Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism

N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of peroxydisulfate (PDS) activation for sulfadiazine (SDZ) degradation. Through both dynamic fitting and density functional theory (DFT) calculations,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Water research (Oxford) Ročník 160; s. 405 - 414
Hlavní autoři: Wang, Huazhe, Guo, Wanqian, Liu, Banghai, Wu, Qinglian, Luo, Haichao, Zhao, Qi, Si, Qishi, Sseguya, Fred, Ren, Nanqi
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.09.2019
Témata:
ISSN:0043-1354, 1879-2448, 1879-2448
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of peroxydisulfate (PDS) activation for sulfadiazine (SDZ) degradation. Through both dynamic fitting and density functional theory (DFT) calculations, the critical role of edge nitrogenation in biochar (BC) structure was revealed for the first time. The incorporation of edge nitrogen configurations (pyridinic N and pyrrolic N rather than graphitic N) generated reactive sites for the PDS activation. Additionally, a thorough investigation was conducted to explicate the PDS activation mechanism by NBC through chemical quenching experiments, electron spin resonance (ESR) detection, oxidant consumption monitoring and electrochemical analysis. Different from the well-reported singlet oxygen (1O2) dominated nonradical mechanism, an electron transfer pathway involving surface-bound reactive complexes was proved to play a major role in the NBC/PDS system. Benefit from the electron transfer mechanism, the NBC/PDS system not only has wide pH adaptation for real application, but also shows high resistance to the inorganic anions in aquatic environment. We believe this study will deepen the understanding of the carbon-driven persulfate activation mechanism and provide strong technical support for the BC-mediated persulfate activation in practical applications. [Display omitted] •N-doped biochars exhibited superior performance towards peroxydisulfate activation.•Edge nitrogenation disturbed the electron density and created reactive sites.•Electron transfer pathway rather than singlet oxygen dominated in the redox system.•Negative effect of anions was suppressed by the electron transfer mechanism.
AbstractList N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of peroxydisulfate (PDS) activation for sulfadiazine (SDZ) degradation. Through both dynamic fitting and density functional theory (DFT) calculations, the critical role of edge nitrogenation in biochar (BC) structure was revealed for the first time. The incorporation of edge nitrogen configurations (pyridinic N and pyrrolic N rather than graphitic N) generated reactive sites for the PDS activation. Additionally, a thorough investigation was conducted to explicate the PDS activation mechanism by NBC through chemical quenching experiments, electron spin resonance (ESR) detection, oxidant consumption monitoring and electrochemical analysis. Different from the well-reported singlet oxygen (1O2) dominated nonradical mechanism, an electron transfer pathway involving surface-bound reactive complexes was proved to play a major role in the NBC/PDS system. Benefit from the electron transfer mechanism, the NBC/PDS system not only has wide pH adaptation for real application, but also shows high resistance to the inorganic anions in aquatic environment. We believe this study will deepen the understanding of the carbon-driven persulfate activation mechanism and provide strong technical support for the BC-mediated persulfate activation in practical applications.N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of peroxydisulfate (PDS) activation for sulfadiazine (SDZ) degradation. Through both dynamic fitting and density functional theory (DFT) calculations, the critical role of edge nitrogenation in biochar (BC) structure was revealed for the first time. The incorporation of edge nitrogen configurations (pyridinic N and pyrrolic N rather than graphitic N) generated reactive sites for the PDS activation. Additionally, a thorough investigation was conducted to explicate the PDS activation mechanism by NBC through chemical quenching experiments, electron spin resonance (ESR) detection, oxidant consumption monitoring and electrochemical analysis. Different from the well-reported singlet oxygen (1O2) dominated nonradical mechanism, an electron transfer pathway involving surface-bound reactive complexes was proved to play a major role in the NBC/PDS system. Benefit from the electron transfer mechanism, the NBC/PDS system not only has wide pH adaptation for real application, but also shows high resistance to the inorganic anions in aquatic environment. We believe this study will deepen the understanding of the carbon-driven persulfate activation mechanism and provide strong technical support for the BC-mediated persulfate activation in practical applications.
N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of peroxydisulfate (PDS) activation for sulfadiazine (SDZ) degradation. Through both dynamic fitting and density functional theory (DFT) calculations, the critical role of edge nitrogenation in biochar (BC) structure was revealed for the first time. The incorporation of edge nitrogen configurations (pyridinic N and pyrrolic N rather than graphitic N) generated reactive sites for the PDS activation. Additionally, a thorough investigation was conducted to explicate the PDS activation mechanism by NBC through chemical quenching experiments, electron spin resonance (ESR) detection, oxidant consumption monitoring and electrochemical analysis. Different from the well-reported singlet oxygen (1O2) dominated nonradical mechanism, an electron transfer pathway involving surface-bound reactive complexes was proved to play a major role in the NBC/PDS system. Benefit from the electron transfer mechanism, the NBC/PDS system not only has wide pH adaptation for real application, but also shows high resistance to the inorganic anions in aquatic environment. We believe this study will deepen the understanding of the carbon-driven persulfate activation mechanism and provide strong technical support for the BC-mediated persulfate activation in practical applications. [Display omitted] •N-doped biochars exhibited superior performance towards peroxydisulfate activation.•Edge nitrogenation disturbed the electron density and created reactive sites.•Electron transfer pathway rather than singlet oxygen dominated in the redox system.•Negative effect of anions was suppressed by the electron transfer mechanism.
N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of peroxydisulfate (PDS) activation for sulfadiazine (SDZ) degradation. Through both dynamic fitting and density functional theory (DFT) calculations, the critical role of edge nitrogenation in biochar (BC) structure was revealed for the first time. The incorporation of edge nitrogen configurations (pyridinic N and pyrrolic N rather than graphitic N) generated reactive sites for the PDS activation. Additionally, a thorough investigation was conducted to explicate the PDS activation mechanism by NBC through chemical quenching experiments, electron spin resonance (ESR) detection, oxidant consumption monitoring and electrochemical analysis. Different from the well-reported singlet oxygen (1O2) dominated nonradical mechanism, an electron transfer pathway involving surface-bound reactive complexes was proved to play a major role in the NBC/PDS system. Benefit from the electron transfer mechanism, the NBC/PDS system not only has wide pH adaptation for real application, but also shows high resistance to the inorganic anions in aquatic environment. We believe this study will deepen the understanding of the carbon-driven persulfate activation mechanism and provide strong technical support for the BC-mediated persulfate activation in practical applications.
N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of peroxydisulfate (PDS) activation for sulfadiazine (SDZ) degradation. Through both dynamic fitting and density functional theory (DFT) calculations, the critical role of edge nitrogenation in biochar (BC) structure was revealed for the first time. The incorporation of edge nitrogen configurations (pyridinic N and pyrrolic N rather than graphitic N) generated reactive sites for the PDS activation. Additionally, a thorough investigation was conducted to explicate the PDS activation mechanism by NBC through chemical quenching experiments, electron spin resonance (ESR) detection, oxidant consumption monitoring and electrochemical analysis. Different from the well-reported singlet oxygen ( O ) dominated nonradical mechanism, an electron transfer pathway involving surface-bound reactive complexes was proved to play a major role in the NBC/PDS system. Benefit from the electron transfer mechanism, the NBC/PDS system not only has wide pH adaptation for real application, but also shows high resistance to the inorganic anions in aquatic environment. We believe this study will deepen the understanding of the carbon-driven persulfate activation mechanism and provide strong technical support for the BC-mediated persulfate activation in practical applications.
Author Zhao, Qi
Sseguya, Fred
Guo, Wanqian
Luo, Haichao
Ren, Nanqi
Si, Qishi
Wang, Huazhe
Liu, Banghai
Wu, Qinglian
Author_xml – sequence: 1
  givenname: Huazhe
  surname: Wang
  fullname: Wang, Huazhe
– sequence: 2
  givenname: Wanqian
  orcidid: 0000-0001-6237-4460
  surname: Guo
  fullname: Guo, Wanqian
  email: guowanqian@hit.edu.cn
– sequence: 3
  givenname: Banghai
  surname: Liu
  fullname: Liu, Banghai
– sequence: 4
  givenname: Qinglian
  surname: Wu
  fullname: Wu, Qinglian
– sequence: 5
  givenname: Haichao
  surname: Luo
  fullname: Luo, Haichao
– sequence: 6
  givenname: Qi
  surname: Zhao
  fullname: Zhao, Qi
– sequence: 7
  givenname: Qishi
  surname: Si
  fullname: Si, Qishi
– sequence: 8
  givenname: Fred
  surname: Sseguya
  fullname: Sseguya, Fred
– sequence: 9
  givenname: Nanqi
  surname: Ren
  fullname: Ren, Nanqi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31163316$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LHTEYhUOx1KvtPyiSpZu5zdfMZFwIIlYLgpt2HTLJG81lJrkmuX78e3N7rYsuFA68m-cceM85QHshBkDoOyVLSmj3Y7V81CVBXjJChyVpq4ZPaEFlPzRMCLmHFoQI3lDein10kPOKEMIYH76gfU5pxzntFmi8sLfQBF9SvIWgC1g8-mjudMIuJgzOeeMhFLyGFJ-erc-byVUMa1P8gy4-hhN8FjBMYGpGwCXpkB0kPENNCT7PX9Fnp6cM317vIfrz8-L3-VVzfXP56_zsujF8aEvDRgMdiK6XjjAtu2Fk0oAduKRmFND2vdWG9GNvLSWcguS8vmMkGGnY6Bw_RMe73HWK9xvIRc0-G5gmHSBusmKsp5IIUj__GBVtJwQTtKJHr-hmnMGqdfKzTs_qX4UVEDvApJhzAveGUKK2S6mV2i2ltksp0lYN1Xbyn8348rfP2qCfPjKf7sxQ-3zwkFTerlTr8qnuoGz07we8AKuhswQ
CitedBy_id crossref_primary_10_1016_j_watres_2023_119574
crossref_primary_10_1016_j_jwpe_2025_108359
crossref_primary_10_1016_j_jhazmat_2021_125305
crossref_primary_10_1016_j_biortech_2019_122286
crossref_primary_10_1016_j_cej_2020_125138
crossref_primary_10_3390_catal15040327
crossref_primary_10_1016_j_jcis_2024_08_131
crossref_primary_10_1016_j_cej_2023_142558
crossref_primary_10_1016_j_scitotenv_2023_168679
crossref_primary_10_1016_j_chemosphere_2020_129016
crossref_primary_10_1016_j_scitotenv_2022_155071
crossref_primary_10_1039_D4SE01393J
crossref_primary_10_1007_s00128_025_04045_6
crossref_primary_10_1016_j_jece_2022_107781
crossref_primary_10_1016_j_apcatb_2020_119361
crossref_primary_10_1016_j_cej_2022_135864
crossref_primary_10_1016_j_ces_2022_118178
crossref_primary_10_1021_acs_inorgchem_4c03766
crossref_primary_10_1016_j_cej_2022_140097
crossref_primary_10_1016_j_apcatb_2021_120880
crossref_primary_10_1016_j_seppur_2024_128823
crossref_primary_10_1007_s11356_023_29394_9
crossref_primary_10_1016_j_scitotenv_2021_148031
crossref_primary_10_1016_j_seppur_2025_133570
crossref_primary_10_1016_j_jece_2024_112561
crossref_primary_10_1016_j_jwpe_2022_103071
crossref_primary_10_1016_j_cej_2023_141578
crossref_primary_10_1016_j_cej_2023_142548
crossref_primary_10_1016_j_envres_2025_121414
crossref_primary_10_1016_j_jcis_2022_06_078
crossref_primary_10_1016_j_psep_2024_11_038
crossref_primary_10_1016_j_jcis_2021_04_095
crossref_primary_10_1016_j_jece_2022_107654
crossref_primary_10_1016_j_envres_2020_110104
crossref_primary_10_1016_j_cej_2022_135630
crossref_primary_10_1016_j_scitotenv_2020_139267
crossref_primary_10_1016_j_scitotenv_2020_142794
crossref_primary_10_1016_j_envres_2025_121774
crossref_primary_10_1016_j_scenv_2023_100044
crossref_primary_10_1016_j_jhazmat_2023_132538
crossref_primary_10_1016_j_seppur_2024_127965
crossref_primary_10_3390_nano12152586
crossref_primary_10_1016_j_seppur_2024_127842
crossref_primary_10_1016_j_apsusc_2021_151429
crossref_primary_10_1016_j_cej_2020_127698
crossref_primary_10_1016_j_jechem_2020_10_011
crossref_primary_10_1016_j_jece_2024_112470
crossref_primary_10_1016_j_jhazmat_2020_124199
crossref_primary_10_1016_j_seppur_2025_132593
crossref_primary_10_1007_s11270_023_06770_2
crossref_primary_10_1016_j_jece_2024_112358
crossref_primary_10_1016_j_cej_2023_143748
crossref_primary_10_1016_j_cej_2021_128829
crossref_primary_10_1016_j_cej_2024_158046
crossref_primary_10_1016_j_apsusc_2025_164640
crossref_primary_10_1016_j_jece_2022_108975
crossref_primary_10_1016_j_heliyon_2024_e34548
crossref_primary_10_1016_j_scitotenv_2020_142104
crossref_primary_10_1016_j_watres_2025_124023
crossref_primary_10_1016_j_seppur_2024_126740
crossref_primary_10_1016_j_surfin_2025_107421
crossref_primary_10_1016_j_jhazmat_2023_132626
crossref_primary_10_1016_j_seppur_2024_128921
crossref_primary_10_1002_smtd_202402072
crossref_primary_10_1016_j_apcatb_2024_124982
crossref_primary_10_1016_j_seppur_2022_121777
crossref_primary_10_1016_j_envres_2023_115993
crossref_primary_10_1007_s11356_022_20500_x
crossref_primary_10_1016_j_cej_2019_123726
crossref_primary_10_1016_j_scitotenv_2021_152673
crossref_primary_10_1016_j_ijbiomac_2023_125902
crossref_primary_10_1016_j_jcis_2020_08_049
crossref_primary_10_3390_w17111700
crossref_primary_10_1016_j_ijbiomac_2024_138322
crossref_primary_10_1016_j_jhazmat_2021_127938
crossref_primary_10_1016_j_jhazmat_2022_129172
crossref_primary_10_1021_acsestengg_5c00022
crossref_primary_10_1016_j_jcis_2021_04_074
crossref_primary_10_1016_j_ijbiomac_2025_139700
crossref_primary_10_1016_j_cej_2021_134026
crossref_primary_10_1016_j_envres_2025_122882
crossref_primary_10_1016_j_cej_2025_160653
crossref_primary_10_1016_j_seppur_2022_122612
crossref_primary_10_1016_j_apcatb_2024_124850
crossref_primary_10_1016_j_cej_2024_152619
crossref_primary_10_1016_j_envpol_2023_121060
crossref_primary_10_5004_dwt_2023_29179
crossref_primary_10_1002_smll_202402449
crossref_primary_10_1016_j_jece_2025_116178
crossref_primary_10_1016_j_biortech_2022_127710
crossref_primary_10_1016_j_envpol_2024_123885
crossref_primary_10_1016_j_chemosphere_2024_143000
crossref_primary_10_1016_j_eti_2023_103413
crossref_primary_10_1007_s11270_024_06966_0
crossref_primary_10_1007_s11356_023_27422_2
crossref_primary_10_1016_j_seppur_2023_125193
crossref_primary_10_1016_j_jcis_2020_10_021
crossref_primary_10_1016_j_cej_2022_135669
crossref_primary_10_1016_j_chemosphere_2023_137766
crossref_primary_10_1016_j_envpol_2024_124607
crossref_primary_10_1016_j_scitotenv_2022_158799
crossref_primary_10_1039_D1EW00731A
crossref_primary_10_1016_j_jece_2025_118232
crossref_primary_10_1016_j_scitotenv_2021_151502
crossref_primary_10_1016_j_cej_2024_149541
crossref_primary_10_1016_j_seppur_2024_126725
crossref_primary_10_1016_j_cej_2020_126136
crossref_primary_10_1016_j_cej_2020_128312
crossref_primary_10_1016_j_cej_2024_151878
crossref_primary_10_1016_j_chemosphere_2021_131404
crossref_primary_10_1016_j_jmst_2023_03_027
crossref_primary_10_1016_j_scitotenv_2023_168101
crossref_primary_10_3390_catal15030217
crossref_primary_10_1016_j_apcatb_2024_124909
crossref_primary_10_1016_j_jenvman_2021_112294
crossref_primary_10_1016_j_cej_2024_156075
crossref_primary_10_1016_j_jece_2024_112407
crossref_primary_10_1016_j_cej_2023_143839
crossref_primary_10_1016_j_cej_2024_156078
crossref_primary_10_1016_j_jwpe_2025_108147
crossref_primary_10_1016_j_apcatb_2023_122359
crossref_primary_10_1016_j_cej_2022_135552
crossref_primary_10_1016_j_jenvman_2025_126245
crossref_primary_10_1016_j_envpol_2024_124857
crossref_primary_10_1016_j_cej_2019_123822
crossref_primary_10_1016_j_apcatb_2021_120694
crossref_primary_10_1016_j_jenvman_2022_116945
crossref_primary_10_1016_j_chemosphere_2021_131770
crossref_primary_10_1016_j_jece_2025_116062
crossref_primary_10_1016_j_seppur_2022_121548
crossref_primary_10_1016_j_seppur_2022_122879
crossref_primary_10_1016_j_cclet_2024_110244
crossref_primary_10_3390_catal12101164
crossref_primary_10_1016_j_jhazmat_2024_135291
crossref_primary_10_1016_j_colsurfa_2023_132866
crossref_primary_10_1016_j_apcatb_2025_125072
crossref_primary_10_1016_j_seppur_2025_133881
crossref_primary_10_1016_j_cej_2023_143820
crossref_primary_10_1016_j_jhazmat_2021_125726
crossref_primary_10_1007_s44246_025_00219_3
crossref_primary_10_1016_j_wse_2025_07_003
crossref_primary_10_1016_j_apsusc_2022_154026
crossref_primary_10_1016_j_seppur_2024_130081
crossref_primary_10_1016_j_jece_2024_113630
crossref_primary_10_1016_j_seppur_2022_122773
crossref_primary_10_1016_j_seppur_2023_123803
crossref_primary_10_1002_smll_202504746
crossref_primary_10_1016_j_seppur_2022_120470
crossref_primary_10_1016_j_jwpe_2025_108287
crossref_primary_10_1016_j_jhazmat_2021_126928
crossref_primary_10_1007_s11705_023_2327_7
crossref_primary_10_1016_j_biortech_2022_127718
crossref_primary_10_1016_j_jece_2025_116080
crossref_primary_10_1016_j_jhazmat_2022_128282
crossref_primary_10_1016_j_apcatb_2023_122579
crossref_primary_10_1016_j_envpol_2022_118965
crossref_primary_10_1039_D0EN00848F
crossref_primary_10_3390_su14159324
crossref_primary_10_1016_j_jece_2025_117052
crossref_primary_10_1016_j_mtcomm_2024_109496
crossref_primary_10_1016_j_surfin_2022_102551
crossref_primary_10_1016_j_cjche_2024_11_020
crossref_primary_10_3390_ijms26030940
crossref_primary_10_1016_j_jhazmat_2024_135356
crossref_primary_10_1016_j_seppur_2024_127456
crossref_primary_10_1016_j_cej_2024_153698
crossref_primary_10_1016_j_jhazmat_2025_137810
crossref_primary_10_1016_j_seppur_2022_121916
crossref_primary_10_1016_j_seppur_2023_124586
crossref_primary_10_1016_j_cej_2025_163655
crossref_primary_10_1016_j_jhazmat_2022_130108
crossref_primary_10_1016_j_cej_2023_143476
crossref_primary_10_1016_j_seppur_2021_119687
crossref_primary_10_1016_j_cej_2025_164756
crossref_primary_10_1016_j_jece_2024_113132
crossref_primary_10_1016_j_jhazmat_2022_129359
crossref_primary_10_1016_j_chemosphere_2022_135308
crossref_primary_10_1007_s11356_022_22430_0
crossref_primary_10_1016_j_jiec_2025_04_053
crossref_primary_10_1016_j_cej_2024_151156
crossref_primary_10_1016_j_envpol_2024_124788
crossref_primary_10_1016_j_jclepro_2021_130069
crossref_primary_10_1016_j_seppur_2022_121909
crossref_primary_10_1016_j_seppur_2024_129864
crossref_primary_10_1016_j_colsurfa_2025_137845
crossref_primary_10_1016_j_jece_2022_108101
crossref_primary_10_1016_j_jenvman_2025_124665
crossref_primary_10_1016_j_jclepro_2022_130480
crossref_primary_10_1016_j_seppur_2023_125322
crossref_primary_10_1016_j_seppur_2022_120934
crossref_primary_10_1016_j_jclepro_2022_133750
crossref_primary_10_1016_j_apcatb_2023_122794
crossref_primary_10_1016_j_cej_2025_163781
crossref_primary_10_1007_s42773_023_00285_z
crossref_primary_10_1016_j_envpol_2023_123064
crossref_primary_10_1016_j_cej_2023_145888
crossref_primary_10_1016_j_jcis_2025_137645
crossref_primary_10_1016_j_jece_2024_114493
crossref_primary_10_1007_s11356_021_18285_6
crossref_primary_10_1016_j_chemosphere_2024_142775
crossref_primary_10_1016_j_cej_2020_127619
crossref_primary_10_1016_j_jece_2022_107481
crossref_primary_10_1016_j_jece_2025_117928
crossref_primary_10_1016_j_biortech_2021_126523
crossref_primary_10_1016_j_cej_2024_152580
crossref_primary_10_1016_j_apcatb_2023_122886
crossref_primary_10_1016_j_jcis_2024_06_033
crossref_primary_10_1016_j_jhazmat_2022_130562
crossref_primary_10_1016_j_jece_2022_108210
crossref_primary_10_1016_j_seppur_2024_128881
crossref_primary_10_3390_ma17194895
crossref_primary_10_1016_j_watres_2022_119316
crossref_primary_10_1016_j_seppur_2023_124005
crossref_primary_10_1016_j_jhazmat_2023_130727
crossref_primary_10_3390_catal13091247
crossref_primary_10_1016_j_cej_2024_157919
crossref_primary_10_1016_j_seppur_2022_120963
crossref_primary_10_1016_j_seppur_2024_128528
crossref_primary_10_1016_j_envres_2023_117773
crossref_primary_10_1016_j_jenvman_2023_117566
crossref_primary_10_1016_j_seppur_2021_118697
crossref_primary_10_1016_j_watres_2025_124436
crossref_primary_10_1016_j_rser_2021_112056
crossref_primary_10_1007_s10562_021_03853_9
crossref_primary_10_1016_j_jhazmat_2020_123837
crossref_primary_10_1016_j_scitotenv_2020_141883
crossref_primary_10_1016_j_cclet_2022_107861
crossref_primary_10_1016_j_cej_2024_149294
crossref_primary_10_1016_j_seppur_2023_124252
crossref_primary_10_1016_j_seppur_2024_126338
crossref_primary_10_1016_j_biortech_2024_130684
crossref_primary_10_1016_j_micromeso_2021_111259
crossref_primary_10_1016_j_seppur_2024_129845
crossref_primary_10_1016_j_surfin_2024_105051
crossref_primary_10_1016_j_chemosphere_2022_134682
crossref_primary_10_1016_j_apcatb_2025_125450
crossref_primary_10_1016_j_cej_2023_144531
crossref_primary_10_1016_j_envres_2022_115166
crossref_primary_10_1016_j_cej_2023_142114
crossref_primary_10_1016_j_biombioe_2025_107742
crossref_primary_10_1016_j_ces_2025_122114
crossref_primary_10_1016_j_cej_2024_151585
crossref_primary_10_1016_j_cclet_2021_10_086
crossref_primary_10_1016_j_scitotenv_2020_140862
crossref_primary_10_1016_j_jclepro_2022_134519
crossref_primary_10_1016_j_cej_2021_133004
crossref_primary_10_1016_j_jece_2025_119166
crossref_primary_10_1016_j_apsusc_2022_153917
crossref_primary_10_1016_j_apsusc_2021_149300
crossref_primary_10_1016_j_cej_2022_141147
crossref_primary_10_1016_j_watres_2023_119659
crossref_primary_10_1016_j_seppur_2024_127899
crossref_primary_10_1016_j_seppur_2022_120625
crossref_primary_10_1016_j_jclepro_2024_142415
crossref_primary_10_1016_j_jece_2025_115810
crossref_primary_10_1016_j_chemosphere_2021_129629
crossref_primary_10_1016_j_jhazmat_2022_129437
crossref_primary_10_1016_j_apcatb_2023_122507
crossref_primary_10_1016_j_jhazmat_2020_122764
crossref_primary_10_1016_j_seppur_2021_119369
crossref_primary_10_1039_D4CS00338A
crossref_primary_10_1016_j_jhazmat_2024_136871
crossref_primary_10_3390_ma15175832
crossref_primary_10_1016_j_cej_2024_150263
crossref_primary_10_1007_s11356_023_25182_7
crossref_primary_10_1016_j_jclepro_2023_140133
crossref_primary_10_1016_j_jece_2024_114305
crossref_primary_10_1016_j_jcis_2020_11_106
crossref_primary_10_1016_j_jece_2021_106267
crossref_primary_10_1016_j_cej_2021_133595
crossref_primary_10_1016_j_cej_2021_133477
crossref_primary_10_1016_j_cej_2022_141037
crossref_primary_10_1016_j_scitotenv_2023_163054
crossref_primary_10_1016_j_colsurfa_2025_137804
crossref_primary_10_1016_j_jhazmat_2022_129673
crossref_primary_10_1016_j_seppur_2022_120735
crossref_primary_10_1016_j_jhazmat_2022_129671
crossref_primary_10_1016_j_apcatb_2023_122990
crossref_primary_10_1016_j_seppur_2022_122912
crossref_primary_10_1016_j_apcatb_2023_122992
crossref_primary_10_1016_j_fuproc_2022_107218
crossref_primary_10_1016_j_psep_2022_10_038
crossref_primary_10_1016_j_watres_2023_119631
crossref_primary_10_1016_j_watres_2022_119113
crossref_primary_10_1016_j_cej_2024_150239
crossref_primary_10_1016_j_seppur_2025_133482
crossref_primary_10_1016_j_ces_2025_122496
crossref_primary_10_1016_j_envres_2023_116998
crossref_primary_10_1016_j_hazadv_2022_100171
crossref_primary_10_1016_j_cej_2020_125119
crossref_primary_10_1016_j_jwpe_2024_105668
crossref_primary_10_1016_j_jclepro_2020_125225
crossref_primary_10_1016_j_jece_2024_113126
crossref_primary_10_3390_w17091342
crossref_primary_10_1016_j_apsusc_2025_164442
crossref_primary_10_1016_j_jwpe_2022_102903
crossref_primary_10_1016_j_seppur_2023_125134
crossref_primary_10_1016_j_jece_2021_106276
crossref_primary_10_1016_j_cej_2022_135606
crossref_primary_10_1016_j_cej_2024_149003
crossref_primary_10_1016_j_horiz_2024_100091
crossref_primary_10_1016_j_envpol_2022_120508
crossref_primary_10_1016_j_jallcom_2023_172370
crossref_primary_10_3390_w16060875
crossref_primary_10_1016_j_fuproc_2022_107468
crossref_primary_10_1016_j_watres_2022_119341
crossref_primary_10_1016_j_jwpe_2025_106940
crossref_primary_10_1016_j_hazadv_2023_100244
crossref_primary_10_1016_j_jaap_2023_106310
crossref_primary_10_1016_j_jhazmat_2020_123874
crossref_primary_10_1007_s11356_022_23063_z
crossref_primary_10_1016_j_cej_2024_150005
crossref_primary_10_1016_j_watres_2025_123147
crossref_primary_10_1016_j_cej_2019_123091
crossref_primary_10_1016_j_watres_2023_120514
crossref_primary_10_1016_j_jece_2024_112026
crossref_primary_10_1016_j_arabjc_2023_105242
crossref_primary_10_1016_j_watres_2023_120999
crossref_primary_10_1016_j_apcatb_2022_121342
crossref_primary_10_1007_s11356_022_24223_x
crossref_primary_10_1016_j_cej_2022_136944
crossref_primary_10_1016_j_jclepro_2022_135514
crossref_primary_10_1016_j_cej_2022_136942
crossref_primary_10_1038_s41467_024_45481_y
crossref_primary_10_1016_j_efmat_2023_09_001
crossref_primary_10_1016_j_biortech_2024_131971
crossref_primary_10_1016_j_seppur_2022_120998
crossref_primary_10_1016_j_cej_2023_146115
crossref_primary_10_1016_j_seppur_2022_122047
crossref_primary_10_1016_j_cej_2023_146356
crossref_primary_10_1016_j_watres_2024_121376
crossref_primary_10_1016_j_jclepro_2021_129806
crossref_primary_10_1016_j_seppur_2023_125719
crossref_primary_10_1016_j_cej_2021_131655
crossref_primary_10_1016_j_scitotenv_2021_152089
crossref_primary_10_1016_j_cej_2020_124725
crossref_primary_10_1016_j_cej_2022_138574
crossref_primary_10_5004_dwt_2023_29657
crossref_primary_10_1016_j_cclet_2023_109331
crossref_primary_10_1016_j_cej_2022_138576
crossref_primary_10_1016_j_eti_2021_102002
crossref_primary_10_1016_j_jwpe_2024_105248
crossref_primary_10_1016_j_cclet_2023_109334
crossref_primary_10_1016_j_jhazmat_2023_132086
crossref_primary_10_1016_j_cej_2024_157892
crossref_primary_10_1002_smll_202505082
crossref_primary_10_1016_j_cej_2022_136399
crossref_primary_10_1016_j_cej_2024_155477
crossref_primary_10_1016_j_fuel_2025_134390
crossref_primary_10_1016_j_jhazmat_2022_128773
crossref_primary_10_1016_j_arabjc_2024_105929
crossref_primary_10_1039_D0RA00998A
crossref_primary_10_1016_j_cej_2025_164474
crossref_primary_10_1039_D1EW00683E
crossref_primary_10_1016_j_cej_2025_164475
crossref_primary_10_1016_j_cej_2025_165564
crossref_primary_10_1016_j_jwpe_2024_106348
crossref_primary_10_1016_j_chemosphere_2020_127987
crossref_primary_10_1016_j_molliq_2023_123505
crossref_primary_10_1039_D3EW00801K
crossref_primary_10_1016_j_seppur_2024_129471
crossref_primary_10_1016_j_chemosphere_2023_140563
crossref_primary_10_1016_j_watres_2021_117288
crossref_primary_10_3390_catal12020210
crossref_primary_10_1016_j_jwpe_2024_105016
crossref_primary_10_1016_j_jcis_2023_04_093
crossref_primary_10_1016_j_cclet_2023_108357
crossref_primary_10_1016_j_cej_2024_154133
crossref_primary_10_1016_j_cej_2024_154135
crossref_primary_10_1016_j_jics_2025_101883
crossref_primary_10_1016_j_apcatb_2021_120093
crossref_primary_10_1016_j_cej_2021_133833
crossref_primary_10_1016_j_cej_2025_167740
crossref_primary_10_1016_j_colsurfa_2025_136915
crossref_primary_10_1016_j_ecoenv_2025_117700
crossref_primary_10_1007_s10311_024_01814_3
crossref_primary_10_1016_j_jwpe_2025_107966
crossref_primary_10_1016_j_seppur_2023_124769
crossref_primary_10_1016_j_jhazmat_2022_128757
crossref_primary_10_1016_j_jwpe_2023_104096
crossref_primary_10_1002_admt_202300236
crossref_primary_10_1016_j_jhazmat_2020_124990
crossref_primary_10_1016_j_cej_2023_144038
crossref_primary_10_1016_j_ijbiomac_2023_125579
crossref_primary_10_1016_j_seppur_2022_123034
crossref_primary_10_1016_j_cej_2022_138353
crossref_primary_10_1016_j_cej_2021_130585
crossref_primary_10_1016_j_seppur_2021_118965
crossref_primary_10_1016_j_jece_2023_111740
crossref_primary_10_1016_j_jwpe_2025_107840
crossref_primary_10_1016_j_jece_2023_111502
crossref_primary_10_1016_j_jece_2023_111744
crossref_primary_10_1016_j_jhazmat_2023_133399
crossref_primary_10_1016_j_apcatb_2022_121671
crossref_primary_10_1016_j_ecoenv_2023_114908
crossref_primary_10_1016_j_cej_2021_129590
crossref_primary_10_1016_j_seppur_2024_127157
crossref_primary_10_1016_j_seppur_2023_123674
crossref_primary_10_1016_j_fuel_2022_125948
crossref_primary_10_1016_j_cej_2023_147541
crossref_primary_10_3390_w15152768
crossref_primary_10_1016_j_cej_2023_143298
crossref_primary_10_1016_j_cej_2025_163483
crossref_primary_10_1016_j_seppur_2023_124418
crossref_primary_10_1016_j_jece_2025_116324
crossref_primary_10_1016_j_jece_2025_116687
crossref_primary_10_1016_j_seppur_2022_122177
crossref_primary_10_1016_j_cej_2021_130477
crossref_primary_10_1016_j_chemosphere_2020_127845
crossref_primary_10_1016_j_chemosphere_2019_124812
crossref_primary_10_1002_adsu_201900149
crossref_primary_10_1080_07388551_2022_2119547
crossref_primary_10_1016_j_cej_2022_137277
crossref_primary_10_1016_j_jwpe_2022_102681
crossref_primary_10_1016_j_biortech_2021_124753
crossref_primary_10_1016_j_cclet_2021_12_042
crossref_primary_10_1016_j_envpol_2022_120683
crossref_primary_10_1002_cjce_25707
crossref_primary_10_1016_j_heliyon_2024_e29896
crossref_primary_10_1016_j_psep_2022_11_013
crossref_primary_10_3390_molecules28104237
crossref_primary_10_3390_catal12030342
crossref_primary_10_3390_molecules30051005
crossref_primary_10_1016_j_jece_2022_109134
crossref_primary_10_1016_j_seppur_2024_129564
crossref_primary_10_1016_j_jhazmat_2021_127254
crossref_primary_10_1016_j_envres_2022_113954
crossref_primary_10_1016_j_cclet_2021_04_059
crossref_primary_10_2166_wst_2024_256
crossref_primary_10_1016_j_jece_2024_115291
crossref_primary_10_1007_s42773_025_00433_7
crossref_primary_10_1016_j_jhazmat_2020_124893
crossref_primary_10_1016_j_cej_2023_146795
crossref_primary_10_1016_j_cej_2021_130126
crossref_primary_10_1016_j_seppur_2020_118025
crossref_primary_10_1016_j_cej_2020_125853
crossref_primary_10_1039_D3EN00660C
crossref_primary_10_1016_j_chemosphere_2023_140253
crossref_primary_10_1016_j_apcatb_2019_118348
crossref_primary_10_1016_j_jhazmat_2024_133535
crossref_primary_10_1016_j_seppur_2024_129557
crossref_primary_10_1016_j_jece_2021_105685
crossref_primary_10_1016_j_apcatb_2025_125979
crossref_primary_10_1016_j_cej_2021_132313
crossref_primary_10_1016_j_cej_2022_139229
crossref_primary_10_1016_j_micromeso_2022_111848
crossref_primary_10_1016_j_chemosphere_2024_142824
crossref_primary_10_1016_j_jhazmat_2022_129940
crossref_primary_10_1016_j_seppur_2023_124302
crossref_primary_10_1016_j_apcatb_2022_121653
crossref_primary_10_1016_j_jcis_2022_11_079
crossref_primary_10_1016_j_cej_2023_142075
crossref_primary_10_1002_adfm_202212227
crossref_primary_10_1016_j_jece_2024_114262
crossref_primary_10_1016_j_jmst_2024_08_028
crossref_primary_10_1016_j_cherd_2024_09_030
crossref_primary_10_1016_j_watres_2021_117360
crossref_primary_10_1016_j_seppur_2024_130535
crossref_primary_10_1016_j_colsurfa_2020_125895
crossref_primary_10_1016_j_chemosphere_2024_143924
crossref_primary_10_1016_j_cej_2021_129027
crossref_primary_10_1016_j_jenvman_2023_117978
crossref_primary_10_1039_D1EW00279A
crossref_primary_10_1016_j_cej_2025_166970
crossref_primary_10_1016_j_ijbiomac_2023_128400
crossref_primary_10_1007_s10562_022_04133_w
crossref_primary_10_1016_j_envres_2022_112727
crossref_primary_10_1016_j_jhazmat_2021_125294
crossref_primary_10_1016_j_jwpe_2024_105142
crossref_primary_10_1016_j_molliq_2022_119079
crossref_primary_10_1039_D2EN00418F
crossref_primary_10_1016_j_efmat_2022_05_007
crossref_primary_10_1016_j_cej_2025_166704
crossref_primary_10_1016_j_cej_2021_131233
crossref_primary_10_1007_s11356_023_25191_6
crossref_primary_10_1016_j_jece_2022_108251
crossref_primary_10_1016_j_watres_2025_124503
crossref_primary_10_1016_j_jece_2025_118817
crossref_primary_10_1016_j_cej_2022_139484
crossref_primary_10_1016_j_envres_2023_116470
crossref_primary_10_1016_j_jhazmat_2022_129927
crossref_primary_10_1016_j_wasman_2022_06_023
crossref_primary_10_1016_j_jclepro_2021_128781
crossref_primary_10_1016_j_seppur_2024_126263
crossref_primary_10_1016_j_jhazmat_2024_136825
crossref_primary_10_1016_j_chemosphere_2022_135961
crossref_primary_10_1016_j_cej_2025_162228
crossref_primary_10_1016_j_jhazmat_2021_127342
crossref_primary_10_1016_j_seppur_2022_120922
crossref_primary_10_1016_j_cej_2019_122147
crossref_primary_10_1016_j_apcatb_2022_121753
crossref_primary_10_1016_j_scitotenv_2020_144281
crossref_primary_10_1016_j_indcrop_2024_118569
crossref_primary_10_1016_j_seppur_2022_120800
crossref_primary_10_1016_j_jhazmat_2021_126131
crossref_primary_10_1016_j_apsusc_2022_154823
crossref_primary_10_1016_j_chemosphere_2020_127400
crossref_primary_10_1016_j_cej_2023_146769
crossref_primary_10_1016_j_jhazmat_2021_126008
crossref_primary_10_1016_j_cej_2020_127921
crossref_primary_10_1016_j_jece_2025_116407
crossref_primary_10_1016_j_jclepro_2021_128640
crossref_primary_10_1039_D0EN00347F
crossref_primary_10_1016_j_jwpe_2022_102639
crossref_primary_10_1016_j_jhazmat_2024_135724
crossref_primary_10_1007_s12274_024_6904_2
crossref_primary_10_1016_j_jhazmat_2021_127692
crossref_primary_10_1016_j_seppur_2023_125301
crossref_primary_10_1016_j_watres_2023_119925
crossref_primary_10_1016_j_jhazmat_2021_126363
crossref_primary_10_1016_j_cej_2025_162355
crossref_primary_10_1016_j_inoche_2025_114920
crossref_primary_10_1016_j_seppur_2023_125302
crossref_primary_10_1016_j_cej_2019_123246
crossref_primary_10_1016_j_mtnano_2021_100116
crossref_primary_10_1016_j_jclepro_2023_139334
crossref_primary_10_1016_j_jhazmat_2021_127568
crossref_primary_10_1016_j_jwpe_2025_108636
crossref_primary_10_1016_j_watres_2023_120166
crossref_primary_10_1016_j_jhazmat_2021_126113
crossref_primary_10_1016_j_jwpe_2024_105087
crossref_primary_10_1016_j_surfin_2024_103880
crossref_primary_10_1016_j_colsurfa_2023_133139
crossref_primary_10_1016_j_jhazmat_2021_127444
crossref_primary_10_1016_j_watres_2024_122621
crossref_primary_10_1016_j_envres_2024_120554
crossref_primary_10_1016_j_jwpe_2024_106053
crossref_primary_10_1016_j_watres_2024_121417
crossref_primary_10_1016_j_chemosphere_2023_140849
crossref_primary_10_1016_j_jcis_2022_12_072
crossref_primary_10_1016_j_jece_2022_108910
crossref_primary_10_1016_j_cej_2022_137407
crossref_primary_10_1016_j_jallcom_2024_176315
crossref_primary_10_1016_j_cej_2022_138733
crossref_primary_10_1016_j_watres_2021_117313
crossref_primary_10_1016_j_jece_2023_109289
crossref_primary_10_1016_j_scitotenv_2020_142282
crossref_primary_10_1016_j_jclepro_2024_140951
crossref_primary_10_1016_j_cej_2025_167468
crossref_primary_10_1016_j_jhazmat_2021_126343
crossref_primary_10_1016_j_cej_2021_129504
crossref_primary_10_1016_j_envres_2024_120301
crossref_primary_10_1016_j_jhazmat_2021_126106
crossref_primary_10_1016_j_jenvman_2023_118196
crossref_primary_10_1016_j_cej_2022_138504
crossref_primary_10_1016_j_jhazmat_2023_132133
crossref_primary_10_5004_dwt_2022_28647
crossref_primary_10_1016_j_jece_2024_113805
crossref_primary_10_1016_j_jhazmat_2023_132377
crossref_primary_10_1016_j_cej_2023_147274
crossref_primary_10_1016_j_psep_2024_06_072
crossref_primary_10_1016_j_jcis_2021_05_176
crossref_primary_10_1016_j_seppur_2022_121379
crossref_primary_10_1016_j_seppur_2022_121255
crossref_primary_10_1016_j_seppur_2024_126905
crossref_primary_10_1016_j_jenvman_2024_121799
crossref_primary_10_1016_j_jhazmat_2021_127663
crossref_primary_10_1016_j_jhazmat_2021_127784
crossref_primary_10_1002_jctb_7882
crossref_primary_10_1016_j_cej_2024_149724
crossref_primary_10_1016_j_envpol_2023_121685
crossref_primary_10_1016_j_jece_2023_111585
crossref_primary_10_1007_s10562_022_04206_w
crossref_primary_10_1016_j_jece_2024_112759
crossref_primary_10_1016_j_cej_2024_158686
crossref_primary_10_1016_j_seppur_2025_134813
crossref_primary_10_1016_j_jcis_2022_10_124
crossref_primary_10_1016_j_jwpe_2025_108653
crossref_primary_10_1016_j_cej_2023_145080
crossref_primary_10_1007_s42773_022_00145_2
crossref_primary_10_1016_j_apcatb_2024_124584
crossref_primary_10_1016_j_seppur_2022_122469
crossref_primary_10_1016_j_cclet_2024_110650
crossref_primary_10_1016_j_seppur_2022_122107
crossref_primary_10_1016_j_jhazmat_2021_126446
crossref_primary_10_1016_j_jwpe_2025_107437
crossref_primary_10_1016_j_seppur_2023_124935
crossref_primary_10_1016_j_biombioe_2024_107296
crossref_primary_10_1016_j_cej_2025_167204
crossref_primary_10_1016_j_seppur_2022_121124
crossref_primary_10_1016_j_envres_2024_119579
crossref_primary_10_1016_j_matdes_2022_110817
crossref_primary_10_1016_j_apcatb_2020_119551
crossref_primary_10_1016_j_cej_2023_142801
crossref_primary_10_1016_j_seppur_2024_131007
crossref_primary_10_1016_j_gee_2023_10_005
crossref_primary_10_1016_j_optmat_2024_116111
crossref_primary_10_1016_j_cej_2019_123681
crossref_primary_10_1016_j_cej_2025_159827
crossref_primary_10_1016_j_colsurfa_2025_138037
crossref_primary_10_1016_j_chemosphere_2023_138788
crossref_primary_10_1016_j_seppur_2024_129287
crossref_primary_10_1007_s11356_022_24950_1
crossref_primary_10_1016_j_apcatb_2022_121943
crossref_primary_10_3390_ijerph192214805
crossref_primary_10_1007_s42773_023_00223_z
crossref_primary_10_1016_j_surfin_2025_107013
crossref_primary_10_1007_s12649_022_01778_x
crossref_primary_10_1016_j_carbon_2019_09_050
crossref_primary_10_1016_j_chemosphere_2023_138690
crossref_primary_10_1016_j_jcis_2021_05_080
crossref_primary_10_1016_j_jhazmat_2021_126794
crossref_primary_10_1016_j_ccr_2024_215749
crossref_primary_10_1016_j_chemosphere_2022_137084
crossref_primary_10_1016_j_jcis_2021_11_196
crossref_primary_10_1016_j_jwpe_2025_107466
crossref_primary_10_1016_j_cej_2022_139989
crossref_primary_10_1016_j_jece_2023_111319
crossref_primary_10_1016_j_cej_2022_138655
crossref_primary_10_1016_j_seppur_2024_129398
crossref_primary_10_1016_j_jenvman_2023_119090
crossref_primary_10_1039_D3EN00971H
crossref_primary_10_1016_j_apcatb_2024_123793
crossref_primary_10_1016_j_seppur_2023_123970
crossref_primary_10_1016_j_jhazmat_2024_134907
crossref_primary_10_1016_j_apcatb_2022_121930
crossref_primary_10_1016_j_chemosphere_2021_132597
crossref_primary_10_1016_j_cej_2025_166682
crossref_primary_10_1007_s10934_024_01612_w
crossref_primary_10_1016_j_cej_2025_165472
crossref_primary_10_1016_j_jhazmat_2020_122194
crossref_primary_10_1016_j_jhazmat_2020_124145
crossref_primary_10_1016_j_jtice_2022_104352
crossref_primary_10_1016_j_cej_2021_130898
crossref_primary_10_1016_j_seppur_2022_122475
crossref_primary_10_1016_j_cej_2021_128459
crossref_primary_10_1016_j_chemosphere_2021_132458
crossref_primary_10_1016_j_scitotenv_2024_172740
crossref_primary_10_1021_acsomega_5c02019
crossref_primary_10_1016_j_jwpe_2023_103771
crossref_primary_10_1016_j_seppur_2021_119924
crossref_primary_10_1007_s11356_023_31174_4
crossref_primary_10_1016_j_seppur_2021_118717
crossref_primary_10_1021_acsami_5c04066
crossref_primary_10_1016_j_cej_2022_138302
crossref_primary_10_1016_j_chemosphere_2023_138326
crossref_primary_10_1007_s11356_020_07612_y
crossref_primary_10_1016_j_chemosphere_2023_139659
crossref_primary_10_1016_j_scitotenv_2022_160001
crossref_primary_10_1016_j_cej_2020_127185
crossref_primary_10_1016_j_cej_2020_127066
crossref_primary_10_1002_bbb_2808
crossref_primary_10_1016_j_jhazmat_2021_126776
crossref_primary_10_1016_j_apsusc_2022_155880
crossref_primary_10_1016_j_wasman_2023_01_007
crossref_primary_10_1016_j_jece_2025_117201
crossref_primary_10_1016_j_jhazmat_2021_127743
crossref_primary_10_1016_j_seppur_2024_129141
crossref_primary_10_1016_j_jece_2023_109460
crossref_primary_10_1016_j_jhazmat_2025_138682
crossref_primary_10_1021_acs_chemrev_5c00074
crossref_primary_10_1016_j_seppur_2025_131506
crossref_primary_10_1016_j_cej_2022_139889
crossref_primary_10_1016_j_jhazmat_2021_125682
crossref_primary_10_1016_j_seppur_2022_121048
crossref_primary_10_1039_D0EN01245A
crossref_primary_10_1016_j_jhazmat_2021_125552
crossref_primary_10_1016_j_chemosphere_2021_132558
crossref_primary_10_1016_j_apsusc_2020_147887
crossref_primary_10_1016_j_apsusc_2024_159472
crossref_primary_10_1016_j_seppur_2025_131972
crossref_primary_10_1016_j_cej_2022_139890
crossref_primary_10_1039_D3SC05275C
crossref_primary_10_1016_j_cej_2022_138560
crossref_primary_10_1063_5_0137651
crossref_primary_10_1016_j_biortech_2020_123840
crossref_primary_10_1016_j_jhazmat_2023_131463
crossref_primary_10_1016_j_jhazmat_2022_130075
crossref_primary_10_1016_j_cej_2022_139899
crossref_primary_10_1016_j_jcis_2021_10_150
crossref_primary_10_1016_j_seppur_2024_129003
crossref_primary_10_1016_j_arabjc_2022_104403
crossref_primary_10_1016_j_cej_2021_132844
crossref_primary_10_1016_j_envres_2022_114724
crossref_primary_10_3390_molecules28227591
crossref_primary_10_1007_s42773_023_00243_9
crossref_primary_10_1016_j_cej_2021_129441
crossref_primary_10_1016_j_cej_2020_128176
Cites_doi 10.1016/j.apcatb.2017.11.051
10.1021/es9031419
10.1021/acs.est.6b02079
10.1016/j.jhazmat.2018.06.048
10.1021/acs.est.5b00729
10.1039/c3ta10592j
10.1021/j100373a017
10.1016/j.cej.2017.11.059
10.1590/S1516-14392013005000068
10.1016/j.watres.2018.03.069
10.1016/j.apcatb.2007.11.009
10.1016/j.cej.2019.01.053
10.1016/j.apcatb.2017.11.050
10.1126/science.aad0832
10.1021/acs.est.7b06487
10.1016/j.watres.2018.03.012
10.1016/j.watres.2016.02.013
10.1039/C5CC05101K
10.1016/j.watres.2010.08.024
10.1021/jacs.8b05992
10.1016/j.chemosphere.2008.08.043
10.1021/acssuschemeng.6b03035
10.1021/acs.chemrev.5b00195
10.1039/cs9811000205
10.1002/adfm.201705295
10.1016/j.watres.2016.04.015
10.1016/j.watres.2007.06.023
10.1021/es5061512
10.1021/es202487h
10.1016/j.cej.2017.09.102
10.1016/j.watres.2018.10.087
10.1016/j.watres.2014.10.006
10.1021/ja00832a040
10.1016/j.cej.2016.11.085
10.1021/es048331p
10.1016/j.watres.2016.04.053
10.1016/j.cej.2017.12.083
10.1007/s10822-010-9333-9
10.1021/cs5017613
10.1016/j.apcatb.2015.08.049
10.1289/ehp.8561191
10.1016/j.freeradbiomed.2014.08.020
10.1002/aenm.201802042
10.1002/aenm.201200038
10.1021/acs.est.5b03595
10.1016/j.apcatb.2014.02.012
10.1021/acs.est.8b00959
10.1039/c3cc43401j
10.1021/acs.est.8b01817
10.1016/j.carbon.2016.01.031
10.1016/j.cej.2018.09.184
10.1016/j.cej.2014.12.065
10.1016/j.cej.2017.07.132
10.1016/j.watres.2018.08.046
10.1016/j.watres.2017.02.016
10.1021/acs.est.7b02271
10.1016/j.apcatb.2014.02.005
10.1021/acs.est.8b05246
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.watres.2019.05.059
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
EndPage 414
ExternalDocumentID 31163316
10_1016_j_watres_2019_05_059
S0043135419304476
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
~HD
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-2bce6e4678f02a869b28ced9381cb4e577dac07b7dd1031e833022c8ec8c2bff3
ISICitedReferencesCount 741
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474327700040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1354
1879-2448
IngestDate Sat Sep 27 22:22:49 EDT 2025
Thu Oct 02 05:47:18 EDT 2025
Thu Apr 03 07:02:51 EDT 2025
Tue Nov 18 22:14:20 EST 2025
Sat Nov 29 02:38:59 EST 2025
Fri Feb 23 02:23:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electron transfer
Nitrogen-doping
Sulfadiazine
Peroxydisulfate
Singlet oxygen
Biochar
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-2bce6e4678f02a869b28ced9381cb4e577dac07b7dd1031e833022c8ec8c2bff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6237-4460
PMID 31163316
PQID 2245644241
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2271804063
proquest_miscellaneous_2245644241
pubmed_primary_31163316
crossref_primary_10_1016_j_watres_2019_05_059
crossref_citationtrail_10_1016_j_watres_2019_05_059
elsevier_sciencedirect_doi_10_1016_j_watres_2019_05_059
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Qin, Li, Gao, Zhang, Ok, An (bib37) 2018; 137
Wacławek, Lutze, Grübel, Padil, Černík, Dionysiou (bib45) 2017; 330
Duan, Sun, Shao, Wang (bib7) 2018; 224
Ribeiro, Marenich, Cramer, Truhlar (bib39) 2010; 24
Huang, Bao, Yao, Lu, Chen (bib17) 2014; 154–155
Gao, Zhu, Lyu, Zeng, Xing, Hu (bib12) 2018; 52
Fontmorin, Burgos Castillo, Tang, Sillanpää (bib11) 2016; 99
Liang, Zhang, Duan, Sun, Liu, Tade, Wang (bib26) 2017; 5
Lutze, Kerlin, Schmidt (bib31) 2015; 72
Zhu, Huang, Ma, Wang, Duan, Wang (bib58) 2018; 52
Keiluweit, Nico, Johnson, Kleber (bib21) 2010; 44
Sjoberg, Politzer (bib41) 1990; 94
Liu, Jiang, Yu (bib28) 2015; 115
Liang, Huang, Mohanty, Kurakalva (bib25) 2008; 73
Peng, Liu, Sun, Yao, Zhi, Wang (bib35) 2013; 1
Guan, Jiang, Luo, Pang, Yang, Wang, Ma, Yu, Zhao (bib15) 2018; 337
Politzer, Laurence, Jayasuriya (bib36) 1985; 61
Xu, Cooper, Jung, Song (bib51) 2011; 45
Duan, Sun, Wang, Kang, Wang (bib9) 2015; 5
Li, Huang, Xi, Miao, Ding, Cai, Liu, Yang, Yang, Gao, Wang, Huang, Zhang, Liu (bib24) 2018; 140
Fang, Liu, Gao, Dionysiou, Zhou (bib10) 2015; 49
Luo, Li, Wang, Zhang, Nasir Khan, Sun, Shen, Han, Wang, Li (bib30) 2019; 148
Radovic, Moreno-Castilla, Rivera-Utrilla (bib38) 2000; 27
Sun, Kwan, Suvorova, Ang, Tadé, Wang (bib44) 2014; 154–155
Xu, Zhang, Li, Zou, Li, Hu, Li (bib52) 2007; 41
Cazetta, Zhang, Silva, Almeida, Asefa (bib3) 2018; 225
Yun, Lee, Kim, Park, Lee (bib55) 2018; 52
Xu, Mo, Tian, Wang, Yu, Yu (bib53) 2016; 181
Cheng, Guo, Zhang, Wu, Liu (bib5) 2017; 113
Nardi, Manet, Monti, Miranda, Lhiaubet-Vallet (bib34) 2014; 77
Boreen, Arnold, McNeill (bib2) 2005; 39
Lee, Lee, Jeong, Lee, Park, Lee (bib23) 2015; 266
Marc, Pignatello, Beltrán, Mercè, Jordan (bib32) 2011; 45
Zhang, Ying, Pan, Liu, Zhao (bib56) 2015; 49
Hussain, Li, Zhang, Li, Huang, Du, Liu, Hayat, Anwar (bib18) 2017; 311
Guo, Shibuya, Akiba, Saji, Kondo, Nakamura (bib16) 2016; 351
Almeida Júnior, Bertuol, Meneguzzi, Ferreira, Amado (bib1) 2013; 16
Guan, Jiang, Pang, Luo, Ma, Zhou, Yang (bib14) 2017; 51
Jiang, Zhang, Zhou, Liang, Li (bib19) 2018; 358
Wang, Wang (bib47) 2018; 334
Chen, Chen, Qiao, Wang, Cai (bib4) 2008; 80
Kang, Duan, Wang, Sun, Tan, Tade, Wang (bib20) 2018; 332
Duan, Ao, Sun, Zhou, Wang, Wang (bib8) 2015; 51
Shao, Tian, Yang, Duan, Gao, Shi, Luo, Cui, Luo, Wang (bib40) 2018; 28
Wang, Guo, Yin, Du, Wu, Luo, Liu, Sseguya, Ren (bib46) 2019; 362
Lee, Kim, Weon, Choi, Hwang, Seo, Lee, Kim (bib22) 2016; 50
Sun, Wang, Liu, Ge, Wang, Zhu, Wang (bib43) 2013; 49
Chu, Chu, Bond, Du, Guo, Gao (bib6) 2016; 93
Wu, Guo, Bao, Meng, Ren (bib49) 2018; 145
Liu, Zhang, Sheng, Zhou, Wei, Feng, Fan (bib29) 2018; 8
Zhou, Jiang, Gao, Ma, Pang, Li, Lu, Yuan (bib57) 2015; 49
Wang, Wu, Huang, Wang, Hu (bib48) 2016; 98
Yin, Guo, Wang, Du, Wu, Chang, Ren (bib54) 2019; 357
Zhu, Zhu, Dionysiou, Zhou, Fang, Gao (bib59) 2018; 139
Xiao, Chen, Chen, Zhu, Schnoor (bib50) 2018; 52
Montgomery (bib33) 2002; 96
Gorman, Rodgers (bib13) 1981; 10
Smith, Dallmeyer, Johnson, Brauer, McEwen, Espinal, Garcia-Perez (bib42) 2016; 100
Lin, Waller, Liu, Liu, Wong (bib27) 2012; 2
Montgomery (10.1016/j.watres.2019.05.059_bib33) 2002; 96
Fontmorin (10.1016/j.watres.2019.05.059_bib11) 2016; 99
Kang (10.1016/j.watres.2019.05.059_bib20) 2018; 332
Zhang (10.1016/j.watres.2019.05.059_bib56) 2015; 49
Luo (10.1016/j.watres.2019.05.059_bib30) 2019; 148
Zhu (10.1016/j.watres.2019.05.059_bib59) 2018; 139
Duan (10.1016/j.watres.2019.05.059_bib9) 2015; 5
Jiang (10.1016/j.watres.2019.05.059_bib19) 2018; 358
Fang (10.1016/j.watres.2019.05.059_bib10) 2015; 49
Cheng (10.1016/j.watres.2019.05.059_bib5) 2017; 113
Ribeiro (10.1016/j.watres.2019.05.059_bib39) 2010; 24
Li (10.1016/j.watres.2019.05.059_bib24) 2018; 140
Lin (10.1016/j.watres.2019.05.059_bib27) 2012; 2
Qin (10.1016/j.watres.2019.05.059_bib37) 2018; 137
Liu (10.1016/j.watres.2019.05.059_bib29) 2018; 8
Sjoberg (10.1016/j.watres.2019.05.059_bib41) 1990; 94
Duan (10.1016/j.watres.2019.05.059_bib8) 2015; 51
Xiao (10.1016/j.watres.2019.05.059_bib50) 2018; 52
Zhou (10.1016/j.watres.2019.05.059_bib57) 2015; 49
Radovic (10.1016/j.watres.2019.05.059_bib38) 2000; 27
Chen (10.1016/j.watres.2019.05.059_bib4) 2008; 80
Wacławek (10.1016/j.watres.2019.05.059_bib45) 2017; 330
Gorman (10.1016/j.watres.2019.05.059_bib13) 1981; 10
Politzer (10.1016/j.watres.2019.05.059_bib36) 1985; 61
Xu (10.1016/j.watres.2019.05.059_bib52) 2007; 41
Smith (10.1016/j.watres.2019.05.059_bib42) 2016; 100
Peng (10.1016/j.watres.2019.05.059_bib35) 2013; 1
Hussain (10.1016/j.watres.2019.05.059_bib18) 2017; 311
Boreen (10.1016/j.watres.2019.05.059_bib2) 2005; 39
Almeida Júnior (10.1016/j.watres.2019.05.059_bib1) 2013; 16
Nardi (10.1016/j.watres.2019.05.059_bib34) 2014; 77
Sun (10.1016/j.watres.2019.05.059_bib44) 2014; 154–155
Wang (10.1016/j.watres.2019.05.059_bib47) 2018; 334
Huang (10.1016/j.watres.2019.05.059_bib17) 2014; 154–155
Guan (10.1016/j.watres.2019.05.059_bib15) 2018; 337
Guo (10.1016/j.watres.2019.05.059_bib16) 2016; 351
Liang (10.1016/j.watres.2019.05.059_bib25) 2008; 73
Lee (10.1016/j.watres.2019.05.059_bib23) 2015; 266
Keiluweit (10.1016/j.watres.2019.05.059_bib21) 2010; 44
Chu (10.1016/j.watres.2019.05.059_bib6) 2016; 93
Liu (10.1016/j.watres.2019.05.059_bib28) 2015; 115
Cazetta (10.1016/j.watres.2019.05.059_bib3) 2018; 225
Sun (10.1016/j.watres.2019.05.059_bib43) 2013; 49
Wang (10.1016/j.watres.2019.05.059_bib46) 2019; 362
Lutze (10.1016/j.watres.2019.05.059_bib31) 2015; 72
Yin (10.1016/j.watres.2019.05.059_bib54) 2019; 357
Yun (10.1016/j.watres.2019.05.059_bib55) 2018; 52
Guan (10.1016/j.watres.2019.05.059_bib14) 2017; 51
Zhu (10.1016/j.watres.2019.05.059_bib58) 2018; 52
Xu (10.1016/j.watres.2019.05.059_bib51) 2011; 45
Duan (10.1016/j.watres.2019.05.059_bib7) 2018; 224
Lee (10.1016/j.watres.2019.05.059_bib22) 2016; 50
Liang (10.1016/j.watres.2019.05.059_bib26) 2017; 5
Shao (10.1016/j.watres.2019.05.059_bib40) 2018; 28
Marc (10.1016/j.watres.2019.05.059_bib32) 2011; 45
Gao (10.1016/j.watres.2019.05.059_bib12) 2018; 52
Wu (10.1016/j.watres.2019.05.059_bib49) 2018; 145
Wang (10.1016/j.watres.2019.05.059_bib48) 2016; 98
Xu (10.1016/j.watres.2019.05.059_bib53) 2016; 181
References_xml – volume: 39
  start-page: 3630
  year: 2005
  end-page: 3638
  ident: bib2
  article-title: Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups:  identification of an SO
  publication-title: Environ. Sci. Technol.
– volume: 93
  start-page: 48
  year: 2016
  end-page: 55
  ident: bib6
  article-title: Impact of persulfate and ultraviolet light activated persulfate pre-oxidation on the formation of trihalomethanes, haloacetonitriles and halonitromethanes from the chlor(am)ination of three antibiotic chloramphenicols
  publication-title: Water Res.
– volume: 351
  start-page: 361
  year: 2016
  ident: bib16
  article-title: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts
  publication-title: Science
– volume: 51
  start-page: 10718
  year: 2017
  end-page: 10728
  ident: bib14
  article-title: Oxidation kinetics of bromophenols by nonradical activation of peroxydisulfate in the presence of carbon nanotube and formation of brominated polymeric products
  publication-title: Environ. Sci. Technol.
– volume: 2
  start-page: 884
  year: 2012
  end-page: 888
  ident: bib27
  article-title: Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction
  publication-title: Adv. Energy Mater.
– volume: 357
  start-page: 589
  year: 2019
  end-page: 599
  ident: bib54
  article-title: Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism
  publication-title: Chem. Eng. J.
– volume: 24
  start-page: 317
  year: 2010
  end-page: 333
  ident: bib39
  article-title: Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models
  publication-title: J. Comput. Aided Mol. Des.
– volume: 225
  start-page: 30
  year: 2018
  end-page: 39
  ident: bib3
  article-title: Bone char-derived metal-free N- and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation
  publication-title: Appl. Catal. B Environ.
– volume: 224
  start-page: 973
  year: 2018
  end-page: 982
  ident: bib7
  article-title: Nonradical reactions in environmental remediation processes: uncertainty and challenges
  publication-title: Appl. Catal. B Environ.
– volume: 77
  start-page: 64
  year: 2014
  end-page: 70
  ident: bib34
  article-title: Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: the misleading role of electron transfer
  publication-title: Free Radic. Biol. Med.
– volume: 44
  start-page: 1247
  year: 2010
  end-page: 1253
  ident: bib21
  article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 2693
  year: 2017
  end-page: 2701
  ident: bib26
  article-title: N-doped graphene from metal–organic frameworks for catalytic oxidation of p-hydroxylbenzoic acid: N-functionality and mechanism
  publication-title: ACS Sustain. Chem. Eng.
– volume: 61
  start-page: 191
  year: 1985
  end-page: 202
  ident: bib36
  article-title: Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena
  publication-title: Environ. Health Perspect.
– volume: 154–155
  start-page: 36
  year: 2014
  end-page: 43
  ident: bib17
  article-title: Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst
  publication-title: Appl. Catal. B Environ.
– volume: 52
  start-page: 14371
  year: 2018
  end-page: 14380
  ident: bib12
  article-title: Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation
  publication-title: Environ. Sci. Technol.
– volume: 1
  start-page: 5854
  year: 2013
  end-page: 5859
  ident: bib35
  article-title: Synthesis of porous reduced graphene oxide as metal-free carbon for adsorption and catalytic oxidation of organics in water
  publication-title: J. Mater. Chem.
– volume: 330
  start-page: 44
  year: 2017
  end-page: 62
  ident: bib45
  article-title: Chemistry of persulfates in water and wastewater treatment: a review
  publication-title: Chem. Eng. J.
– volume: 27
  start-page: 227
  year: 2000
  end-page: 405
  ident: bib38
  article-title: Carbon materials as adsorbents in aqueous solutions
  publication-title: Chem. Phys. Carbon
– volume: 49
  start-page: 12941
  year: 2015
  end-page: 12950
  ident: bib57
  article-title: Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process
  publication-title: Environ. Sci. Technol.
– volume: 115
  start-page: 12251
  year: 2015
  ident: bib28
  article-title: Development of biochar-based functional materials: toward a sustainable platform carbon material
  publication-title: Chem. Rev.
– volume: 266
  start-page: 28
  year: 2015
  end-page: 33
  ident: bib23
  article-title: Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism
  publication-title: Chem. Eng. J.
– volume: 98
  start-page: 190
  year: 2016
  end-page: 198
  ident: bib48
  article-title: Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: influence factors and radical species
  publication-title: Water Res.
– volume: 72
  start-page: 349
  year: 2015
  end-page: 360
  ident: bib31
  article-title: Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate
  publication-title: Water Res.
– volume: 49
  start-page: 9914
  year: 2013
  end-page: 9916
  ident: bib43
  article-title: Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation
  publication-title: Chem. Commun.
– volume: 181
  start-page: 810
  year: 2016
  end-page: 817
  ident: bib53
  article-title: The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites
  publication-title: Appl. Catal. B Environ.
– volume: 154–155
  start-page: 134
  year: 2014
  end-page: 141
  ident: bib44
  article-title: Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals
  publication-title: Appl. Catal. B Environ.
– volume: 358
  start-page: 53
  year: 2018
  end-page: 61
  ident: bib19
  article-title: Oxidation of Rhodamine B by persulfate activated with porous carbon aerogel through a non-radical mechanism
  publication-title: J. Hazard Mater.
– volume: 49
  start-page: 6772
  year: 2015
  end-page: 6782
  ident: bib56
  article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance
  publication-title: Environ. Sci. Technol.
– volume: 137
  start-page: 130
  year: 2018
  end-page: 143
  ident: bib37
  article-title: Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review
  publication-title: Water Res.
– volume: 41
  start-page: 4526
  year: 2007
  end-page: 4534
  ident: bib52
  article-title: Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China
  publication-title: Water Res.
– volume: 311
  start-page: 163
  year: 2017
  end-page: 172
  ident: bib18
  article-title: Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol
  publication-title: Chem. Eng. J.
– volume: 45
  start-page: 632
  year: 2011
  end-page: 638
  ident: bib51
  article-title: Photosensitized degradation of amoxicillin in natural organic matter isolate solutions
  publication-title: Water Res.
– volume: 73
  start-page: 1540
  year: 2008
  end-page: 1543
  ident: bib25
  article-title: A rapid spectrophotometric determination of persulfate anion in ISCO
  publication-title: Chemosphere
– volume: 94
  start-page: 3959
  year: 1990
  end-page: 3961
  ident: bib41
  article-title: Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes
  publication-title: J. Phys. Chem.
– volume: 49
  start-page: 5645
  year: 2015
  end-page: 5653
  ident: bib10
  article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation
  publication-title: Environ. Sci. Technol.
– volume: 148
  start-page: 416
  year: 2019
  end-page: 424
  ident: bib30
  article-title: Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition
  publication-title: Water Res.
– volume: 5
  start-page: 553
  year: 2015
  end-page: 559
  ident: bib9
  article-title: N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation
  publication-title: ACS Catal.
– volume: 80
  start-page: 116
  year: 2008
  end-page: 121
  ident: bib4
  article-title: Performance of nano-Co
  publication-title: Appl. Catal. B Environ.
– volume: 140
  start-page: 12469
  year: 2018
  end-page: 12475
  ident: bib24
  article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 15249
  year: 2015
  end-page: 15252
  ident: bib8
  article-title: Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study
  publication-title: Chem. Commun.
– volume: 145
  start-page: 650
  year: 2018
  end-page: 659
  ident: bib49
  article-title: Upgrading liquor-making wastewater into medium chain fatty acid: insights into co-electron donors, key microflora, and energy harvest
  publication-title: Water Res.
– volume: 99
  start-page: 24
  year: 2016
  end-page: 32
  ident: bib11
  article-title: Stability of 5,5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction
  publication-title: Water Res.
– volume: 50
  start-page: 10134
  year: 2016
  end-page: 10142
  ident: bib22
  article-title: Activation of persulfates by graphitized nanodiamonds for removal of organic compounds
  publication-title: Environ. Sci. Technol.
– volume: 96
  start-page: 7820
  year: 2002
  end-page: 7821
  ident: bib33
  article-title: Catalysis of peroxymonosulfate reactions by ketones
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 8649
  year: 2018
  end-page: 8658
  ident: bib58
  article-title: Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms
  publication-title: Environ. Sci. Technol.
– volume: 334
  start-page: 1502
  year: 2018
  end-page: 1517
  ident: bib47
  article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 205
  year: 1981
  end-page: 231
  ident: bib13
  article-title: Singlet molecular oxygen
  publication-title: Chem. Soc. Rev.
– volume: 45
  start-page: 10020
  year: 2011
  ident: bib32
  article-title: Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– volume: 337
  start-page: 40
  year: 2018
  end-page: 50
  ident: bib15
  article-title: Oxidation of bromophenols by carbon nanotube activated peroxymonosulfate (PMS) and formation of brominated products: comparison to peroxydisulfate (PDS)
  publication-title: Chem. Eng. J.
– volume: 362
  start-page: 561
  year: 2019
  end-page: 569
  ident: bib46
  article-title: Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: insight into the electron transfer, radical oxidation and degradation pathways
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 860
  year: 2013
  end-page: 866
  ident: bib1
  article-title: Castor oil and commercial thermoplastic polyurethane membranes modified with polyaniline: a comparative study
  publication-title: Mater. Res.
– volume: 28
  start-page: 1705295
  year: 2018
  ident: bib40
  article-title: Identification and regulation of active sites on nanodiamonds: establishing a highly efficient catalytic system for oxidation of organic contaminants
  publication-title: Adv. Funct. Mater.
– volume: 52
  start-page: 5027
  year: 2018
  end-page: 5047
  ident: bib50
  article-title: Insight into multiple and multi-level structures of biochars and their potential environmental applications: a critical review
  publication-title: Environ. Sci. Technol.
– volume: 332
  start-page: 398
  year: 2018
  end-page: 408
  ident: bib20
  article-title: Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability
  publication-title: Chem. Eng. J.
– volume: 52
  start-page: 7032
  year: 2018
  end-page: 7042
  ident: bib55
  article-title: Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer
  publication-title: Environ. Sci. Technol.
– volume: 139
  start-page: 66
  year: 2018
  end-page: 73
  ident: bib59
  article-title: Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process
  publication-title: Water Res.
– volume: 113
  start-page: 80
  year: 2017
  end-page: 88
  ident: bib5
  article-title: Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes
  publication-title: Water Res.
– volume: 8
  start-page: 1802042
  year: 2018
  ident: bib29
  article-title: Edge-nitrogen-rich carbon dots pillared graphene blocks with ultrahigh volumetric/gravimetric capacities and ultralong life for sodium-ion storage
  publication-title: Adv. Energy Mater.
– volume: 100
  start-page: 678
  year: 2016
  end-page: 692
  ident: bib42
  article-title: Structural analysis of char by Raman spectroscopy: improving band assignments through computational calculations from first principles
  publication-title: Carbon
– volume: 224
  start-page: 973
  year: 2018
  ident: 10.1016/j.watres.2019.05.059_bib7
  article-title: Nonradical reactions in environmental remediation processes: uncertainty and challenges
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.11.051
– volume: 44
  start-page: 1247
  issue: 4
  year: 2010
  ident: 10.1016/j.watres.2019.05.059_bib21
  article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9031419
– volume: 50
  start-page: 10134
  issue: 18
  year: 2016
  ident: 10.1016/j.watres.2019.05.059_bib22
  article-title: Activation of persulfates by graphitized nanodiamonds for removal of organic compounds
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02079
– volume: 358
  start-page: 53
  year: 2018
  ident: 10.1016/j.watres.2019.05.059_bib19
  article-title: Oxidation of Rhodamine B by persulfate activated with porous carbon aerogel through a non-radical mechanism
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2018.06.048
– volume: 49
  start-page: 6772
  issue: 11
  year: 2015
  ident: 10.1016/j.watres.2019.05.059_bib56
  article-title: Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00729
– volume: 1
  start-page: 5854
  issue: 19
  year: 2013
  ident: 10.1016/j.watres.2019.05.059_bib35
  article-title: Synthesis of porous reduced graphene oxide as metal-free carbon for adsorption and catalytic oxidation of organics in water
  publication-title: J. Mater. Chem.
  doi: 10.1039/c3ta10592j
– volume: 94
  start-page: 3959
  issue: 10
  year: 1990
  ident: 10.1016/j.watres.2019.05.059_bib41
  article-title: Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100373a017
– volume: 334
  start-page: 1502
  year: 2018
  ident: 10.1016/j.watres.2019.05.059_bib47
  article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.11.059
– volume: 16
  start-page: 860
  year: 2013
  ident: 10.1016/j.watres.2019.05.059_bib1
  article-title: Castor oil and commercial thermoplastic polyurethane membranes modified with polyaniline: a comparative study
  publication-title: Mater. Res.
  doi: 10.1590/S1516-14392013005000068
– volume: 139
  start-page: 66
  year: 2018
  ident: 10.1016/j.watres.2019.05.059_bib59
  article-title: Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.03.069
– volume: 80
  start-page: 116
  issue: 1
  year: 2008
  ident: 10.1016/j.watres.2019.05.059_bib4
  article-title: Performance of nano-Co3O4/peroxymonosulfate system: kinetics and mechanism study using Acid Orange 7 as a model compound
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2007.11.009
– volume: 362
  start-page: 561
  year: 2019
  ident: 10.1016/j.watres.2019.05.059_bib46
  article-title: Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: insight into the electron transfer, radical oxidation and degradation pathways
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.053
– volume: 225
  start-page: 30
  year: 2018
  ident: 10.1016/j.watres.2019.05.059_bib3
  article-title: Bone char-derived metal-free N- and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.11.050
– volume: 351
  start-page: 361
  issue: 6271
  year: 2016
  ident: 10.1016/j.watres.2019.05.059_bib16
  article-title: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts
  publication-title: Science
  doi: 10.1126/science.aad0832
– volume: 52
  start-page: 5027
  issue: 9
  year: 2018
  ident: 10.1016/j.watres.2019.05.059_bib50
  article-title: Insight into multiple and multi-level structures of biochars and their potential environmental applications: a critical review
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b06487
– volume: 137
  start-page: 130
  year: 2018
  ident: 10.1016/j.watres.2019.05.059_bib37
  article-title: Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.03.012
– volume: 93
  start-page: 48
  year: 2016
  ident: 10.1016/j.watres.2019.05.059_bib6
  article-title: Impact of persulfate and ultraviolet light activated persulfate pre-oxidation on the formation of trihalomethanes, haloacetonitriles and halonitromethanes from the chlor(am)ination of three antibiotic chloramphenicols
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.02.013
– volume: 51
  start-page: 15249
  issue: 83
  year: 2015
  ident: 10.1016/j.watres.2019.05.059_bib8
  article-title: Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC05101K
– volume: 45
  start-page: 632
  issue: 2
  year: 2011
  ident: 10.1016/j.watres.2019.05.059_bib51
  article-title: Photosensitized degradation of amoxicillin in natural organic matter isolate solutions
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.08.024
– volume: 140
  start-page: 12469
  issue: 39
  year: 2018
  ident: 10.1016/j.watres.2019.05.059_bib24
  article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05992
– volume: 73
  start-page: 1540
  issue: 9
  year: 2008
  ident: 10.1016/j.watres.2019.05.059_bib25
  article-title: A rapid spectrophotometric determination of persulfate anion in ISCO
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.08.043
– volume: 5
  start-page: 2693
  issue: 3
  year: 2017
  ident: 10.1016/j.watres.2019.05.059_bib26
  article-title: N-doped graphene from metal–organic frameworks for catalytic oxidation of p-hydroxylbenzoic acid: N-functionality and mechanism
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b03035
– volume: 115
  start-page: 12251
  issue: 22
  year: 2015
  ident: 10.1016/j.watres.2019.05.059_bib28
  article-title: Development of biochar-based functional materials: toward a sustainable platform carbon material
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00195
– volume: 10
  start-page: 205
  issue: 2
  year: 1981
  ident: 10.1016/j.watres.2019.05.059_bib13
  article-title: Singlet molecular oxygen
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/cs9811000205
– volume: 28
  start-page: 1705295
  issue: 13
  year: 2018
  ident: 10.1016/j.watres.2019.05.059_bib40
  article-title: Identification and regulation of active sites on nanodiamonds: establishing a highly efficient catalytic system for oxidation of organic contaminants
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705295
– volume: 98
  start-page: 190
  year: 2016
  ident: 10.1016/j.watres.2019.05.059_bib48
  article-title: Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: influence factors and radical species
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.04.015
– volume: 41
  start-page: 4526
  issue: 19
  year: 2007
  ident: 10.1016/j.watres.2019.05.059_bib52
  article-title: Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.06.023
– volume: 49
  start-page: 5645
  issue: 9
  year: 2015
  ident: 10.1016/j.watres.2019.05.059_bib10
  article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5061512
– volume: 45
  start-page: 10020
  issue: 23
  year: 2011
  ident: 10.1016/j.watres.2019.05.059_bib32
  article-title: Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202487h
– volume: 332
  start-page: 398
  year: 2018
  ident: 10.1016/j.watres.2019.05.059_bib20
  article-title: Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.102
– volume: 148
  start-page: 416
  year: 2019
  ident: 10.1016/j.watres.2019.05.059_bib30
  article-title: Singlet oxygen-dominated non-radical oxidation process for efficient degradation of bisphenol A under high salinity condition
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.10.087
– volume: 72
  start-page: 349
  year: 2015
  ident: 10.1016/j.watres.2019.05.059_bib31
  article-title: Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.10.006
– volume: 96
  start-page: 7820
  issue: 25
  year: 2002
  ident: 10.1016/j.watres.2019.05.059_bib33
  article-title: Catalysis of peroxymonosulfate reactions by ketones
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00832a040
– volume: 311
  start-page: 163
  year: 2017
  ident: 10.1016/j.watres.2019.05.059_bib18
  article-title: Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.11.085
– volume: 39
  start-page: 3630
  issue: 10
  year: 2005
  ident: 10.1016/j.watres.2019.05.059_bib2
  article-title: Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups:  identification of an SO2 extrusion photoproduct
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048331p
– volume: 99
  start-page: 24
  year: 2016
  ident: 10.1016/j.watres.2019.05.059_bib11
  article-title: Stability of 5,5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.04.053
– volume: 337
  start-page: 40
  year: 2018
  ident: 10.1016/j.watres.2019.05.059_bib15
  article-title: Oxidation of bromophenols by carbon nanotube activated peroxymonosulfate (PMS) and formation of brominated products: comparison to peroxydisulfate (PDS)
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.12.083
– volume: 24
  start-page: 317
  issue: 4
  year: 2010
  ident: 10.1016/j.watres.2019.05.059_bib39
  article-title: Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-010-9333-9
– volume: 5
  start-page: 553
  issue: 2
  year: 2015
  ident: 10.1016/j.watres.2019.05.059_bib9
  article-title: N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation
  publication-title: ACS Catal.
  doi: 10.1021/cs5017613
– volume: 181
  start-page: 810
  year: 2016
  ident: 10.1016/j.watres.2019.05.059_bib53
  article-title: The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.08.049
– volume: 61
  start-page: 191
  issue: SEP
  year: 1985
  ident: 10.1016/j.watres.2019.05.059_bib36
  article-title: Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.8561191
– volume: 77
  start-page: 64
  year: 2014
  ident: 10.1016/j.watres.2019.05.059_bib34
  article-title: Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: the misleading role of electron transfer
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2014.08.020
– volume: 8
  start-page: 1802042
  issue: 30
  year: 2018
  ident: 10.1016/j.watres.2019.05.059_bib29
  article-title: Edge-nitrogen-rich carbon dots pillared graphene blocks with ultrahigh volumetric/gravimetric capacities and ultralong life for sodium-ion storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802042
– volume: 2
  start-page: 884
  issue: 7
  year: 2012
  ident: 10.1016/j.watres.2019.05.059_bib27
  article-title: Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200038
– volume: 49
  start-page: 12941
  issue: 21
  year: 2015
  ident: 10.1016/j.watres.2019.05.059_bib57
  article-title: Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03595
– volume: 154–155
  start-page: 134
  year: 2014
  ident: 10.1016/j.watres.2019.05.059_bib44
  article-title: Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2014.02.012
– volume: 52
  start-page: 7032
  issue: 12
  year: 2018
  ident: 10.1016/j.watres.2019.05.059_bib55
  article-title: Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00959
– volume: 49
  start-page: 9914
  issue: 85
  year: 2013
  ident: 10.1016/j.watres.2019.05.059_bib43
  article-title: Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43401j
– volume: 27
  start-page: 227
  year: 2000
  ident: 10.1016/j.watres.2019.05.059_bib38
  article-title: Carbon materials as adsorbents in aqueous solutions
  publication-title: Chem. Phys. Carbon
– volume: 52
  start-page: 8649
  issue: 15
  year: 2018
  ident: 10.1016/j.watres.2019.05.059_bib58
  article-title: Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01817
– volume: 100
  start-page: 678
  year: 2016
  ident: 10.1016/j.watres.2019.05.059_bib42
  article-title: Structural analysis of char by Raman spectroscopy: improving band assignments through computational calculations from first principles
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.01.031
– volume: 357
  start-page: 589
  year: 2019
  ident: 10.1016/j.watres.2019.05.059_bib54
  article-title: Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.184
– volume: 266
  start-page: 28
  year: 2015
  ident: 10.1016/j.watres.2019.05.059_bib23
  article-title: Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.12.065
– volume: 330
  start-page: 44
  year: 2017
  ident: 10.1016/j.watres.2019.05.059_bib45
  article-title: Chemistry of persulfates in water and wastewater treatment: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.132
– volume: 145
  start-page: 650
  year: 2018
  ident: 10.1016/j.watres.2019.05.059_bib49
  article-title: Upgrading liquor-making wastewater into medium chain fatty acid: insights into co-electron donors, key microflora, and energy harvest
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.08.046
– volume: 113
  start-page: 80
  year: 2017
  ident: 10.1016/j.watres.2019.05.059_bib5
  article-title: Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.02.016
– volume: 51
  start-page: 10718
  issue: 18
  year: 2017
  ident: 10.1016/j.watres.2019.05.059_bib14
  article-title: Oxidation kinetics of bromophenols by nonradical activation of peroxydisulfate in the presence of carbon nanotube and formation of brominated polymeric products
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02271
– volume: 154–155
  start-page: 36
  year: 2014
  ident: 10.1016/j.watres.2019.05.059_bib17
  article-title: Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2014.02.005
– volume: 52
  start-page: 14371
  issue: 24
  year: 2018
  ident: 10.1016/j.watres.2019.05.059_bib12
  article-title: Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b05246
SSID ssj0002239
Score 2.715691
Snippet N-doped biochars (NBCs) were prepared by pyrolyzing corncob biomass and urea in different proportion which manifested superior catalytic performance of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 405
SubjectTerms anions
aquatic environment
Biochar
biomass
catalytic activity
corn cobs
density functional theory
electrochemistry
electron paramagnetic resonance spectroscopy
Electron transfer
monitoring
nitrogen
Nitrogen-doping
oxidants
Peroxydisulfate
Singlet oxygen
Sulfadiazine
urea
Title Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism
URI https://dx.doi.org/10.1016/j.watres.2019.05.059
https://www.ncbi.nlm.nih.gov/pubmed/31163316
https://www.proquest.com/docview/2245644241
https://www.proquest.com/docview/2271804063
Volume 160
WOSCitedRecordID wos000474327700040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2448
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002239
  issn: 0043-1354
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jQd4QFxHuUxBQrxUmXKPzVuFOgaqCkid6FvkW9ZUJe26phRe-eMcJ7ZbqMbGA1UVVY7tRj5fjo_tc76D0Cuee3mQB8JlQUJd0H7cxYwGLsFhLrg6e6KsTjaRDgZ4NCKfWq2fJhZmNU3LEq_XZP5fRQ1lIGwVOvsP4radQgH8BqHDFcQO1xsJvifOpQsv6mIGVagyKFkxU8FVDbt3TRmhHAAUQ_j6uyguq2kO1WpWjZX19eiWHZMhR6WRAONWLjpfpYoTNqSDE5NARvEsatKgcU1fum485u0ewxe9KX1a0R9ji6R3Vb1NCzcvtjDaL6rmHKQ8H9PC9lAXfi5U0LGuq7cq_I0vllW_ig81bFijrfpNvM78GOxGN_KjLVUaefHWrKzv7Sj8Zu9hcvyNqtAa5apHaiZWTTP-G7_24GN2ctbvZ8PeaPh6fuGq1GPqiF7nYdlDB0EaE1CNB933vdEHO6GDBUWMo4J6ehOBWbsJ7v7xVRbOVSuY2pIZ3kN39RLE6TbQuY9asnyA7mwRUz5EbAdEjgaRA6J1LIicP0DkbED0xumWjoGQYyDkWAg9QmcnveHbU1dn43B5SOKlGzAuEwnzKs69gOKEsABzKQiYfJxFMk5TQbmXslQIlTpE4jCEkeNYcswDlufhY7Rfzkr5BDmeCEX9CQSJcMII2OAeZT50IKggcRuFZgQzrqnqVcaUaWZ8EidZM-6ZGvfMi-FL2si1reYNVcs19VMjnEybm40ZmQG4rmn50sgyA22sjthoKWcVVFJ-BFEEZvHf6oA9CHNnErbRYQME-7yhD-uj0E-e3qD1M3R785I9R_vLRSVfoFt8tSwuF0doLx3hIw3lX36-xic
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge-nitrogenated+biochar+for+efficient+peroxydisulfate+activation%3A+An+electron+transfer+mechanism&rft.jtitle=Water+research+%28Oxford%29&rft.au=Wang%2C+Huazhe&rft.au=Guo%2C+Wanqian&rft.au=Liu%2C+Banghai&rft.au=Wu%2C+Qinglian&rft.date=2019-09-01&rft.issn=0043-1354&rft.volume=160+p.405-414&rft.spage=405&rft.epage=414&rft_id=info:doi/10.1016%2Fj.watres.2019.05.059&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon