Identification of Gait Events in Healthy Subjects and With Parkinson's Disease Using Inertial Sensors: An Adaptive Unsupervised Learning Approach
Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer limitations for real-time implementations and in guaranteeing high performances when identifying events in subjects with gait impairments. Machine le...
Uloženo v:
| Vydáno v: | IEEE transactions on neural systems and rehabilitation engineering Ročník 28; číslo 12; s. 2933 - 2943 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1534-4320, 1558-0210, 1558-0210 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer limitations for real-time implementations and in guaranteeing high performances when identifying events in subjects with gait impairments. Machine learning algorithms offer a solution by enabling the training of different models to represent the gait patterns of different subjects. Here our aim is twofold: to remove the need for training stages using unsupervised learning, and to modify the parameters according to the changes within a walking trial using adaptive procedures. We developed two adaptive unsupervised algorithms for real-time detection of four gait events, using only signals from two single-IMU foot-mounted wearable devices. We evaluated the algorithms using data collected from five healthy adults and seven subjects with Parkinson's disease (PD) walking overground and on a treadmill. Both algorithms obtained high performance in terms of accuracy (F 1 -score ≥ 0.95 for both groups), and timing agreement using a force-sensitive resistors as reference (mean absolute differences of 66 ± 53 msec for the healthy group, and 58 ± 63 msec for the PD group). The proposed algorithms demonstrated the potential to learn optimal parameters for a particular participant and for detecting gait events without additional sensors, external labeling, or long training stages. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1534-4320 1558-0210 1558-0210 |
| DOI: | 10.1109/TNSRE.2020.3039999 |