Identification of Gait Events in Healthy Subjects and With Parkinson's Disease Using Inertial Sensors: An Adaptive Unsupervised Learning Approach
Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer limitations for real-time implementations and in guaranteeing high performances when identifying events in subjects with gait impairments. Machine le...
Saved in:
| Published in: | IEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 12; pp. 2933 - 2943 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1534-4320, 1558-0210, 1558-0210 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer limitations for real-time implementations and in guaranteeing high performances when identifying events in subjects with gait impairments. Machine learning algorithms offer a solution by enabling the training of different models to represent the gait patterns of different subjects. Here our aim is twofold: to remove the need for training stages using unsupervised learning, and to modify the parameters according to the changes within a walking trial using adaptive procedures. We developed two adaptive unsupervised algorithms for real-time detection of four gait events, using only signals from two single-IMU foot-mounted wearable devices. We evaluated the algorithms using data collected from five healthy adults and seven subjects with Parkinson's disease (PD) walking overground and on a treadmill. Both algorithms obtained high performance in terms of accuracy (F 1 -score ≥ 0.95 for both groups), and timing agreement using a force-sensitive resistors as reference (mean absolute differences of 66 ± 53 msec for the healthy group, and 58 ± 63 msec for the PD group). The proposed algorithms demonstrated the potential to learn optimal parameters for a particular participant and for detecting gait events without additional sensors, external labeling, or long training stages. |
|---|---|
| AbstractList | Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer limitations for real-time implementations and in guaranteeing high performances when identifying events in subjects with gait impairments. Machine learning algorithms offer a solution by enabling the training of different models to represent the gait patterns of different subjects. Here our aim is twofold: to remove the need for training stages using unsupervised learning, and to modify the parameters according to the changes within a walking trial using adaptive procedures. We developed two adaptive unsupervised algorithms for real-time detection of four gait events, using only signals from two single-IMU foot-mounted wearable devices. We evaluated the algorithms using data collected from five healthy adults and seven subjects with Parkinson’s disease (PD) walking overground and on a treadmill. Both algorithms obtained high performance in terms of accuracy ([Formula Omitted]-score ≥ 0.95 for both groups), and timing agreement using a force-sensitive resistors as reference (mean absolute differences of 66 ± 53 msec for the healthy group, and 58 ± 63 msec for the PD group). The proposed algorithms demonstrated the potential to learn optimal parameters for a particular participant and for detecting gait events without additional sensors, external labeling, or long training stages. Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer limitations for real-time implementations and in guaranteeing high performances when identifying events in subjects with gait impairments. Machine learning algorithms offer a solution by enabling the training of different models to represent the gait patterns of different subjects. Here our aim is twofold: to remove the need for training stages using unsupervised learning, and to modify the parameters according to the changes within a walking trial using adaptive procedures. We developed two adaptive unsupervised algorithms for real-time detection of four gait events, using only signals from two single-IMU foot-mounted wearable devices. We evaluated the algorithms using data collected from five healthy adults and seven subjects with Parkinson's disease (PD) walking overground and on a treadmill. Both algorithms obtained high performance in terms of accuracy ( F1 -score ≥ 0.95 for both groups), and timing agreement using a force-sensitive resistors as reference (mean absolute differences of 66 ± 53 msec for the healthy group, and 58 ± 63 msec for the PD group). The proposed algorithms demonstrated the potential to learn optimal parameters for a particular participant and for detecting gait events without additional sensors, external labeling, or long training stages.Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer limitations for real-time implementations and in guaranteeing high performances when identifying events in subjects with gait impairments. Machine learning algorithms offer a solution by enabling the training of different models to represent the gait patterns of different subjects. Here our aim is twofold: to remove the need for training stages using unsupervised learning, and to modify the parameters according to the changes within a walking trial using adaptive procedures. We developed two adaptive unsupervised algorithms for real-time detection of four gait events, using only signals from two single-IMU foot-mounted wearable devices. We evaluated the algorithms using data collected from five healthy adults and seven subjects with Parkinson's disease (PD) walking overground and on a treadmill. Both algorithms obtained high performance in terms of accuracy ( F1 -score ≥ 0.95 for both groups), and timing agreement using a force-sensitive resistors as reference (mean absolute differences of 66 ± 53 msec for the healthy group, and 58 ± 63 msec for the PD group). The proposed algorithms demonstrated the potential to learn optimal parameters for a particular participant and for detecting gait events without additional sensors, external labeling, or long training stages. Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer limitations for real-time implementations and in guaranteeing high performances when identifying events in subjects with gait impairments. Machine learning algorithms offer a solution by enabling the training of different models to represent the gait patterns of different subjects. Here our aim is twofold: to remove the need for training stages using unsupervised learning, and to modify the parameters according to the changes within a walking trial using adaptive procedures. We developed two adaptive unsupervised algorithms for real-time detection of four gait events, using only signals from two single-IMU foot-mounted wearable devices. We evaluated the algorithms using data collected from five healthy adults and seven subjects with Parkinson's disease (PD) walking overground and on a treadmill. Both algorithms obtained high performance in terms of accuracy ( F -score ≥ 0.95 for both groups), and timing agreement using a force-sensitive resistors as reference (mean absolute differences of 66 ± 53 msec for the healthy group, and 58 ± 63 msec for the PD group). The proposed algorithms demonstrated the potential to learn optimal parameters for a particular participant and for detecting gait events without additional sensors, external labeling, or long training stages. Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer limitations for real-time implementations and in guaranteeing high performances when identifying events in subjects with gait impairments. Machine learning algorithms offer a solution by enabling the training of different models to represent the gait patterns of different subjects. Here our aim is twofold: to remove the need for training stages using unsupervised learning, and to modify the parameters according to the changes within a walking trial using adaptive procedures. We developed two adaptive unsupervised algorithms for real-time detection of four gait events, using only signals from two single-IMU foot-mounted wearable devices. We evaluated the algorithms using data collected from five healthy adults and seven subjects with Parkinson's disease (PD) walking overground and on a treadmill. Both algorithms obtained high performance in terms of accuracy (F 1 -score ≥ 0.95 for both groups), and timing agreement using a force-sensitive resistors as reference (mean absolute differences of 66 ± 53 msec for the healthy group, and 58 ± 63 msec for the PD group). The proposed algorithms demonstrated the potential to learn optimal parameters for a particular participant and for detecting gait events without additional sensors, external labeling, or long training stages. |
| Author | Siqueira, Adriano A. G. Perez-Ibarra, Juan C. Krebs, Hermano I. |
| Author_xml | – sequence: 1 givenname: Juan C. orcidid: 0000-0003-4519-979X surname: Perez-Ibarra fullname: Perez-Ibarra, Juan C. email: jcperezibarra@sc.usp.br organization: Department of Mechanical Engineering, University of São Paulo, São Carlos, Brazil – sequence: 2 givenname: Adriano A. G. orcidid: 0000-0003-0663-156X surname: Siqueira fullname: Siqueira, Adriano A. G. email: siqueira@sc.usp.br organization: Department of Mechanical Engineering, University of São Paulo, São Carlos, Brazil – sequence: 3 givenname: Hermano I. surname: Krebs fullname: Krebs, Hermano I. email: hikrebs@mit.edu organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33237863$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kd9u2yAUh9HUav23F9ikCWkX241TDAbj3kVd1kaKtmlptUuE8fFC5mAPcKQ-xt54pEl70YtxAzp83wGd3xk6cr0DhN7mZJLnpLq8-7r8MZtQQsmEEVal9Qqd5pzLjNCcHO3OrMgKRskJOgthTUheCl6-RieMUVZKwU7R33kDLtrWGh1t73Df4httI55tUzlg6_At6C6uHvByrNdgUk27Bv-0cYW_a__butC7jwF_tgF0AHwfrPuF5w58tLrDS0j3PlzhqcPTRg_RbhPjwjiA3yalwQvQ3u2c6TD4XpvVBTpudRfgzWE_R_dfZnfXt9ni2838errIDKt4zHItjGCFZnUpa6il4KaoSaMr0wjZFJoKIMA1423Na0IYiFbKJl1WzDBoCTtHn_Z907N_RghRbWww0HXaQT8GRQtRCMJ5mSf0wwt03Y_epd8lSjKaRi6KRL0_UGO9gUYN3m60f1BPw06A3APG9yF4aJWx8XHs0WvbqZyoXa7qMVe1y1Udck0qfaE-df-v9G4vWQB4FioqqkqW7B_dOq_W |
| CODEN | ITNSB3 |
| CitedBy_id | crossref_primary_10_1016_j_dsp_2023_104362 crossref_primary_10_1109_JSEN_2024_3352005 crossref_primary_10_1038_s41598_025_93166_3 crossref_primary_10_1109_TNSRE_2023_3291359 crossref_primary_10_1109_TNSRE_2024_3407887 crossref_primary_10_3390_healthcare10071210 crossref_primary_10_3389_fnagi_2025_1626247 crossref_primary_10_3390_electronics12204319 crossref_primary_10_1007_s41870_024_02099_z crossref_primary_10_1016_j_eswa_2022_117306 crossref_primary_10_1016_j_neucom_2025_129533 crossref_primary_10_1109_JIOT_2023_3313158 crossref_primary_10_1145_3648469 crossref_primary_10_1109_JSEN_2023_3262446 |
| Cites_doi | 10.1109/ACC.2016.7525611 10.1109/JSEN.2019.2951923 10.3390/s16010066 10.1109/LRA.2018.2885165 10.1109/EMBC.2015.7319558 10.1016/j.gaitpost.2005.12.017 10.1109/TRO.2009.2019783 10.1109/BSN.2014.22 10.1109/BIOROB.2018.8487694 10.1109/TNSRE.2016.2636367 10.1016/j.medengphy.2009.10.014 10.1007/s41315-017-0042-6 10.1371/journal.pone.0073152 10.3390/s16010134 10.1109/JBHI.2013.2293887 10.1016/j.conengprac.2015.11.007 10.1016/j.jbiomech.2017.02.016 10.3390/s19132988 10.3390/s19214804 10.3390/s19112517 10.1109/ACCESS.2016.2633304 10.3390/s19112471 10.1109/ICRA.2013.6630869 10.1109/JSEN.2018.2889970 10.1109/TNSRE.2014.2337914 10.1109/TNSRE.2018.2868094 10.1109/JSEN.2020.3011627 10.3390/s20123399 10.3390/s150924514 10.3390/s20143972 10.3390/s16101634 10.1186/1743-0003-12-1 10.1109/JSEN.2018.2871328 10.1016/j.gaitpost.2017.06.019 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TNSRE.2020.3039999 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation |
| EISSN | 1558-0210 |
| EndPage | 2943 |
| ExternalDocumentID | 33237863 10_1109_TNSRE_2020_3039999 9269987 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) under Finance Code 001 grantid: PDSE-88881.133763/2016-01 funderid: 10.13039/501100002322 – fundername: São Paulo Research Foundation (FAPESP) grantid: 2013/14756-0; 2015/50376-2 (FAPESP-MIT) funderid: 10.13039/501100001807 – fundername: MIT International Science and Technology Initiatives (MISTI) MIT-Brazil Program |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c395t-1a6c634a3b78beb865c4b0da9cd68d4a26e0e5a35fb5b003e6f88dcd693c3ef03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000613615700034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1534-4320 1558-0210 |
| IngestDate | Thu Jul 10 22:32:39 EDT 2025 Fri Jul 25 03:16:01 EDT 2025 Thu Apr 03 06:56:16 EDT 2025 Tue Nov 18 22:12:50 EST 2025 Sat Nov 29 01:47:11 EST 2025 Wed Aug 27 02:51:14 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c395t-1a6c634a3b78beb865c4b0da9cd68d4a26e0e5a35fb5b003e6f88dcd693c3ef03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4519-979X 0000-0003-0663-156X |
| OpenAccessLink | http://dx.doi.org/10.1109/TNSRE.2020.3039999 |
| PMID | 33237863 |
| PQID | 2483255864 |
| PQPubID | 85423 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_9269987 proquest_miscellaneous_2464605571 proquest_journals_2483255864 crossref_citationtrail_10_1109_TNSRE_2020_3039999 crossref_primary_10_1109_TNSRE_2020_3039999 pubmed_primary_33237863 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
| PublicationTitleAbbrev | TNSRE |
| PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref17 ref16 ref19 ref18 ref24 ref23 los amigos (ref1) 2001 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref30 doi: 10.1109/ACC.2016.7525611 – ident: ref26 doi: 10.1109/JSEN.2019.2951923 – ident: ref11 doi: 10.3390/s16010066 – ident: ref7 doi: 10.1109/LRA.2018.2885165 – ident: ref21 doi: 10.1109/EMBC.2015.7319558 – ident: ref16 doi: 10.1016/j.gaitpost.2005.12.017 – ident: ref35 doi: 10.1109/TRO.2009.2019783 – ident: ref24 doi: 10.1109/BSN.2014.22 – ident: ref25 doi: 10.1109/BIOROB.2018.8487694 – ident: ref14 doi: 10.1109/TNSRE.2016.2636367 – ident: ref15 doi: 10.1016/j.medengphy.2009.10.014 – ident: ref4 doi: 10.1007/s41315-017-0042-6 – ident: ref20 doi: 10.1371/journal.pone.0073152 – ident: ref2 doi: 10.3390/s16010134 – ident: ref23 doi: 10.1109/JBHI.2013.2293887 – ident: ref28 doi: 10.1016/j.conengprac.2015.11.007 – year: 2001 ident: ref1 publication-title: Observational Gait Analysis – ident: ref17 doi: 10.1016/j.jbiomech.2017.02.016 – ident: ref9 doi: 10.3390/s19132988 – ident: ref10 doi: 10.3390/s19214804 – ident: ref27 doi: 10.3390/s19112517 – ident: ref19 doi: 10.1109/ACCESS.2016.2633304 – ident: ref3 doi: 10.3390/s19112471 – ident: ref8 doi: 10.1109/ICRA.2013.6630869 – ident: ref34 doi: 10.1109/JSEN.2018.2889970 – ident: ref29 doi: 10.1109/TNSRE.2014.2337914 – ident: ref32 doi: 10.1109/TNSRE.2018.2868094 – ident: ref33 doi: 10.1109/JSEN.2020.3011627 – ident: ref5 doi: 10.3390/s20123399 – ident: ref22 doi: 10.3390/s150924514 – ident: ref13 doi: 10.3390/s20143972 – ident: ref31 doi: 10.3390/s16101634 – ident: ref6 doi: 10.1186/1743-0003-12-1 – ident: ref18 doi: 10.1109/JSEN.2018.2871328 – ident: ref12 doi: 10.1016/j.gaitpost.2017.06.019 |
| SSID | ssj0017657 |
| Score | 2.4420528 |
| Snippet | Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2933 |
| SubjectTerms | Adaptive algorithms Algorithms Automatic control Foot Gait Gait analysis hidden Markov model Hidden Markov models human biomechanics Inertial sensing devices Learning algorithms Legged locomotion Machine learning Mechanical engineering Movement disorders Neurodegenerative diseases Parameter modification Parkinson's disease Pathology Real time Real-time systems Resistors robotic rehabilitation Sensors Training Treadmills Unsupervised learning Walking wearable sensors Wearable technology |
| Title | Identification of Gait Events in Healthy Subjects and With Parkinson's Disease Using Inertial Sensors: An Adaptive Unsupervised Learning Approach |
| URI | https://ieeexplore.ieee.org/document/9269987 https://www.ncbi.nlm.nih.gov/pubmed/33237863 https://www.proquest.com/docview/2483255864 https://www.proquest.com/docview/2464605571 |
| Volume | 28 |
| WOSCitedRecordID | wos000613615700034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1534-4320 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFH5qKw5cKFCWQKkeEssBQp14DbcRTIHLCLVTMbfIsR0YqUpGkxkkfgb_GNvJRFQCJG6R7MRW3mK_7XsAz4iqCJWuThWtuDdQrE2VIzplWgvpuNRWk9hsQs5marEoPu_B67EWxjkXk8_cm_AYY_m2NdvgKjstcuGtA7kP-1KKvlZrjBhIEVE9vQCzlNGc7ApkSHE6n12cT70pmHsLlfgDuQhQoZTmVCpBr51HscHK3--a8cw5O_y_3d6GW8PdEic9M9yBPdfchee_4wjjvAcRwBd4fg2i-wh-9iW79eDDw7bGD3q5wWlIiOxw2WBfsfQDva4JzpsOdWPxy3LzDUPpdKwie9nh-z7igzEXAT81IW_bL3zhzeV23b3FSYMTq1dBy-Jl021XQVl1zuKA9PoVJwPM-T24PJvO331Mh34NqaEF36SZFkZQpmklVeUqJbhhFbG6MFYoy3QuHHFcU15XPGgTJ2qlrB8sqKGuJvQ-HDRt4x4Cyjrz5q3mmdYZq7XQxDhGSW6lIZWzPIFsR7XSDH8q9NS4KqNRQ4oyEr0MRC8Hoifwanxn1UN5_HP2USDpOHOgZgLHO-YoB2nvypx5vci5EiyBp-Owl9MQfNGNa7dhjgghaC6zBB70TDV-e8eLj_685mO4GXbWJ9Ecw8FmvXVP4Ib5vll26xMvDAt1EoXhFxDZBys |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFH4qBQkubGUJFHhILAcIdeI13EYwpRVlhNqp2lvkxA6MhJLRJIPEz-AfYzuZiEqAxC2SndjKW-y3fQ_gGVEFodJWsaIFdwaKMbGyRMdMayEtl9poEppNyNlMnZ9nn7fg9VgLY60NyWf2jX8MsXzTlGvvKtvLUuGsA3kJLnPGUtJXa40xAykCrqcTYRYzmpJNiQzJ9uazk-OpMwZTZ6MSdyRnHiyU0pRKJeiFEym0WPn7bTOcOvs3_m-_N-H6cLvESc8Ot2DL1rfh-e9IwjjvYQTwBR5fAOnegZ990W41ePGwqfCDXnQ49SmRLS5q7GuWfqDTNt5906KuDZ4tuq_oi6dDHdnLFt_3MR8M2Qh4WPvMbbfwiTOYm1X7Fic1Toxeej2Lp3W7Xnp11VqDA9brF5wMQOd34HR_On93EA8dG-KSZryLEy1KQZmmhVSFLZTgJSuI0VlphDJMp8ISyzXlVcG9PrGiUsq4wYyW1FaE3oXtuqntfUBZJc7A1TzROmGVFpqUllGSGlmSwhoeQbKhWl4Of8p31fiWB7OGZHkgeu6Jng9Ej-DV-M6yB_P45-wdT9Jx5kDNCHY3zJEP8t7mKXOakXMlWARPx2EnqT78omvbrP0c4YPQXCYR3OuZavz2hhcf_HnNJ3D1YP7pKD86nH18CNf8LvuUml3Y7lZr-wiulN-7Rbt6HETiF6mWCYo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Gait+Events+in+Healthy+Subjects+and+With+Parkinson%27s+Disease+Using+Inertial+Sensors%3A+An+Adaptive+Unsupervised+Learning+Approach&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Perez-Ibarra%2C+Juan+C&rft.au=Siqueira%2C+Adriano+A+G&rft.au=Krebs%2C+Hermano+I&rft.date=2020-12-01&rft.issn=1558-0210&rft.eissn=1558-0210&rft.volume=28&rft.issue=12&rft.spage=2933&rft_id=info:doi/10.1109%2FTNSRE.2020.3039999&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |