Identification of Gait Events in Healthy Subjects and With Parkinson's Disease Using Inertial Sensors: An Adaptive Unsupervised Learning Approach

Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer limitations for real-time implementations and in guaranteeing high performances when identifying events in subjects with gait impairments. Machine le...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 12; pp. 2933 - 2943
Main Authors: Perez-Ibarra, Juan C., Siqueira, Adriano A. G., Krebs, Hermano I.
Format: Journal Article
Language:English
Published: United States IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1534-4320, 1558-0210, 1558-0210
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer limitations for real-time implementations and in guaranteeing high performances when identifying events in subjects with gait impairments. Machine learning algorithms offer a solution by enabling the training of different models to represent the gait patterns of different subjects. Here our aim is twofold: to remove the need for training stages using unsupervised learning, and to modify the parameters according to the changes within a walking trial using adaptive procedures. We developed two adaptive unsupervised algorithms for real-time detection of four gait events, using only signals from two single-IMU foot-mounted wearable devices. We evaluated the algorithms using data collected from five healthy adults and seven subjects with Parkinson's disease (PD) walking overground and on a treadmill. Both algorithms obtained high performance in terms of accuracy (F 1 -score ≥ 0.95 for both groups), and timing agreement using a force-sensitive resistors as reference (mean absolute differences of 66 ± 53 msec for the healthy group, and 58 ± 63 msec for the PD group). The proposed algorithms demonstrated the potential to learn optimal parameters for a particular participant and for detecting gait events without additional sensors, external labeling, or long training stages.
AbstractList Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer limitations for real-time implementations and in guaranteeing high performances when identifying events in subjects with gait impairments. Machine learning algorithms offer a solution by enabling the training of different models to represent the gait patterns of different subjects. Here our aim is twofold: to remove the need for training stages using unsupervised learning, and to modify the parameters according to the changes within a walking trial using adaptive procedures. We developed two adaptive unsupervised algorithms for real-time detection of four gait events, using only signals from two single-IMU foot-mounted wearable devices. We evaluated the algorithms using data collected from five healthy adults and seven subjects with Parkinson’s disease (PD) walking overground and on a treadmill. Both algorithms obtained high performance in terms of accuracy ([Formula Omitted]-score ≥ 0.95 for both groups), and timing agreement using a force-sensitive resistors as reference (mean absolute differences of 66 ± 53 msec for the healthy group, and 58 ± 63 msec for the PD group). The proposed algorithms demonstrated the potential to learn optimal parameters for a particular participant and for detecting gait events without additional sensors, external labeling, or long training stages.
Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer limitations for real-time implementations and in guaranteeing high performances when identifying events in subjects with gait impairments. Machine learning algorithms offer a solution by enabling the training of different models to represent the gait patterns of different subjects. Here our aim is twofold: to remove the need for training stages using unsupervised learning, and to modify the parameters according to the changes within a walking trial using adaptive procedures. We developed two adaptive unsupervised algorithms for real-time detection of four gait events, using only signals from two single-IMU foot-mounted wearable devices. We evaluated the algorithms using data collected from five healthy adults and seven subjects with Parkinson's disease (PD) walking overground and on a treadmill. Both algorithms obtained high performance in terms of accuracy ( F1 -score ≥ 0.95 for both groups), and timing agreement using a force-sensitive resistors as reference (mean absolute differences of 66 ± 53 msec for the healthy group, and 58 ± 63 msec for the PD group). The proposed algorithms demonstrated the potential to learn optimal parameters for a particular participant and for detecting gait events without additional sensors, external labeling, or long training stages.Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer limitations for real-time implementations and in guaranteeing high performances when identifying events in subjects with gait impairments. Machine learning algorithms offer a solution by enabling the training of different models to represent the gait patterns of different subjects. Here our aim is twofold: to remove the need for training stages using unsupervised learning, and to modify the parameters according to the changes within a walking trial using adaptive procedures. We developed two adaptive unsupervised algorithms for real-time detection of four gait events, using only signals from two single-IMU foot-mounted wearable devices. We evaluated the algorithms using data collected from five healthy adults and seven subjects with Parkinson's disease (PD) walking overground and on a treadmill. Both algorithms obtained high performance in terms of accuracy ( F1 -score ≥ 0.95 for both groups), and timing agreement using a force-sensitive resistors as reference (mean absolute differences of 66 ± 53 msec for the healthy group, and 58 ± 63 msec for the PD group). The proposed algorithms demonstrated the potential to learn optimal parameters for a particular participant and for detecting gait events without additional sensors, external labeling, or long training stages.
Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer limitations for real-time implementations and in guaranteeing high performances when identifying events in subjects with gait impairments. Machine learning algorithms offer a solution by enabling the training of different models to represent the gait patterns of different subjects. Here our aim is twofold: to remove the need for training stages using unsupervised learning, and to modify the parameters according to the changes within a walking trial using adaptive procedures. We developed two adaptive unsupervised algorithms for real-time detection of four gait events, using only signals from two single-IMU foot-mounted wearable devices. We evaluated the algorithms using data collected from five healthy adults and seven subjects with Parkinson's disease (PD) walking overground and on a treadmill. Both algorithms obtained high performance in terms of accuracy ( F -score ≥ 0.95 for both groups), and timing agreement using a force-sensitive resistors as reference (mean absolute differences of 66 ± 53 msec for the healthy group, and 58 ± 63 msec for the PD group). The proposed algorithms demonstrated the potential to learn optimal parameters for a particular participant and for detecting gait events without additional sensors, external labeling, or long training stages.
Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer limitations for real-time implementations and in guaranteeing high performances when identifying events in subjects with gait impairments. Machine learning algorithms offer a solution by enabling the training of different models to represent the gait patterns of different subjects. Here our aim is twofold: to remove the need for training stages using unsupervised learning, and to modify the parameters according to the changes within a walking trial using adaptive procedures. We developed two adaptive unsupervised algorithms for real-time detection of four gait events, using only signals from two single-IMU foot-mounted wearable devices. We evaluated the algorithms using data collected from five healthy adults and seven subjects with Parkinson's disease (PD) walking overground and on a treadmill. Both algorithms obtained high performance in terms of accuracy (F 1 -score ≥ 0.95 for both groups), and timing agreement using a force-sensitive resistors as reference (mean absolute differences of 66 ± 53 msec for the healthy group, and 58 ± 63 msec for the PD group). The proposed algorithms demonstrated the potential to learn optimal parameters for a particular participant and for detecting gait events without additional sensors, external labeling, or long training stages.
Author Siqueira, Adriano A. G.
Perez-Ibarra, Juan C.
Krebs, Hermano I.
Author_xml – sequence: 1
  givenname: Juan C.
  orcidid: 0000-0003-4519-979X
  surname: Perez-Ibarra
  fullname: Perez-Ibarra, Juan C.
  email: jcperezibarra@sc.usp.br
  organization: Department of Mechanical Engineering, University of São Paulo, São Carlos, Brazil
– sequence: 2
  givenname: Adriano A. G.
  orcidid: 0000-0003-0663-156X
  surname: Siqueira
  fullname: Siqueira, Adriano A. G.
  email: siqueira@sc.usp.br
  organization: Department of Mechanical Engineering, University of São Paulo, São Carlos, Brazil
– sequence: 3
  givenname: Hermano I.
  surname: Krebs
  fullname: Krebs, Hermano I.
  email: hikrebs@mit.edu
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33237863$$D View this record in MEDLINE/PubMed
BookMark eNp9kd9u2yAUh9HUav23F9ikCWkX241TDAbj3kVd1kaKtmlptUuE8fFC5mAPcKQ-xt54pEl70YtxAzp83wGd3xk6cr0DhN7mZJLnpLq8-7r8MZtQQsmEEVal9Qqd5pzLjNCcHO3OrMgKRskJOgthTUheCl6-RieMUVZKwU7R33kDLtrWGh1t73Df4httI55tUzlg6_At6C6uHvByrNdgUk27Bv-0cYW_a__butC7jwF_tgF0AHwfrPuF5w58tLrDS0j3PlzhqcPTRg_RbhPjwjiA3yalwQvQ3u2c6TD4XpvVBTpudRfgzWE_R_dfZnfXt9ni2838errIDKt4zHItjGCFZnUpa6il4KaoSaMr0wjZFJoKIMA1423Na0IYiFbKJl1WzDBoCTtHn_Z907N_RghRbWww0HXaQT8GRQtRCMJ5mSf0wwt03Y_epd8lSjKaRi6KRL0_UGO9gUYN3m60f1BPw06A3APG9yF4aJWx8XHs0WvbqZyoXa7qMVe1y1Udck0qfaE-df-v9G4vWQB4FioqqkqW7B_dOq_W
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_dsp_2023_104362
crossref_primary_10_1109_JSEN_2024_3352005
crossref_primary_10_1038_s41598_025_93166_3
crossref_primary_10_1109_TNSRE_2023_3291359
crossref_primary_10_1109_TNSRE_2024_3407887
crossref_primary_10_3390_healthcare10071210
crossref_primary_10_3389_fnagi_2025_1626247
crossref_primary_10_3390_electronics12204319
crossref_primary_10_1007_s41870_024_02099_z
crossref_primary_10_1016_j_eswa_2022_117306
crossref_primary_10_1016_j_neucom_2025_129533
crossref_primary_10_1109_JIOT_2023_3313158
crossref_primary_10_1145_3648469
crossref_primary_10_1109_JSEN_2023_3262446
Cites_doi 10.1109/ACC.2016.7525611
10.1109/JSEN.2019.2951923
10.3390/s16010066
10.1109/LRA.2018.2885165
10.1109/EMBC.2015.7319558
10.1016/j.gaitpost.2005.12.017
10.1109/TRO.2009.2019783
10.1109/BSN.2014.22
10.1109/BIOROB.2018.8487694
10.1109/TNSRE.2016.2636367
10.1016/j.medengphy.2009.10.014
10.1007/s41315-017-0042-6
10.1371/journal.pone.0073152
10.3390/s16010134
10.1109/JBHI.2013.2293887
10.1016/j.conengprac.2015.11.007
10.1016/j.jbiomech.2017.02.016
10.3390/s19132988
10.3390/s19214804
10.3390/s19112517
10.1109/ACCESS.2016.2633304
10.3390/s19112471
10.1109/ICRA.2013.6630869
10.1109/JSEN.2018.2889970
10.1109/TNSRE.2014.2337914
10.1109/TNSRE.2018.2868094
10.1109/JSEN.2020.3011627
10.3390/s20123399
10.3390/s150924514
10.3390/s20143972
10.3390/s16101634
10.1186/1743-0003-12-1
10.1109/JSEN.2018.2871328
10.1016/j.gaitpost.2017.06.019
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2020.3039999
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 2943
ExternalDocumentID 33237863
10_1109_TNSRE_2020_3039999
9269987
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) under Finance Code 001
  grantid: PDSE-88881.133763/2016-01
  funderid: 10.13039/501100002322
– fundername: São Paulo Research Foundation (FAPESP)
  grantid: 2013/14756-0; 2015/50376-2 (FAPESP-MIT)
  funderid: 10.13039/501100001807
– fundername: MIT International Science and Technology Initiatives (MISTI) MIT-Brazil Program
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c395t-1a6c634a3b78beb865c4b0da9cd68d4a26e0e5a35fb5b003e6f88dcd693c3ef03
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000613615700034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1534-4320
1558-0210
IngestDate Thu Jul 10 22:32:39 EDT 2025
Fri Jul 25 03:16:01 EDT 2025
Thu Apr 03 06:56:16 EDT 2025
Tue Nov 18 22:12:50 EST 2025
Sat Nov 29 01:47:11 EST 2025
Wed Aug 27 02:51:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-1a6c634a3b78beb865c4b0da9cd68d4a26e0e5a35fb5b003e6f88dcd693c3ef03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4519-979X
0000-0003-0663-156X
OpenAccessLink http://dx.doi.org/10.1109/TNSRE.2020.3039999
PMID 33237863
PQID 2483255864
PQPubID 85423
PageCount 11
ParticipantIDs ieee_primary_9269987
proquest_miscellaneous_2464605571
proquest_journals_2483255864
crossref_citationtrail_10_1109_TNSRE_2020_3039999
crossref_primary_10_1109_TNSRE_2020_3039999
pubmed_primary_33237863
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref17
ref16
ref19
ref18
ref24
ref23
los amigos (ref1) 2001
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref30
  doi: 10.1109/ACC.2016.7525611
– ident: ref26
  doi: 10.1109/JSEN.2019.2951923
– ident: ref11
  doi: 10.3390/s16010066
– ident: ref7
  doi: 10.1109/LRA.2018.2885165
– ident: ref21
  doi: 10.1109/EMBC.2015.7319558
– ident: ref16
  doi: 10.1016/j.gaitpost.2005.12.017
– ident: ref35
  doi: 10.1109/TRO.2009.2019783
– ident: ref24
  doi: 10.1109/BSN.2014.22
– ident: ref25
  doi: 10.1109/BIOROB.2018.8487694
– ident: ref14
  doi: 10.1109/TNSRE.2016.2636367
– ident: ref15
  doi: 10.1016/j.medengphy.2009.10.014
– ident: ref4
  doi: 10.1007/s41315-017-0042-6
– ident: ref20
  doi: 10.1371/journal.pone.0073152
– ident: ref2
  doi: 10.3390/s16010134
– ident: ref23
  doi: 10.1109/JBHI.2013.2293887
– ident: ref28
  doi: 10.1016/j.conengprac.2015.11.007
– year: 2001
  ident: ref1
  publication-title: Observational Gait Analysis
– ident: ref17
  doi: 10.1016/j.jbiomech.2017.02.016
– ident: ref9
  doi: 10.3390/s19132988
– ident: ref10
  doi: 10.3390/s19214804
– ident: ref27
  doi: 10.3390/s19112517
– ident: ref19
  doi: 10.1109/ACCESS.2016.2633304
– ident: ref3
  doi: 10.3390/s19112471
– ident: ref8
  doi: 10.1109/ICRA.2013.6630869
– ident: ref34
  doi: 10.1109/JSEN.2018.2889970
– ident: ref29
  doi: 10.1109/TNSRE.2014.2337914
– ident: ref32
  doi: 10.1109/TNSRE.2018.2868094
– ident: ref33
  doi: 10.1109/JSEN.2020.3011627
– ident: ref5
  doi: 10.3390/s20123399
– ident: ref22
  doi: 10.3390/s150924514
– ident: ref13
  doi: 10.3390/s20143972
– ident: ref31
  doi: 10.3390/s16101634
– ident: ref6
  doi: 10.1186/1743-0003-12-1
– ident: ref18
  doi: 10.1109/JSEN.2018.2871328
– ident: ref12
  doi: 10.1016/j.gaitpost.2017.06.019
SSID ssj0017657
Score 2.4420528
Snippet Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2933
SubjectTerms Adaptive algorithms
Algorithms
Automatic control
Foot
Gait
Gait analysis
hidden Markov model
Hidden Markov models
human biomechanics
Inertial sensing devices
Learning algorithms
Legged locomotion
Machine learning
Mechanical engineering
Movement disorders
Neurodegenerative diseases
Parameter modification
Parkinson's disease
Pathology
Real time
Real-time systems
Resistors
robotic rehabilitation
Sensors
Training
Treadmills
Unsupervised learning
Walking
wearable sensors
Wearable technology
Title Identification of Gait Events in Healthy Subjects and With Parkinson's Disease Using Inertial Sensors: An Adaptive Unsupervised Learning Approach
URI https://ieeexplore.ieee.org/document/9269987
https://www.ncbi.nlm.nih.gov/pubmed/33237863
https://www.proquest.com/docview/2483255864
https://www.proquest.com/docview/2464605571
Volume 28
WOSCitedRecordID wos000613615700034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFH5qKw5cKFCWQKkeEssBQp14DbcRTIHLCLVTMbfIsR0YqUpGkxkkfgb_GNvJRFQCJG6R7MRW3mK_7XsAz4iqCJWuThWtuDdQrE2VIzplWgvpuNRWk9hsQs5marEoPu_B67EWxjkXk8_cm_AYY_m2NdvgKjstcuGtA7kP-1KKvlZrjBhIEVE9vQCzlNGc7ApkSHE6n12cT70pmHsLlfgDuQhQoZTmVCpBr51HscHK3--a8cw5O_y_3d6GW8PdEic9M9yBPdfchee_4wjjvAcRwBd4fg2i-wh-9iW79eDDw7bGD3q5wWlIiOxw2WBfsfQDva4JzpsOdWPxy3LzDUPpdKwie9nh-z7igzEXAT81IW_bL3zhzeV23b3FSYMTq1dBy-Jl021XQVl1zuKA9PoVJwPM-T24PJvO331Mh34NqaEF36SZFkZQpmklVeUqJbhhFbG6MFYoy3QuHHFcU15XPGgTJ2qlrB8sqKGuJvQ-HDRt4x4Cyjrz5q3mmdYZq7XQxDhGSW6lIZWzPIFsR7XSDH8q9NS4KqNRQ4oyEr0MRC8Hoifwanxn1UN5_HP2USDpOHOgZgLHO-YoB2nvypx5vci5EiyBp-Owl9MQfNGNa7dhjgghaC6zBB70TDV-e8eLj_685mO4GXbWJ9Ecw8FmvXVP4Ib5vll26xMvDAt1EoXhFxDZBys
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFH4qBQkubGUJFHhILAcIdeI13EYwpRVlhNqp2lvkxA6MhJLRJIPEz-AfYzuZiEqAxC2SndjKW-y3fQ_gGVEFodJWsaIFdwaKMbGyRMdMayEtl9poEppNyNlMnZ9nn7fg9VgLY60NyWf2jX8MsXzTlGvvKtvLUuGsA3kJLnPGUtJXa40xAykCrqcTYRYzmpJNiQzJ9uazk-OpMwZTZ6MSdyRnHiyU0pRKJeiFEym0WPn7bTOcOvs3_m-_N-H6cLvESc8Ot2DL1rfh-e9IwjjvYQTwBR5fAOnegZ990W41ePGwqfCDXnQ49SmRLS5q7GuWfqDTNt5906KuDZ4tuq_oi6dDHdnLFt_3MR8M2Qh4WPvMbbfwiTOYm1X7Fic1Toxeej2Lp3W7Xnp11VqDA9brF5wMQOd34HR_On93EA8dG-KSZryLEy1KQZmmhVSFLZTgJSuI0VlphDJMp8ISyzXlVcG9PrGiUsq4wYyW1FaE3oXtuqntfUBZJc7A1TzROmGVFpqUllGSGlmSwhoeQbKhWl4Of8p31fiWB7OGZHkgeu6Jng9Ej-DV-M6yB_P45-wdT9Jx5kDNCHY3zJEP8t7mKXOakXMlWARPx2EnqT78omvbrP0c4YPQXCYR3OuZavz2hhcf_HnNJ3D1YP7pKD86nH18CNf8LvuUml3Y7lZr-wiulN-7Rbt6HETiF6mWCYo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Gait+Events+in+Healthy+Subjects+and+With+Parkinson%27s+Disease+Using+Inertial+Sensors%3A+An+Adaptive+Unsupervised+Learning+Approach&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Perez-Ibarra%2C+Juan+C&rft.au=Siqueira%2C+Adriano+A+G&rft.au=Krebs%2C+Hermano+I&rft.date=2020-12-01&rft.issn=1558-0210&rft.eissn=1558-0210&rft.volume=28&rft.issue=12&rft.spage=2933&rft_id=info:doi/10.1109%2FTNSRE.2020.3039999&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon