Kernel bounds for disjoint cycles and disjoint paths

In this paper, we show that the problems Disjoint Cycles and Disjoint Paths do not have polynomial kernels, unless N P ⊆ c o N P / p o l y . Thus, these problems do not allow polynomial time preprocessing that results in instances whose size is bounded by a polynomial in the parameter at hand. We bu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 412; číslo 35; s. 4570 - 4578
Hlavní autoři: Bodlaender, Hans L., Thomassé, Stéphan, Yeo, Anders
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier B.V 12.08.2011
Elsevier
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we show that the problems Disjoint Cycles and Disjoint Paths do not have polynomial kernels, unless N P ⊆ c o N P / p o l y . Thus, these problems do not allow polynomial time preprocessing that results in instances whose size is bounded by a polynomial in the parameter at hand. We build upon recent results by Bodlaender et al. [6] and Fortnow and Santhanam [20], that show that NP-complete problems that are ‘or-compositional’ do not have polynomial kernels, unless N P ⊆ c o N P / p o l y . To this machinery, we add a notion of transformation, and obtain that Disjoint Cycles, and Disjoint Paths do not have polynomial kernels, unless N P ⊆ c o N P / p o l y . For the proof, we introduce a problem on strings, called Disjoint Factors, and first show that this problem has no polynomial kernel unless N P ⊆ c o N P / p o l y . We also show that the related Disjoint Cycles Packing problem has a kernel of size O ( k log k ) .
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2011.04.039