej_2025_166682 crossref_primary_10_1007_s10934_024_01612_w crossref_primary_10_1016_j_cej_2025_165472 crossref_primary_10_1016_j_jhazmat_2020_122194 crossref_primary_10_1016_j_jhazmat_2020_124145 crossref_primary_10_1016_j_jtice_2022_104352 crossref_primary_10_1016_j_cej_2021_130898 crossref_primary_10_1016_j_seppur_2022_122475 crossref_primary_10_1016_j_cej_2021_128459 crossref_primary_10_1016_j_chemosphere_2021_132458 crossref_primary_10_1016_j_scitotenv_2024_172740 crossref_primary_10_1021_acsomega_5c02019 crossref_primary_10_1016_j_jwpe_2023_103771 crossref_primary_10_1016_j_seppur_2021_119924 crossref_primary_10_1007_s11356_023_31174_4 crossref_primary_10_1016_j_seppur_2021_118717 crossref_primary_10_1021_acsami_5c04066 crossref_primary_10_1016_j_cej_2022_138302 crossref_primary_10_1016_j_chemosphere_2023_138326 crossref_primary_10_1007_s11356_020_07612_y crossref_primary_10_1016_j_chemosphere_2023_139659 crossref_primary_10_1016_j_scitotenv_2022_160001 crossref_primary_10_1016_j_cej_2020_127185 crossref_primary_10_1016_j_cej_2020_127066 crossref_primary_10_1002_bbb_2808 crossref_primary_10_1016_j_jhazmat_2021_126776 crossref_primary_10_1016_j_apsusc_2022_155880 crossref_primary_10_1016_j_wasman_2023_01_007 crossref_primary_10_1016_j_jece_2025_117201 crossref_primary_10_1016_j_jhazmat_2021_127743 crossref_primary_10_1016_j_seppur_2024_129141 crossref_primary_10_1016_j_jece_2023_109460 crossref_primary_10_1016_j_jhazmat_2025_138682 crossref_primary_10_1021_acs_chemrev_5c00074 crossref_primary_10_1016_j_seppur_2025_131506 crossref_primary_10_1016_j_cej_2022_139889 crossref_primary_10_1016_j_jhazmat_2021_125682 crossref_primary_10_1016_j_seppur_2022_121048 crossref_primary_10_1039_D0EN01245A crossref_primary_10_1016_j_jhazmat_2021_125552 crossref_primary_10_1016_j_chemosphere_2021_132558 crossref_primary_10_1016_j_apsusc_2020_147887 crossref_primary_10_1016_j_apsusc_2024_159472 crossref_primary_10_1016_j_seppur_2025_131972 crossref_primary_10_1016_j_cej_2022_139890 crossref_primary_10_1039_D3SC05275C crossref_primary_10_1016_j_cej_2022_138560 crossref_primary_10_1063_5_0137651 crossref_primary_10_1016_j_biortech_2020_123840 crossref_primary_10_1016_j_jhazmat_2023_131463 crossref_primary_10_1016_j_jhazmat_2022_130075 crossref_primary_10_1016_j_cej_2022_139899 crossref_primary_10_1016_j_jcis_2021_10_150 crossref_primary_10_1016_j_seppur_2024_129003 crossref_primary_10_1016_j_arabjc_2022_104403 crossref_primary_10_1016_j_cej_2021_132844 crossref_primary_10_1016_j_envres_2022_114724 crossref_primary_10_3390_molecules28227591 crossref_primary_10_1007_s42773_023_00243_9 crossref_primary_10_1016_j_cej_2021_129441 crossref_primary_10_1016_j_cej_2020_128176 |
| Cites_doi | 10.1016/j.apcatb.2017.11.051 10.1021/es9031419 10.1021/acs.est.6b02079 10.1016/j.jhazmat.2018.06.048 10.1021/acs.est.5b00729 10.1039/c3ta10592j 10.1021/j100373a017 10.1016/j.cej.2017.11.059 10.1590/S1516-14392013005000068 10.1016/j.watres.2018.03.069 10.1016/j.apcatb.2007.11.009 10.1016/j.cej.2019.01.053 10.1016/j.apcatb.2017.11.050 10.1126/science.aad0832 10.1021/acs.est.7b06487 10.1016/j.watres.2018.03.012 10.1016/j.watres.2016.02.013 10.1039/C5CC05101K 10.1016/j.watres.2010.08.024 10.1021/jacs.8b05992 10.1016/j.chemosphere.2008.08.043 10.1021/acssuschemeng.6b03035 10.1021/acs.chemrev.5b00195 10.1039/cs9811000205 10.1002/adfm.201705295 10.1016/j.watres.2016.04.015 10.1016/j.watres.2007.06.023 10.1021/es5061512 10.1021/es202487h 10.1016/j.cej.2017.09.102 10.1016/j.watres.2018.10.087 10.1016/j.watres.2014.10.006 10.1021/ja00832a040 10.1016/j.cej.2016.11.085 10.1021/es048331p 10.1016/j.watres.2016.04.053 10.1016/j.cej.2017.12.083 10.1007/s10822-010-9333-9 10.1021/cs5017613 10.1016/j.apcatb.2015.08.049 10.1289/ehp.8561191 10.1016/j.freeradbiomed.2014.08.020 10.1002/aenm.201802042 10.1002/aenm.201200038 10.1021/acs.est.5b03595 10.1016/j.apcatb.2014.02.012 10.1021/acs.est.8b00959 10.1039/c3cc43401j 10.1021/acs.est.8b01817 10.1016/j.carbon.2016.01.031 10.1016/j.cej.2018.09.184 10.1016/j.cej.2014.12.065 10.1016/j.cej.2017.07.132 10.1016/j.watres.2018.08.046 10.1016/j.watres.2017.02.016 10.1021/acs.est.7b02271 10.1016/j.apcatb.2014.02.005 10.1021/acs.est.8b05246 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.watres.2019.05.059 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2448 |
| EndPage | 414 |
| ExternalDocumentID | 31163316 10_1016_j_watres_2019_05_059 S0043135419304476 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ ~HD NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c395t-2bce6e4678f02a869b28ced9381cb4e577dac07b7dd1031e833022c8ec8c2bff3 |
| ISICitedReferencesCount | 741 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474327700040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1354 1879-2448 |
| IngestDate | Sat Sep 27 22:22:49 EDT 2025 Thu Oct 02 05:47:18 EDT 2025 Thu Apr 03 07:02:51 EDT 2025 Tue Nov 18 22:14:20 EST 2025 Sat Nov 29 02:38:59 EST 2025 Fri Feb 23 02:23:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Electron transfer Nitrogen-doping Sulfadiazine Peroxydisulfate Singlet oxygen Biochar |
| Language | English |
| License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c395t-2bce6e4678f02a869b28ced9381cb4e577dac07b7dd1031e833022c8ec8c2bff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6237-4460 |
| PMID | 31163316 |
| PQID | 2245644241 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2271804063 proquest_miscellaneous_2245644241 pubmed_primary_31163316 crossref_primary_10_1016_j_watres_2019_05_059 crossref_citationtrail_10_1016_j_watres_2019_05_059 elsevier_sciencedirect_doi_10_1016_j_watres_2019_05_059 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Water research (Oxford) |
| PublicationTitleAlternate | Water Res |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Qin, Li, Gao, Zhang, Ok, An (bib37) 2018; 137 Wacławek, Lutze, Grübel, Padil, Černík, Dionysiou (bib45) 2017; 330 Duan, Sun, Shao, Wang (bib7) 2018; 224 Ribeiro, Marenich, Cramer, Truhlar (bib39) 2010; 24 Huang, Bao, Yao, Lu, Chen (bib17) 2014; 154–155 Gao, Zhu, Lyu, Zeng, Xing, Hu (bib12) 2018; 52 Fontmorin, Burgos Castillo, Tang, Sillanpää (bib11) 2016; 99 Liang, Zhang, Duan, Sun, Liu, Tade, Wang (bib26) 2017; 5 Lutze, Kerlin, Schmidt (bib31) 2015; 72 Zhu, Huang, Ma, Wang, Duan, Wang (bib58) 2018; 52 Keiluweit, Nico, Johnson, Kleber (bib21) 2010; 44 Sjoberg, Politzer (bib41) 1990; 94 Liu, Jiang, Yu (bib28) 2015; 115 Liang, Huang, Mohanty, Kurakalva (bib25) 2008; 73 Peng, Liu, Sun, Yao, Zhi, Wang (bib35) 2013; 1 Guan, Jiang, Luo, Pang, Yang, Wang, Ma, Yu, Zhao (bib15) 2018; 337 Politzer, Laurence, Jayasuriya (bib36) 1985; 61 Xu, Cooper, Jung, Song (bib51) 2011; 45 Duan, Sun, Wang, Kang, Wang (bib9) 2015; 5 Li, Huang, Xi, Miao, Ding, Cai, Liu, Yang, Yang, Gao, Wang, Huang, Zhang, Liu (bib24) 2018; 140 Fang, Liu, Gao, Dionysiou, Zhou (bib10) 2015; 49 Luo, Li, Wang, Zhang, Nasir Khan, Sun, Shen, Han, Wang, Li (bib30) 2019; 148 Radovic, Moreno-Castilla, Rivera-Utrilla (bib38) 2000; 27 Sun, Kwan, Suvorova, Ang, Tadé, Wang (bib44) 2014; 154–155 Xu, Zhang, Li, Zou, Li, Hu, Li (bib52) 2007; 41 Cazetta, Zhang, Silva, Almeida, Asefa (bib3) 2018; 225 Yun, Lee, Kim, Park, Lee (bib55) 2018; 52 Xu, Mo, Tian, Wang, Yu, Yu (bib53) 2016; 181 Cheng, Guo, Zhang, Wu, Liu (bib5) 2017; 113 Nardi, Manet, Monti, Miranda, Lhiaubet-Vallet (bib34) 2014; 77 Boreen, Arnold, McNeill (bib2) 2005; 39 Lee, Lee, Jeong, Lee, Park, Lee (bib23) 2015; 266 Marc, Pignatello, Beltrán, Mercè, Jordan (bib32) 2011; 45 Zhang, Ying, Pan, Liu, Zhao (bib56) 2015; 49 Hussain, Li, Zhang, Li, Huang, Du, Liu, Hayat, Anwar (bib18) 2017; 311 Guo, Shibuya, Akiba, Saji, Kondo, Nakamura (bib16) 2016; 351 Almeida Júnior, Bertuol, Meneguzzi, Ferreira, Amado (bib1) 2013; 16 Guan, Jiang, Pang, Luo, Ma, Zhou, Yang (bib14) 2017; 51 Jiang, Zhang, Zhou, Liang, Li (bib19) 2018; 358 Wang, Wang (bib47) 2018; 334 Chen, Chen, Qiao, Wang, Cai (bib4) 2008; 80 Kang, Duan, Wang, Sun, Tan, Tade, Wang (bib20) 2018; 332 Duan, Ao, Sun, Zhou, Wang, Wang (bib8) 2015; 51 Shao, Tian, Yang, Duan, Gao, Shi, Luo, Cui, Luo, Wang (bib40) 2018; 28 Wang, Guo, Yin, Du, Wu, Luo, Liu, Sseguya, Ren (bib46) 2019; 362 Lee, Kim, Weon, Choi, Hwang, Seo, Lee, Kim (bib22) 2016; 50 Sun, Wang, Liu, Ge, Wang, Zhu, Wang (bib43) 2013; 49 Chu, Chu, Bond, Du, Guo, Gao (bib6) 2016; 93 Wu, Guo, Bao, Meng, Ren (bib49) 2018; 145 Liu, Zhang, Sheng, Zhou, Wei, Feng, Fan (bib29) 2018; 8 Zhou, Jiang, Gao, Ma, Pang, Li, Lu, Yuan (bib57) 2015; 49 Wang, Wu, Huang, Wang, Hu (bib48) 2016; 98 Yin, Guo, Wang, Du, Wu, Chang, Ren (bib54) 2019; 357 Zhu, Zhu, Dionysiou, Zhou, Fang, Gao (bib59) 2018; 139 Xiao, Chen, Chen, Zhu, Schnoor (bib50) 2018; 52 Montgomery (bib33) 2002; 96 Gorman, Rodgers (bib13) 1981; 10 Smith, Dallmeyer, Johnson, Brauer, McEwen, Espinal, Garcia-Perez (bib42) 2016; 100 Lin, Waller, Liu, Liu, Wong (bib27) 2012; 2 Montgomery (10.1016/j.watres.2019.05.059_bib33) 2002; 96 Fontmorin (10.1016/j.watres.2019.05.059_bib11) 2016; 99 Kang (10.1016/j.watres.2019.05.059_bib20) 2018; 332 Zhang (10.1016/j.watres.2019.05.059_bib56) 2015; 49 Luo (10.1016/j.watres.2019.05.059_bib30) 2019; 148 Zhu (10.1016/j.watres.2019.05.059_bib59) 2018; 139 Duan (10.1016/j.watres.2019.05.059_bib9) 2015; 5 Jiang (10.1016/j.watres.2019.05.059_bib19) 2018; 358 Fang (10.1016/j.watres.2019.05.059_bib10) 2015; 49 Cheng (10.1016/j.watres.2019.05.059_bib5) 2017; 113 Ribeiro (10.1016/j.watres.2019.05.059_bib39) 2010; 24 Li (10.1016/j.watres.2019.05.059_bib24) 2018; 140 Lin (10.1016/j.watres.2019.05.059_bib27) 2012; 2 Qin (10.1016/j.watres.2019.05.059_bib37) 2018; 137 Liu (10.1016/j.watres.2019.05.059_bib29) 2018; 8 Sjoberg (10.1016/j.watres.2019.05.059_bib41) 1990; 94 Duan (10.1016/j.watres.2019.05.059_bib8) 2015; 51 Xiao (10.1016/j.watres.2019.05.059_bib50) 2018; 52 Zhou (10.1016/j.watres.2019.05.059_bib57) 2015; 49 Radovic (10.1016/j.watres.2019.05.059_bib38) 2000; 27 Chen (10.1016/j.watres.2019.05.059_bib4) 2008; 80 Wacławek (10.1016/j.watres.2019.05.059_bib45) 2017; 330 Gorman (10.1016/j.watres.2019.05.059_bib13) 1981; 10 Politzer (10.1016/j.watres.2019.05.059_bib36) 1985; 61 Xu (10.1016/j.watres.2019.05.059_bib52) 2007; 41 Smith (10.1016/j.watres.2019.05.059_bib42) 2016; 100 Peng (10.1016/j.watres.2019.05.059_bib35) 2013; 1 Hussain (10.1016/j.watres.2019.05.059_bib18) 2017; 311 Boreen (10.1016/j.watres.2019.05.059_bib2) 2005; 39 Almeida Júnior (10.1016/j.watres.2019.05.059_bib1) 2013; 16 Nardi (10.1016/j.watres.2019.05.059_bib34) 2014; 77 Sun (10.1016/j.watres.2019.05.059_bib44) 2014; 154–155 Wang (10.1016/j.watres.2019.05.059_bib47) 2018; 334 Huang (10.1016/j.watres.2019.05.059_bib17) 2014; 154–155 Guan (10.1016/j.watres.2019.05.059_bib15) 2018; 337 Guo (10.1016/j.watres.2019.05.059_bib16) 2016; 351 Liang (10.1016/j.watres.2019.05.059_bib25) 2008; 73 Lee (10.1016/j.watres.2019.05.059_bib23) 2015; 266 Keiluweit (10.1016/j.watres.2019.05.059_bib21) 2010; 44 Chu (10.1016/j.watres.2019.05.059_bib6) 2016; 93 Liu (10.1016/j.watres.2019.05.059_bib28) 2015; 115 Cazetta (10.1016/j.watres.2019.05.059_bib3) 2018; 225 Sun (10.1016/j.watres.2019.05.059_bib43) 2013; 49 Wang (10.1016/j.watres.2019.05.059_bib46) 2019; 362 Lutze (10.1016/j.watres.2019.05.059_bib31) 2015; 72 Yin (10.1016/j.watres.2019.05.059_bib54) 2019; 357 Yun (10.1016/j.watres.2019.05.059_bib55) 2018; 52 Guan (10.1016/j.watres.2019.05.059_bib14) 2017; 51 Zhu (10.1016/j.watres.2019.05.059_bib58) 2018; 52 Xu (10.1016/j.watres.2019.05.059_bib51) 2011; 45 Duan (10.1016/j.watres.2019.05.059_bib7) 2018; 224 Lee (10.1016/j.watres.2019.05.059_bib22) 2016; 50 Liang (10.1016/j.watres.2019.05.059_bib26) 2017; 5 Shao (10.1016/j.watres.2019.05.059_bib40) 2018; 28 Marc (10.1016/j.watres.2019.05.059_bib32) 2011; 45 Gao (10.1016/j.watres.2019.05.059_bib12) 2018; 52 Wu (10.1016/j.watres.2019.05.059_bib49) 2018; 145 Wang (10.1016/j.watres.2019.05.059_bib48) 2016; 98 Xu (10.1016/j.watres.2019.05.059_bib53) 2016; 181 |
| References_xml | – volume: 39 start-page: 3630 year: 2005 end-page: 3638 ident: bib2 article-title: Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups: identification of an SO publication-title: Environ. Sci. Technol. – volume: 93 start-page: 48 year: 2016 end-page: 55 ident: bib6 article-title: Impact of persulfate and ultraviolet light activated persulfate pre-oxidation on the formation of trihalomethanes, haloacetonitriles and halonitromethanes from the chlor(am)ination of three antibiotic chloramphenicols publication-title: Water Res. – volume: 351 start-page: 361 year: 2016 ident: bib16 article-title: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts publication-title: Science – volume: 51 start-page: 10718 year: 2017 end-page: 10728 ident: bib14 article-title: Oxidation kinetics of bromophenols by nonradical activation of peroxydisulfate in the presence of carbon nanotube and formation of brominated polymeric products publication-title: Environ. Sci. Technol. – volume: 2 start-page: 884 year: 2012 end-page: 888 ident: bib27 article-title: Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction publication-title: Adv. Energy Mater. – volume: 357 start-page: 589 year: 2019 end-page: 599 ident: bib54 article-title: Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism publication-title: Chem. Eng. J. – volume: 24 start-page: 317 year: 2010 end-page: 333 ident: bib39 article-title: Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models publication-title: J. Comput. Aided Mol. Des. – volume: 225 start-page: 30 year: 2018 end-page: 39 ident: bib3 article-title: Bone char-derived metal-free N- and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation publication-title: Appl. Catal. B Environ. – volume: 224 start-page: 973 year: 2018 end-page: 982 ident: bib7 article-title: Nonradical reactions in environmental remediation processes: uncertainty and challenges publication-title: Appl. Catal. B Environ. – volume: 77 start-page: 64 year: 2014 end-page: 70 ident: bib34 article-title: Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: the misleading role of electron transfer publication-title: Free Radic. Biol. Med. – volume: 44 start-page: 1247 year: 2010 end-page: 1253 ident: bib21 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 5 start-page: 2693 year: 2017 end-page: 2701 ident: bib26 article-title: N-doped graphene from metal–organic frameworks for catalytic oxidation of p-hydroxylbenzoic acid: N-functionality and mechanism publication-title: ACS Sustain. Chem. Eng. – volume: 61 start-page: 191 year: 1985 end-page: 202 ident: bib36 article-title: Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena publication-title: Environ. Health Perspect. – volume: 154–155 start-page: 36 year: 2014 end-page: 43 ident: bib17 article-title: Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst publication-title: Appl. Catal. B Environ. – volume: 52 start-page: 14371 year: 2018 end-page: 14380 ident: bib12 article-title: Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation publication-title: Environ. Sci. Technol. – volume: 1 start-page: 5854 year: 2013 end-page: 5859 ident: bib35 article-title: Synthesis of porous reduced graphene oxide as metal-free carbon for adsorption and catalytic oxidation of organics in water publication-title: J. Mater. Chem. – volume: 330 start-page: 44 year: 2017 end-page: 62 ident: bib45 article-title: Chemistry of persulfates in water and wastewater treatment: a review publication-title: Chem. Eng. J. – volume: 27 start-page: 227 year: 2000 end-page: 405 ident: bib38 article-title: Carbon materials as adsorbents in aqueous solutions publication-title: Chem. Phys. Carbon – volume: 49 start-page: 12941 year: 2015 end-page: 12950 ident: bib57 article-title: Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process publication-title: Environ. Sci. Technol. – volume: 115 start-page: 12251 year: 2015 ident: bib28 article-title: Development of biochar-based functional materials: toward a sustainable platform carbon material publication-title: Chem. Rev. – volume: 266 start-page: 28 year: 2015 end-page: 33 ident: bib23 article-title: Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism publication-title: Chem. Eng. J. – volume: 98 start-page: 190 year: 2016 end-page: 198 ident: bib48 article-title: Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: influence factors and radical species publication-title: Water Res. – volume: 72 start-page: 349 year: 2015 end-page: 360 ident: bib31 article-title: Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate publication-title: Water Res. – volume: 49 start-page: 9914 year: 2013 end-page: 9916 ident: bib43 article-title: Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation publication-title: Chem. Commun. – volume: 181 start-page: 810 year: 2016 end-page: 817 ident: bib53 article-title: The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites publication-title: Appl. Catal. B Environ. – volume: 154–155 start-page: 134 year: 2014 end-page: 141 ident: bib44 article-title: Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals publication-title: Appl. Catal. B Environ. – volume: 358 start-page: 53 year: 2018 end-page: 61 ident: bib19 article-title: Oxidation of Rhodamine B by persulfate activated with porous carbon aerogel through a non-radical mechanism publication-title: J. Hazard Mater. – volume: 49 start-page: 6772 year: 2015 end-page: 6782 ident: bib56 article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance publication-title: Environ. Sci. Technol. – volume: 137 start-page: 130 year: 2018 end-page: 143 ident: bib37 article-title: Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review publication-title: Water Res. – volume: 41 start-page: 4526 year: 2007 end-page: 4534 ident: bib52 article-title: Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China publication-title: Water Res. – volume: 311 start-page: 163 year: 2017 end-page: 172 ident: bib18 article-title: Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol publication-title: Chem. Eng. J. – volume: 45 start-page: 632 year: 2011 end-page: 638 ident: bib51 article-title: Photosensitized degradation of amoxicillin in natural organic matter isolate solutions publication-title: Water Res. – volume: 73 start-page: 1540 year: 2008 end-page: 1543 ident: bib25 article-title: A rapid spectrophotometric determination of persulfate anion in ISCO publication-title: Chemosphere – volume: 94 start-page: 3959 year: 1990 end-page: 3961 ident: bib41 article-title: Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes publication-title: J. Phys. Chem. – volume: 49 start-page: 5645 year: 2015 end-page: 5653 ident: bib10 article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation publication-title: Environ. Sci. Technol. – volume: 148 start-page: 416 year: 2019 end-page: 424 ident: bib30 article-title: Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition publication-title: Water Res. – volume: 5 start-page: 553 year: 2015 end-page: 559 ident: bib9 article-title: N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation publication-title: ACS Catal. – volume: 80 start-page: 116 year: 2008 end-page: 121 ident: bib4 article-title: Performance of nano-Co publication-title: Appl. Catal. B Environ. – volume: 140 start-page: 12469 year: 2018 end-page: 12475 ident: bib24 article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 15249 year: 2015 end-page: 15252 ident: bib8 article-title: Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study publication-title: Chem. Commun. – volume: 145 start-page: 650 year: 2018 end-page: 659 ident: bib49 article-title: Upgrading liquor-making wastewater into medium chain fatty acid: insights into co-electron donors, key microflora, and energy harvest publication-title: Water Res. – volume: 99 start-page: 24 year: 2016 end-page: 32 ident: bib11 article-title: Stability of 5,5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction publication-title: Water Res. – volume: 50 start-page: 10134 year: 2016 end-page: 10142 ident: bib22 article-title: Activation of persulfates by graphitized nanodiamonds for removal of organic compounds publication-title: Environ. Sci. Technol. – volume: 96 start-page: 7820 year: 2002 end-page: 7821 ident: bib33 article-title: Catalysis of peroxymonosulfate reactions by ketones publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 8649 year: 2018 end-page: 8658 ident: bib58 article-title: Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms publication-title: Environ. Sci. Technol. – volume: 334 start-page: 1502 year: 2018 end-page: 1517 ident: bib47 article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants publication-title: Chem. Eng. J. – volume: 10 start-page: 205 year: 1981 end-page: 231 ident: bib13 article-title: Singlet molecular oxygen publication-title: Chem. Soc. Rev. – volume: 45 start-page: 10020 year: 2011 ident: bib32 article-title: Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 337 start-page: 40 year: 2018 end-page: 50 ident: bib15 article-title: Oxidation of bromophenols by carbon nanotube activated peroxymonosulfate (PMS) and formation of brominated products: comparison to peroxydisulfate (PDS) publication-title: Chem. Eng. J. – volume: 362 start-page: 561 year: 2019 end-page: 569 ident: bib46 article-title: Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: insight into the electron transfer, radical oxidation and degradation pathways publication-title: Chem. Eng. J. – volume: 16 start-page: 860 year: 2013 end-page: 866 ident: bib1 article-title: Castor oil and commercial thermoplastic polyurethane membranes modified with polyaniline: a comparative study publication-title: Mater. Res. – volume: 28 start-page: 1705295 year: 2018 ident: bib40 article-title: Identification and regulation of active sites on nanodiamonds: establishing a highly efficient catalytic system for oxidation of organic contaminants publication-title: Adv. Funct. Mater. – volume: 52 start-page: 5027 year: 2018 end-page: 5047 ident: bib50 article-title: Insight into multiple and multi-level structures of biochars and their potential environmental applications: a critical review publication-title: Environ. Sci. Technol. – volume: 332 start-page: 398 year: 2018 end-page: 408 ident: bib20 article-title: Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability publication-title: Chem. Eng. J. – volume: 52 start-page: 7032 year: 2018 end-page: 7042 ident: bib55 article-title: Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer publication-title: Environ. Sci. Technol. – volume: 139 start-page: 66 year: 2018 end-page: 73 ident: bib59 article-title: Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process publication-title: Water Res. – volume: 113 start-page: 80 year: 2017 end-page: 88 ident: bib5 article-title: Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes publication-title: Water Res. – volume: 8 start-page: 1802042 year: 2018 ident: bib29 article-title: Edge-nitrogen-rich carbon dots pillared graphene blocks with ultrahigh volumetric/gravimetric capacities and ultralong life for sodium-ion storage publication-title: Adv. Energy Mater. – volume: 100 start-page: 678 year: 2016 end-page: 692 ident: bib42 article-title: Structural analysis of char by Raman spectroscopy: improving band assignments through computational calculations from first principles publication-title: Carbon – volume: 224 start-page: 973 year: 2018 ident: 10.1016/j.watres.2019.05.059_bib7 article-title: Nonradical reactions in environmental remediation processes: uncertainty and challenges publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.11.051 – volume: 44 start-page: 1247 issue: 4 year: 2010 ident: 10.1016/j.watres.2019.05.059_bib21 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es9031419 – volume: 50 start-page: 10134 issue: 18 year: 2016 ident: 10.1016/j.watres.2019.05.059_bib22 article-title: Activation of persulfates by graphitized nanodiamonds for removal of organic compounds publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02079 – volume: 358 start-page: 53 year: 2018 ident: 10.1016/j.watres.2019.05.059_bib19 article-title: Oxidation of Rhodamine B by persulfate activated with porous carbon aerogel through a non-radical mechanism publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2018.06.048 – volume: 49 start-page: 6772 issue: 11 year: 2015 ident: 10.1016/j.watres.2019.05.059_bib56 article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00729 – volume: 1 start-page: 5854 issue: 19 year: 2013 ident: 10.1016/j.watres.2019.05.059_bib35 article-title: Synthesis of porous reduced graphene oxide as metal-free carbon for adsorption and catalytic oxidation of organics in water publication-title: J. Mater. Chem. doi: 10.1039/c3ta10592j – volume: 94 start-page: 3959 issue: 10 year: 1990 ident: 10.1016/j.watres.2019.05.059_bib41 article-title: Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes publication-title: J. Phys. Chem. doi: 10.1021/j100373a017 – volume: 334 start-page: 1502 year: 2018 ident: 10.1016/j.watres.2019.05.059_bib47 article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.059 – volume: 16 start-page: 860 year: 2013 ident: 10.1016/j.watres.2019.05.059_bib1 article-title: Castor oil and commercial thermoplastic polyurethane membranes modified with polyaniline: a comparative study publication-title: Mater. Res. doi: 10.1590/S1516-14392013005000068 – volume: 139 start-page: 66 year: 2018 ident: 10.1016/j.watres.2019.05.059_bib59 article-title: Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process publication-title: Water Res. doi: 10.1016/j.watres.2018.03.069 – volume: 80 start-page: 116 issue: 1 year: 2008 ident: 10.1016/j.watres.2019.05.059_bib4 article-title: Performance of nano-Co3O4/peroxymonosulfate system: kinetics and mechanism study using Acid Orange 7 as a model compound publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2007.11.009 – volume: 362 start-page: 561 year: 2019 ident: 10.1016/j.watres.2019.05.059_bib46 article-title: Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: insight into the electron transfer, radical oxidation and degradation pathways publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.053 – volume: 225 start-page: 30 year: 2018 ident: 10.1016/j.watres.2019.05.059_bib3 article-title: Bone char-derived metal-free N- and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.11.050 – volume: 351 start-page: 361 issue: 6271 year: 2016 ident: 10.1016/j.watres.2019.05.059_bib16 article-title: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts publication-title: Science doi: 10.1126/science.aad0832 – volume: 52 start-page: 5027 issue: 9 year: 2018 ident: 10.1016/j.watres.2019.05.059_bib50 article-title: Insight into multiple and multi-level structures of biochars and their potential environmental applications: a critical review publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b06487 – volume: 137 start-page: 130 year: 2018 ident: 10.1016/j.watres.2019.05.059_bib37 article-title: Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review publication-title: Water Res. doi: 10.1016/j.watres.2018.03.012 – volume: 93 start-page: 48 year: 2016 ident: 10.1016/j.watres.2019.05.059_bib6 article-title: Impact of persulfate and ultraviolet light activated persulfate pre-oxidation on the formation of trihalomethanes, haloacetonitriles and halonitromethanes from the chlor(am)ination of three antibiotic chloramphenicols publication-title: Water Res. doi: 10.1016/j.watres.2016.02.013 – volume: 51 start-page: 15249 issue: 83 year: 2015 ident: 10.1016/j.watres.2019.05.059_bib8 article-title: Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study publication-title: Chem. Commun. doi: 10.1039/C5CC05101K – volume: 45 start-page: 632 issue: 2 year: 2011 ident: 10.1016/j.watres.2019.05.059_bib51 article-title: Photosensitized degradation of amoxicillin in natural organic matter isolate solutions publication-title: Water Res. doi: 10.1016/j.watres.2010.08.024 – volume: 140 start-page: 12469 issue: 39 year: 2018 ident: 10.1016/j.watres.2019.05.059_bib24 article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05992 – volume: 73 start-page: 1540 issue: 9 year: 2008 ident: 10.1016/j.watres.2019.05.059_bib25 article-title: A rapid spectrophotometric determination of persulfate anion in ISCO publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.08.043 – volume: 5 start-page: 2693 issue: 3 year: 2017 ident: 10.1016/j.watres.2019.05.059_bib26 article-title: N-doped graphene from metal–organic frameworks for catalytic oxidation of p-hydroxylbenzoic acid: N-functionality and mechanism publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b03035 – volume: 115 start-page: 12251 issue: 22 year: 2015 ident: 10.1016/j.watres.2019.05.059_bib28 article-title: Development of biochar-based functional materials: toward a sustainable platform carbon material publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00195 – volume: 10 start-page: 205 issue: 2 year: 1981 ident: 10.1016/j.watres.2019.05.059_bib13 article-title: Singlet molecular oxygen publication-title: Chem. Soc. Rev. doi: 10.1039/cs9811000205 – volume: 28 start-page: 1705295 issue: 13 year: 2018 ident: 10.1016/j.watres.2019.05.059_bib40 article-title: Identification and regulation of active sites on nanodiamonds: establishing a highly efficient catalytic system for oxidation of organic contaminants publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705295 – volume: 98 start-page: 190 year: 2016 ident: 10.1016/j.watres.2019.05.059_bib48 article-title: Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: influence factors and radical species publication-title: Water Res. doi: 10.1016/j.watres.2016.04.015 – volume: 41 start-page: 4526 issue: 19 year: 2007 ident: 10.1016/j.watres.2019.05.059_bib52 article-title: Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China publication-title: Water Res. doi: 10.1016/j.watres.2007.06.023 – volume: 49 start-page: 5645 issue: 9 year: 2015 ident: 10.1016/j.watres.2019.05.059_bib10 article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es5061512 – volume: 45 start-page: 10020 issue: 23 year: 2011 ident: 10.1016/j.watres.2019.05.059_bib32 article-title: Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es202487h – volume: 332 start-page: 398 year: 2018 ident: 10.1016/j.watres.2019.05.059_bib20 article-title: Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.102 – volume: 148 start-page: 416 year: 2019 ident: 10.1016/j.watres.2019.05.059_bib30 article-title: Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition publication-title: Water Res. doi: 10.1016/j.watres.2018.10.087 – volume: 72 start-page: 349 year: 2015 ident: 10.1016/j.watres.2019.05.059_bib31 article-title: Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate publication-title: Water Res. doi: 10.1016/j.watres.2014.10.006 – volume: 96 start-page: 7820 issue: 25 year: 2002 ident: 10.1016/j.watres.2019.05.059_bib33 article-title: Catalysis of peroxymonosulfate reactions by ketones publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00832a040 – volume: 311 start-page: 163 year: 2017 ident: 10.1016/j.watres.2019.05.059_bib18 article-title: Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.11.085 – volume: 39 start-page: 3630 issue: 10 year: 2005 ident: 10.1016/j.watres.2019.05.059_bib2 article-title: Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups: identification of an SO2 extrusion photoproduct publication-title: Environ. Sci. Technol. doi: 10.1021/es048331p – volume: 99 start-page: 24 year: 2016 ident: 10.1016/j.watres.2019.05.059_bib11 article-title: Stability of 5,5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction publication-title: Water Res. doi: 10.1016/j.watres.2016.04.053 – volume: 337 start-page: 40 year: 2018 ident: 10.1016/j.watres.2019.05.059_bib15 article-title: Oxidation of bromophenols by carbon nanotube activated peroxymonosulfate (PMS) and formation of brominated products: comparison to peroxydisulfate (PDS) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.083 – volume: 24 start-page: 317 issue: 4 year: 2010 ident: 10.1016/j.watres.2019.05.059_bib39 article-title: Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-010-9333-9 – volume: 5 start-page: 553 issue: 2 year: 2015 ident: 10.1016/j.watres.2019.05.059_bib9 article-title: N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation publication-title: ACS Catal. doi: 10.1021/cs5017613 – volume: 181 start-page: 810 year: 2016 ident: 10.1016/j.watres.2019.05.059_bib53 article-title: The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.08.049 – volume: 61 start-page: 191 issue: SEP year: 1985 ident: 10.1016/j.watres.2019.05.059_bib36 article-title: Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena publication-title: Environ. Health Perspect. doi: 10.1289/ehp.8561191 – volume: 77 start-page: 64 year: 2014 ident: 10.1016/j.watres.2019.05.059_bib34 article-title: Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: the misleading role of electron transfer publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2014.08.020 – volume: 8 start-page: 1802042 issue: 30 year: 2018 ident: 10.1016/j.watres.2019.05.059_bib29 article-title: Edge-nitrogen-rich carbon dots pillared graphene blocks with ultrahigh volumetric/gravimetric capacities and ultralong life for sodium-ion storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802042 – volume: 2 start-page: 884 issue: 7 year: 2012 ident: 10.1016/j.watres.2019.05.059_bib27 article-title: Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200038 – volume: 49 start-page: 12941 issue: 21 year: 2015 ident: 10.1016/j.watres.2019.05.059_bib57 article-title: Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03595 – volume: 154–155 start-page: 134 year: 2014 ident: 10.1016/j.watres.2019.05.059_bib44 article-title: Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.02.012 – volume: 52 start-page: 7032 issue: 12 year: 2018 ident: 10.1016/j.watres.2019.05.059_bib55 article-title: Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00959 – volume: 49 start-page: 9914 issue: 85 year: 2013 ident: 10.1016/j.watres.2019.05.059_bib43 article-title: Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation publication-title: Chem. Commun. doi: 10.1039/c3cc43401j – volume: 27 start-page: 227 year: 2000 ident: 10.1016/j.watres.2019.05.059_bib38 article-title: Carbon materials as adsorbents in aqueous solutions publication-title: Chem. Phys. Carbon – volume: 52 start-page: 8649 issue: 15 year: 2018 ident: 10.1016/j.watres.2019.05.059_bib58 article-title: Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01817 – volume: 100 start-page: 678 year: 2016 ident: 10.1016/j.watres.2019.05.059_bib42 article-title: Structural analysis of char by Raman spectroscopy: improving band assignments through computational calculations from first principles publication-title: Carbon doi: 10.1016/j.carbon.2016.01.031 – volume: 357 start-page: 589 year: 2019 ident: 10.1016/j.watres.2019.05.059_bib54 article-title: Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.184 – volume: 266 start-page: 28 year: 2015 ident: 10.1016/j.watres.2019.05.059_bib23 article-title: Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.12.065 – volume: 330 start-page: 44 year: 2017 ident: 10.1016/j.watres.2019.05.059_bib45 article-title: Chemistry of persulfates in water and wastewater treatment: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.132 – volume: 145 start-page: 650 year: 2018 ident: 10.1016/j.watres.2019.05.059_bib49 article-title: Upgrading liquor-making wastewater into medium chain fatty acid: insights into co-electron donors, key microflora, and energy harvest publication-title: Water Res. doi: 10.1016/j.watres.2018.08.046 – volume: 113 start-page: 80 year: 2017 ident: 10.1016/j.watres.2019.05.059_bib5 article-title: Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes publication-title: Water Res. doi: 10.1016/j.watres.2017.02.016 – volume: 51 start-page: 10718 issue: 18 year: 2017 ident: 10.1016/j.watres.2019.05.059_bib14 article-title: Oxidation kinetics of bromophenols by nonradical activation of peroxydisulfate in the presence of carbon nanotube and formation of brominated polymeric products publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02271 – volume: 154–155 start-page: 36 year: 2014 ident: 10.1016/j.watres.2019.05.059_bib17 article-title: Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.02.005 – volume: 52 start-page: 14371 issue: 24 year: 2018 ident: 10.1016/j.watres.2019.05.059_bib12 article-title: Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b05246 |
| SSID | ssj0002239 |
| Score | 2.715691 |
| Snippet | N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 405 |
| SubjectTerms | anions aquatic environment Biochar biomass catalytic activity corn cobs density functional theory electrochemistry electron paramagnetic resonance spectroscopy Electron transfer monitoring nitrogen Nitrogen-doping oxidants Peroxydisulfate Singlet oxygen Sulfadiazine urea |
| Title | Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism |
| URI | https://dx.doi.org/10.1016/j.watres.2019.05.059 https://www.ncbi.nlm.nih.gov/pubmed/31163316 https://www.proquest.com/docview/2245644241 https://www.proquest.com/docview/2271804063 |
| Volume | 160 |
| WOSCitedRecordID | wos000474327700040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2448 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002239 issn: 0043-1354 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jQd4QFxHuUxBQrxUmXKPzVuFOgaqCkid6FvkW9ZUJe26phRe-eMcJ7ZbqMbGA1UVVY7tRj5fjo_tc76D0Cuee3mQB8JlQUJd0H7cxYwGLsFhLrg6e6KsTjaRDgZ4NCKfWq2fJhZmNU3LEq_XZP5fRQ1lIGwVOvsP4radQgH8BqHDFcQO1xsJvifOpQsv6mIGVagyKFkxU8FVDbt3TRmhHAAUQ_j6uyguq2kO1WpWjZX19eiWHZMhR6WRAONWLjpfpYoTNqSDE5NARvEsatKgcU1fum485u0ewxe9KX1a0R9ji6R3Vb1NCzcvtjDaL6rmHKQ8H9PC9lAXfi5U0LGuq7cq_I0vllW_ig81bFijrfpNvM78GOxGN_KjLVUaefHWrKzv7Sj8Zu9hcvyNqtAa5apHaiZWTTP-G7_24GN2ctbvZ8PeaPh6fuGq1GPqiF7nYdlDB0EaE1CNB933vdEHO6GDBUWMo4J6ehOBWbsJ7v7xVRbOVSuY2pIZ3kN39RLE6TbQuY9asnyA7mwRUz5EbAdEjgaRA6J1LIicP0DkbED0xumWjoGQYyDkWAg9QmcnveHbU1dn43B5SOKlGzAuEwnzKs69gOKEsABzKQiYfJxFMk5TQbmXslQIlTpE4jCEkeNYcswDlufhY7Rfzkr5BDmeCEX9CQSJcMII2OAeZT50IKggcRuFZgQzrqnqVcaUaWZ8EidZM-6ZGvfMi-FL2si1reYNVcs19VMjnEybm40ZmQG4rmn50sgyA22sjthoKWcVVFJ-BFEEZvHf6oA9CHNnErbRYQME-7yhD-uj0E-e3qD1M3R785I9R_vLRSVfoFt8tSwuF0doLx3hIw3lX36-xic |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge-nitrogenated+biochar+for+efficient+peroxydisulfate+activation%3A+An+electron+transfer+mechanism&rft.jtitle=Water+research+%28Oxford%29&rft.au=Wang%2C+Huazhe&rft.au=Guo%2C+Wanqian&rft.au=Liu%2C+Banghai&rft.au=Wu%2C+Qinglian&rft.date=2019-09-01&rft.issn=0043-1354&rft.volume=160+p.405-414&rft.spage=405&rft.epage=414&rft_id=info:doi/10.1016%2Fj.watres.2019.05.059&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |