Numerical analysis of the MHD Williamson nanofluid flow over a nonlinear stretching sheet through a Darcy porous medium: Modeling and simulation

In the current study, we delve into examining the movement of a nanofluid within a Williamson boundary layer, focusing on the analysis of heat and mass transfer (HMT) processes. This particular flow occurs over a sheet that undergoes nonlinear stretching. A significant facet of this investigation in...

Full description

Saved in:
Bibliographic Details
Published in:Open Physics Vol. 22; no. 1; pp. 155 - 61
Main Authors: Khader, Mohamed M., Ahmad, Hijaz, Adel, Mohamed, Megahed, Ahmed M.
Format: Journal Article
Language:English
Published: De Gruyter 04.05.2024
Subjects:
ISSN:2391-5471, 2391-5471
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the current study, we delve into examining the movement of a nanofluid within a Williamson boundary layer, focusing on the analysis of heat and mass transfer (HMT) processes. This particular flow occurs over a sheet that undergoes nonlinear stretching. A significant facet of this investigation involves the incorporation of both the magnetic field and the influence of viscous dissipation within the model. The sheet is situated within a porous medium, and this medium conforms to the Darcy model. Since more precise outcomes are still required, the model assumes that both fluid conductivity and viscosity change with temperature. In this research, we encounter a system of extremely nonlinear ordinary differential equations that are treated through a numerical technique, specifically by employing the spectral collocation method. Graphical representations are used to illustrate how the relevant parameters impact the nanoparticle volume fraction, velocity, and temperature profiles. The study involves the computation and analysis of the effect of physical parameters on the local Sherwood number, skin friction coefficient, and local Nusselt number. Specific significant findings emerging from the present study highlight that the rate of mass transfer is particularly influenced by the thermophoresis factor, porous parameter, and Williamson parameter, showing heightened effects, while conversely, the Brownian motion parameter demonstrates an opposing pattern. The results were computed and subjected to a comparison with earlier research, indicating a notable degree of conformity and accord.
AbstractList In the current study, we delve into examining the movement of a nanofluid within a Williamson boundary layer, focusing on the analysis of heat and mass transfer (HMT) processes. This particular flow occurs over a sheet that undergoes nonlinear stretching. A significant facet of this investigation involves the incorporation of both the magnetic field and the influence of viscous dissipation within the model. The sheet is situated within a porous medium, and this medium conforms to the Darcy model. Since more precise outcomes are still required, the model assumes that both fluid conductivity and viscosity change with temperature. In this research, we encounter a system of extremely nonlinear ordinary differential equations that are treated through a numerical technique, specifically by employing the spectral collocation method. Graphical representations are used to illustrate how the relevant parameters impact the nanoparticle volume fraction, velocity, and temperature profiles. The study involves the computation and analysis of the effect of physical parameters on the local Sherwood number, skin friction coefficient, and local Nusselt number. Specific significant findings emerging from the present study highlight that the rate of mass transfer is particularly influenced by the thermophoresis factor, porous parameter, and Williamson parameter, showing heightened effects, while conversely, the Brownian motion parameter demonstrates an opposing pattern. The results were computed and subjected to a comparison with earlier research, indicating a notable degree of conformity and accord.
Author Khader, Mohamed M.
Adel, Mohamed
Ahmad, Hijaz
Megahed, Ahmed M.
Author_xml – sequence: 1
  givenname: Mohamed M.
  surname: Khader
  fullname: Khader, Mohamed M.
  email: mmkhader@imamu.edu.sa
  organization: Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt
– sequence: 2
  givenname: Hijaz
  surname: Ahmad
  fullname: Ahmad, Hijaz
  email: hijaz.ahmad@neu.edu.tr
  organization: Operational Research Center in Healthcare, Near East University, Nicosia, PC: 99138, TRNC Mersin 10, Turkey
– sequence: 3
  givenname: Mohamed
  surname: Adel
  fullname: Adel, Mohamed
  email: adel@sci.cu.edu.eg
  organization: Department of Mathematics, Faculty of Science, Islamic University of Madinah, Medina, Saudi Arabia
– sequence: 4
  givenname: Ahmed M.
  surname: Megahed
  fullname: Megahed, Ahmed M.
  email: ahmed.abdelbaqk@fsc.bu.edu.eg
  organization: Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt
BookMark eNp1kU9rFTEUxQepYK3dus4XmJpMMv_cSau20OpGcRnuJDfv5ZFJHknGMt_Cj2ymT0GErnJyOedwL7_X1ZkPHqvqLaNXrGXtu-N-TXVDG1FTyroX1XnDR1a3omdn_-hX1WVKB1osLe9FI86rX1-WGaNV4Ah4cGuyiQRD8h7Jw-0N-WGdszCn4IkHH4xbrCbGhUcSfmIkQMoaznqESFKOmNXe-h1Je8RcOmJYdvtiuoGoVnIM5Z_IjNou83vyEDS6zQ1ek2TnxUG2wb-pXhpwCS__vBfV908fv13f1vdfP99df7ivFR_bXDOuWzoYpQwAxbE32AjRFTFRNfa00XoSAkeqJuzLDLuO8lYMZkQ9DQ1oflHdnXp1gIM8RjtDXGUAK58GIe4kxGyVQwnQczN1ajAUBUxs4jB03TCIgSsxIC9d4tSlYkgpopHK5qdrcgTrJKNygyQ3SHKDJDdIJXb1X-zvGs8GxlPgEVzGqHEXl7UIeQhLLPTSM8GmYfw3rlWtxg
CitedBy_id crossref_primary_10_1002_zamm_70208
crossref_primary_10_1186_s13661_025_02042_6
crossref_primary_10_1038_s41598_025_06912_y
crossref_primary_10_1515_phys_2025_0175
Cites_doi 10.1142/S0129183120500199
10.3390/fractalfract6070363
10.1063/1.4934937
10.3390/pr10061221
10.1016/j.matcom.2020.09.014
10.1021/ie50239a035
10.1155/2022/3257808
10.2298/TSCI23S1129J
10.3390/math9111215
10.1515/ntrev-2022-0031
10.1007/s10483-019-2534-6
10.1590/S0104-66322013000300019
10.1515/nleng-2014-0002
10.1007/s40314-020-01207-6
10.1177/09544089211025376
10.2298/TSCI23S1141J
10.1016/j.csite.2023.103345
10.1016/j.aej.2022.03.032
10.1016/0020-7462(94)90034-5
10.1007/s40314-022-02024-9
10.1177/09544089221078153
10.1016/j.asej.2013.05.003
10.1016/j.matcom.2021.02.018
10.32604/fdmp.2022.020509
10.1080/00207160.2021.1876850
10.1007/s12648-021-02025-0
10.1186/s42787-020-00103-6
10.1016/j.ijmecsci.2017.05.042
10.24996/ijs.2018.59.1B.18
10.1080/02286203.2022.2062166
10.1002/htj.22648
10.1080/00986445.2010.500148
10.1016/j.amc.2006.06.077
10.1186/s42787-019-0016-y
10.3390/fractalfract7010094
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/phys-2024-0016
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2391-5471
EndPage 61
ExternalDocumentID oai_doaj_org_article_aa73fb6c8f0e4ab1b3a86688483c48e3
10_1515_phys_2024_0016
10_1515_phys_2024_0016221
GroupedDBID 5VS
AAFWJ
ABFKT
ACGFS
ADBBV
ADMLS
AENEX
AFBDD
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
GROUPED_DOAJ
KQ8
M48
M~E
QD8
SLJYH
Y2W
AAYXX
CITATION
ID FETCH-LOGICAL-c395t-13d508fccfaa0e97fe2446e97b0c9702ddb44e90cbe77b0e6603548f9edb82ad3
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001221234800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2391-5471
IngestDate Fri Oct 03 12:33:42 EDT 2025
Tue Nov 18 22:29:07 EST 2025
Sat Nov 29 03:16:23 EST 2025
Sat Nov 29 01:26:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-13d508fccfaa0e97fe2446e97b0c9702ddb44e90cbe77b0e6603548f9edb82ad3
OpenAccessLink https://doaj.org/article/aa73fb6c8f0e4ab1b3a86688483c48e3
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_aa73fb6c8f0e4ab1b3a86688483c48e3
crossref_citationtrail_10_1515_phys_2024_0016
crossref_primary_10_1515_phys_2024_0016
walterdegruyter_journals_10_1515_phys_2024_0016221
PublicationCentury 2000
PublicationDate 2024-05-04
PublicationDateYYYYMMDD 2024-05-04
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-04
  day: 04
PublicationDecade 2020
PublicationTitle Open Physics
PublicationYear 2024
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References Megahed, AM (j_phys-2024-0016_ref_005) 2019; 40
Khader, MM (j_phys-2024-0016_ref_025) 2021; 96
Khan, NA; Khan, HA (j_phys-2024-0016_ref_009) 2014; 3
Yousef, NS; Megahed, AM; Ghoneim, NI; Elsafi, M; Fares, E. (j_phys-2024-0016_ref_018) 2022; 61
Megahed, AM (j_phys-2024-0016_ref_032) 2019; 27
Humane, PP; Patil, VS; Rajput, GR (j_phys-2024-0016_ref_014) 2022; 236
Mehta, R; Kumar, R; Rathore, H; Singh, J. (j_phys-2024-0016_ref_035) 2022; 51
Cortell, R. (j_phys-2024-0016_ref_038) 2007; 184
Nadeem, S; Hussain, ST; Lee, C. (j_phys-2024-0016_ref_008) 2013; 30
Megahed, AM (j_phys-2024-0016_ref_031) 2021; 187
Malik, M; Salahuddin, T; Hussain, A; Bilal, S; Awais, M. (j_phys-2024-0016_ref_010) 2015; 5
Hari, MS; Mohammad, I. (j_phys-2024-0016_ref_037) 2023; 7
Khudair, WS; Al-Khafajy, DGS. (j_phys-2024-0016_ref_011) 2018; 59
Adel, M; Srivastava, HM; Khader, MM (j_phys-2024-0016_ref_030) 2022; 12
Cortell, R. (j_phys-2024-0016_ref_001) 1994; 29
Sadighi, S; Afshar, H; Jabbari, M; Ashtiani, HAD. (j_phys-2024-0016_ref_019) 2023; 49
Bilal, M; Ashbar, S. (j_phys-2024-0016_ref_006) 2020; 28
Noor, NAM; Shafie, S; Admon, MA (j_phys-2024-0016_ref_017) 2021; 9
Nikooeinejad, Z; Heydari, M; Loghmani, B. (j_phys-2024-0016_ref_023) 2021; 98
Mahmoud, MAM. (j_phys-2024-0016_ref_002) 2011; 198
Humane, PP; Patil, VS; Patil, AB (j_phys-2024-0016_ref_013) 2021; 235
Khader, MM; Eid, A; Adel, M. (j_phys-2024-0016_ref_026) 2022; 2022
Elham, A; Megahed, AM (j_phys-2024-0016_ref_020) 2022; 11
Ghoneim, NI; Megahed, AM (j_phys-2024-0016_ref_021) 2022; 18
Jain, R; Mehta, R; Mehta, T; Singh, J; Baleanu, D. (j_phys-2024-0016_ref_034) 2023; 27
Patil, VS; Humane, PP; Patil, AB (j_phys-2024-0016_ref_015) 2023; 43
Williamson, RV (j_phys-2024-0016_ref_007) 1929; 21
Choi, SUS. (j_phys-2024-0016_ref_016) 1995; 231
Pramanik, S. (j_phys-2024-0016_ref_003) 2014; 5
Megahed, AM (j_phys-2024-0016_ref_012) 2020; 31
Khader, MM; Sharma, RP (j_phys-2024-0016_ref_027) 2021; 181
Abbas, A; Jeelani, MB; Alnahdi, AS; Ilyas, A. (j_phys-2024-0016_ref_033) 2022; 10
Ahmed, F; Iqba, M. (j_phys-2024-0016_ref_004) 2017; 130
Delkhosh, M; Cheraghian, H. (j_phys-2024-0016_ref_028) 2022; 41
Khader, MM; Adel, M. (j_phys-2024-0016_ref_024) 2020; 39
Khader, MM; Adel, M. (j_phys-2024-0016_ref_029) 2022; 6
Jangid, S; Mehta, R; Singh, J; Baleanu, D; Alshomrani, AS (j_phys-2024-0016_ref_022) 2023; 27
2024050406412600181_j_phys-2024-0016_ref_001
2024050406412600181_j_phys-2024-0016_ref_023
2024050406412600181_j_phys-2024-0016_ref_022
2024050406412600181_j_phys-2024-0016_ref_021
2024050406412600181_j_phys-2024-0016_ref_020
2024050406412600181_j_phys-2024-0016_ref_009
2024050406412600181_j_phys-2024-0016_ref_008
2024050406412600181_j_phys-2024-0016_ref_007
2024050406412600181_j_phys-2024-0016_ref_029
2024050406412600181_j_phys-2024-0016_ref_006
2024050406412600181_j_phys-2024-0016_ref_028
2024050406412600181_j_phys-2024-0016_ref_005
2024050406412600181_j_phys-2024-0016_ref_027
2024050406412600181_j_phys-2024-0016_ref_004
2024050406412600181_j_phys-2024-0016_ref_026
2024050406412600181_j_phys-2024-0016_ref_003
2024050406412600181_j_phys-2024-0016_ref_025
2024050406412600181_j_phys-2024-0016_ref_002
2024050406412600181_j_phys-2024-0016_ref_024
2024050406412600181_j_phys-2024-0016_ref_012
2024050406412600181_j_phys-2024-0016_ref_034
2024050406412600181_j_phys-2024-0016_ref_011
2024050406412600181_j_phys-2024-0016_ref_033
2024050406412600181_j_phys-2024-0016_ref_010
2024050406412600181_j_phys-2024-0016_ref_032
2024050406412600181_j_phys-2024-0016_ref_031
2024050406412600181_j_phys-2024-0016_ref_030
2024050406412600181_j_phys-2024-0016_ref_019
2024050406412600181_j_phys-2024-0016_ref_018
2024050406412600181_j_phys-2024-0016_ref_017
2024050406412600181_j_phys-2024-0016_ref_016
2024050406412600181_j_phys-2024-0016_ref_038
2024050406412600181_j_phys-2024-0016_ref_015
2024050406412600181_j_phys-2024-0016_ref_037
2024050406412600181_j_phys-2024-0016_ref_014
2024050406412600181_j_phys-2024-0016_ref_036
2024050406412600181_j_phys-2024-0016_ref_013
2024050406412600181_j_phys-2024-0016_ref_035
References_xml – volume: 43
  start-page: 185
  issue: 3
  year: 2023
  end-page: 99
  ident: j_phys-2024-0016_ref_015
  article-title: MHD Williamson nanofluid flow past a permeable stretching sheet with thermal radiation and chemical reaction
  publication-title: Int J Model Simulat
– volume: 187
  start-page: 97
  year: 2021
  end-page: 109
  ident: j_phys-2024-0016_ref_031
  article-title: Improvement of heat transfer mechanism through a Maxwell fluid flow over a stretching sheet embedded in a porous medium and convectively heated
  publication-title: Math Comput Simulat
– volume: 27
  start-page: S141
  issue: 1
  year: 2023
  end-page: 9
  ident: j_phys-2024-0016_ref_034
  article-title: MHD flow and heat and mass transport investigation over a decelerating disk with Ohmic heating and diffusive effect
  publication-title: Thermal Sci
– volume: 198
  start-page: 131
  year: 2011
  end-page: 46
  ident: j_phys-2024-0016_ref_002
  article-title: The effects of variable fluid properties on MHD Maxwell fluids over a stretching surface in the presence of heat generation/absorption
  publication-title: Chem Eng Comm.
– volume: 231
  start-page: 99
  year: 1995
  end-page: 105
  ident: j_phys-2024-0016_ref_016
  article-title: Enhancing thermal conductivity of fluid with nanoparticles, developments, and applications of non-Newtonian flow
  publication-title: ASME FED
– volume: 235
  start-page: 1
  issue: 6
  year: 2021
  end-page: 13
  ident: j_phys-2024-0016_ref_013
  article-title: Chemical reaction and thermal radiation effects on magnetohydrodynamics flow of Casson-Williamson nanofluid over a porous stretching surface
  publication-title: Proc Instit Mech Eng Part E J Process Mech Eng
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 13
  ident: j_phys-2024-0016_ref_026
  article-title: Implementing the Vieta-Lucas collocation optimization method for MHD Casson and Williamson model under the effects of heat generation and viscous dissipation
  publication-title: J Math
– volume: 12
  start-page: 1
  year: 2022
  end-page: 10
  ident: j_phys-2024-0016_ref_030
  article-title: Implementation of an accurate method for the analysis and simulation of electrical R-L circuits
  publication-title: Math Meth Appl Sci.
– volume: 3
  start-page: 107
  year: 2014
  end-page: 15
  ident: j_phys-2024-0016_ref_009
  article-title: A boundary layer flows of non-Newtonian Williamson fluid
  publication-title: Non-linear Eng.
– volume: 5
  start-page: 107227
  year: 2015
  ident: j_phys-2024-0016_ref_010
  article-title: Homogeneous heterogeneous reactions in Williamson fluid model over a stretching cylinder by using Keller box method
  publication-title: AIP Advances
– volume: 28
  start-page: 40
  year: 2020
  ident: j_phys-2024-0016_ref_006
  article-title: Flow and heat transfer analysis of Eyring-Powell fluid over stratified sheet with mixed convection
  publication-title: J Egypt Math Soc
– volume: 21
  start-page: 1108
  year: 1929
  end-page: 11
  ident: j_phys-2024-0016_ref_007
  article-title: The flow of pseudoplastic materials
  publication-title: Industrial Eng Chemistry Res
– volume: 27
  start-page: S129
  issue: 1
  year: 2023
  end-page: S140
  ident: j_phys-2024-0016_ref_022
  article-title: Heat and mass transport of hydromagnetic Williamson nanofluid passing through a permeable media across an extended sheet of varying thickness
  publication-title: Thermal Sci
– volume: 130
  start-page: 508
  year: 2017
  end-page: 17
  ident: j_phys-2024-0016_ref_004
  article-title: MHD power-law fluid flow and heat transfer analysis through Darcy Brinkman porous media in the annular sector
  publication-title: Int J Mechanical Sci
– volume: 98
  start-page: 2156
  year: 2021
  end-page: 74
  ident: j_phys-2024-0016_ref_023
  article-title: Numerical solution of two-point BVPs in infinite-horizon optimal control theory: A combined quasilinearization method with exponential Bernstein functions
  publication-title: Int J Comput Math.
– volume: 11
  start-page: 463
  year: 2022
  end-page: 72
  ident: j_phys-2024-0016_ref_020
  article-title: MHD dissipative Casson nanofluid liquid film flow due to an unsteady stretching sheet with radiation influence and slip velocity phenomenon
  publication-title: Nanotechnol Rev
– volume: 39
  start-page: 1
  issue: 166
  year: 2020
  end-page: 9
  ident: j_phys-2024-0016_ref_024
  article-title: Numerical approach for solving the Riccati and Logistic equations via QLM-rational Legendre collocation method
  publication-title: Comput Appl Math
– volume: 5
  start-page: 205
  year: 2014
  end-page: 12
  ident: j_phys-2024-0016_ref_003
  article-title: Casson fluid flow and heat transfer past an exponentially porous stretching surface in the presence of thermal radiation
  publication-title: Ain Shams Eng J
– volume: 61
  start-page: 10161
  year: 2022
  end-page: 70
  ident: j_phys-2024-0016_ref_018
  article-title: Chemical reaction impact on MHD dissipative Casson-Williamson nanofluid flow over a slippery stretching sheet through a porous medium
  publication-title: Alexandr Eng J
– volume: 236
  start-page: 1
  issue: 5
  year: 2022
  end-page: 20
  ident: j_phys-2024-0016_ref_014
  article-title: Dynamics of multiple slip boundaries effect on MHD Casson-Williamson double-diffusive nanofluid flow past an inclined magnetic stretching sheet
  publication-title: Proc Instit Mech Eng Part E J Process Mech Eng
– volume: 96
  start-page: 777
  year: 2021
  end-page: 86
  ident: j_phys-2024-0016_ref_025
  article-title: Numerical study for unsteady Casson fluid flow with heat flux using a spectral collocation method
  publication-title: Indian J Phys
– volume: 9
  start-page: 1215
  year: 2021
  ident: j_phys-2024-0016_ref_017
  article-title: Slip effects on MHD squeezing flow of Jeffrey nanofluid in a horizontal channel with chemical reaction
  publication-title: Mathematics
– volume: 30
  start-page: 619
  year: 2013
  end-page: 25
  ident: j_phys-2024-0016_ref_008
  article-title: Flow of a Williamson fluid over a stretching sheet
  publication-title: Braz J Chem Eng.
– volume: 181
  start-page: 333
  year: 2021
  end-page: 50
  ident: j_phys-2024-0016_ref_027
  article-title: Evaluating the unsteady MHD micropolar fluid flow past stretching/shirking sheet with heat source and thermal radiation: implementing fourth order predictor-corrector FDM
  publication-title: Math Comput Simulat
– volume: 51
  start-page: 7369
  issue: 8
  year: 2022
  end-page: 86
  ident: j_phys-2024-0016_ref_035
  article-title: Joule heating effect on radiating MHD mixed convection stagnation point flow along vertical stretching sheet embedded in a permeable medium and heat generation/absorption
  publication-title: Heat Transfer
– volume: 184
  start-page: 864
  year: 2007
  end-page: 73
  ident: j_phys-2024-0016_ref_038
  article-title: Viscous flow and heat transfer over a nonlinear stretching sheet
  publication-title: Appl Math Comput.
– volume: 49
  start-page: 103345
  year: 2023
  ident: j_phys-2024-0016_ref_019
  article-title: Heat and mass transfer for MHD nanofluid flow on a porous stretching sheet with prescribed boundary conditions
  publication-title: Case Studies Thermal Eng
– volume: 40
  start-page: 1615
  year: 2019
  end-page: 24
  ident: j_phys-2024-0016_ref_005
  article-title: Carreau fluid flow due to nonlinearly stretching sheet with thermal radiation, heat flux, and variable conductivity
  publication-title: Appl Math Mechanics
– volume: 31
  start-page: 2050019
  year: 2020
  ident: j_phys-2024-0016_ref_012
  article-title: Steady flow of MHD Williamson fluid due to a continuously moving surface with viscous dissipation and slip velocity
  publication-title: Int J Modern Phys C
– volume: 7
  start-page: 1
  issue: 94
  year: 2023
  end-page: 22
  ident: j_phys-2024-0016_ref_037
  article-title: Generalized shifted Airfoil polynomials of the second kind to solve a class of singular electrohydrodynamic fluid model of fractional order
  publication-title: Fractal Fract.
– volume: 6
  start-page: 1
  issue: 363
  year: 2022
  end-page: 19
  ident: j_phys-2024-0016_ref_029
  article-title: Modeling and numerical simulation for covering the fractional COVID-19 model using spectral collocation-optimization algorithms
  publication-title: Fractal Fract.
– volume: 59
  start-page: 389
  year: 2018
  end-page: 97
  ident: j_phys-2024-0016_ref_011
  article-title: Influence of heat transfer on magnetohydrodynamics oscillatory flow for Williamson fluid through a porous medium
  publication-title: Iraqi J Sci
– volume: 18
  start-page: 1373
  year: 2022
  end-page: 88
  ident: j_phys-2024-0016_ref_021
  article-title: Hydromagnetic nanofluid film flow over a stretching sheet with prescribed heat flux and viscous dissipation
  publication-title: Fluid Dyn Material Process
– volume: 29
  start-page: 155
  year: 1994
  end-page: 61
  ident: j_phys-2024-0016_ref_001
  article-title: Similarity solutions for flow and heat transfer of a viscoelastic fluid over a stretching sheet
  publication-title: Int J Non-Linear Mechanics
– volume: 27
  start-page: 12
  year: 2019
  ident: j_phys-2024-0016_ref_032
  article-title: Williamson fluid flow due to a nonlinearly stretching sheet with viscous dissipation and thermal radiation
  publication-title: J Egypt Math Soc
– volume: 10
  start-page: 12
  year: 2022
  end-page: 21
  ident: j_phys-2024-0016_ref_033
  article-title: MHD Williamson nanofluid fluid flow and heat transfer past a non-linear stretching sheet implanted in a porous medium: effects of heat generation and viscous dissipation
  publication-title: Processes
– volume: 41
  start-page: 1
  year: 2022
  end-page: 15
  ident: j_phys-2024-0016_ref_028
  article-title: An efficient hybrid method to solve nonlinear differential equations in applied sciences
  publication-title: Comp Appl Math.
– ident: 2024050406412600181_j_phys-2024-0016_ref_012
  doi: 10.1142/S0129183120500199
– ident: 2024050406412600181_j_phys-2024-0016_ref_029
  doi: 10.3390/fractalfract6070363
– ident: 2024050406412600181_j_phys-2024-0016_ref_010
  doi: 10.1063/1.4934937
– ident: 2024050406412600181_j_phys-2024-0016_ref_033
  doi: 10.3390/pr10061221
– ident: 2024050406412600181_j_phys-2024-0016_ref_027
  doi: 10.1016/j.matcom.2020.09.014
– ident: 2024050406412600181_j_phys-2024-0016_ref_007
  doi: 10.1021/ie50239a035
– ident: 2024050406412600181_j_phys-2024-0016_ref_016
– ident: 2024050406412600181_j_phys-2024-0016_ref_026
  doi: 10.1155/2022/3257808
– ident: 2024050406412600181_j_phys-2024-0016_ref_022
  doi: 10.2298/TSCI23S1129J
– ident: 2024050406412600181_j_phys-2024-0016_ref_017
  doi: 10.3390/math9111215
– ident: 2024050406412600181_j_phys-2024-0016_ref_020
  doi: 10.1515/ntrev-2022-0031
– ident: 2024050406412600181_j_phys-2024-0016_ref_005
  doi: 10.1007/s10483-019-2534-6
– ident: 2024050406412600181_j_phys-2024-0016_ref_008
  doi: 10.1590/S0104-66322013000300019
– ident: 2024050406412600181_j_phys-2024-0016_ref_009
  doi: 10.1515/nleng-2014-0002
– ident: 2024050406412600181_j_phys-2024-0016_ref_024
  doi: 10.1007/s40314-020-01207-6
– ident: 2024050406412600181_j_phys-2024-0016_ref_013
  doi: 10.1177/09544089211025376
– ident: 2024050406412600181_j_phys-2024-0016_ref_034
  doi: 10.2298/TSCI23S1141J
– ident: 2024050406412600181_j_phys-2024-0016_ref_019
  doi: 10.1016/j.csite.2023.103345
– ident: 2024050406412600181_j_phys-2024-0016_ref_018
  doi: 10.1016/j.aej.2022.03.032
– ident: 2024050406412600181_j_phys-2024-0016_ref_001
  doi: 10.1016/0020-7462(94)90034-5
– ident: 2024050406412600181_j_phys-2024-0016_ref_028
  doi: 10.1007/s40314-022-02024-9
– ident: 2024050406412600181_j_phys-2024-0016_ref_014
  doi: 10.1177/09544089221078153
– ident: 2024050406412600181_j_phys-2024-0016_ref_003
  doi: 10.1016/j.asej.2013.05.003
– ident: 2024050406412600181_j_phys-2024-0016_ref_036
– ident: 2024050406412600181_j_phys-2024-0016_ref_031
  doi: 10.1016/j.matcom.2021.02.018
– ident: 2024050406412600181_j_phys-2024-0016_ref_021
  doi: 10.32604/fdmp.2022.020509
– ident: 2024050406412600181_j_phys-2024-0016_ref_023
  doi: 10.1080/00207160.2021.1876850
– ident: 2024050406412600181_j_phys-2024-0016_ref_025
  doi: 10.1007/s12648-021-02025-0
– ident: 2024050406412600181_j_phys-2024-0016_ref_006
  doi: 10.1186/s42787-020-00103-6
– ident: 2024050406412600181_j_phys-2024-0016_ref_004
  doi: 10.1016/j.ijmecsci.2017.05.042
– ident: 2024050406412600181_j_phys-2024-0016_ref_011
  doi: 10.24996/ijs.2018.59.1B.18
– ident: 2024050406412600181_j_phys-2024-0016_ref_015
  doi: 10.1080/02286203.2022.2062166
– ident: 2024050406412600181_j_phys-2024-0016_ref_030
– ident: 2024050406412600181_j_phys-2024-0016_ref_035
  doi: 10.1002/htj.22648
– ident: 2024050406412600181_j_phys-2024-0016_ref_002
  doi: 10.1080/00986445.2010.500148
– ident: 2024050406412600181_j_phys-2024-0016_ref_038
  doi: 10.1016/j.amc.2006.06.077
– ident: 2024050406412600181_j_phys-2024-0016_ref_032
  doi: 10.1186/s42787-019-0016-y
– ident: 2024050406412600181_j_phys-2024-0016_ref_037
  doi: 10.3390/fractalfract7010094
SSID ssj0001537424
Score 2.3458116
Snippet In the current study, we delve into examining the movement of a nanofluid within a Williamson boundary layer, focusing on the analysis of heat and mass...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 155
SubjectTerms convergence analysis
magnetic field
porous medium
shifted airfoil polynomials
spectral collocation method
Williamson nanofluid
Title Numerical analysis of the MHD Williamson nanofluid flow over a nonlinear stretching sheet through a Darcy porous medium: Modeling and simulation
URI https://www.degruyter.com/doi/10.1515/phys-2024-0016
https://doaj.org/article/aa73fb6c8f0e4ab1b3a86688483c48e3
Volume 22
WOSCitedRecordID wos001221234800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2391-5471
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537424
  issn: 2391-5471
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2391-5471
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537424
  issn: 2391-5471
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlpNAeQp900wdzKPQkorW0stRbmwc5NEsPLeRm9GwXNnZZ2w255Df0J3cka0NaCL30YowYkNCMmPk0o28Ieat45BGRBTVSV1SgT6dKm5pqHv1ch4AQOrPrf6qXS3V-rj_favWVasImeuBp4w6MqXm00qnIgjB2brlRUiolFHdChczzyWp9C0xN74M5Yj5RWBrRZx-kiwI0iUrQFOX84YUyWf9DsneZE9Q-fNuMV8M2IZr9zMkjslcCRPgwLewxuRfaJ-R-LtR0_VPyazlOOZY1mMInAl0EDOPg7PQIttcnXQutabu4Hlce4rq7hFSqCQbaiRrDbCC9EhlyJSX030MYoLTsQaEjtP4rwMi8G3tI2ffx4j2krmnp7TrO66FfXZS-X8_I15PjL4entHRVoI7rReo97zEoi85FY1jQdQzo4SX-WOZ0zSrvrRBBM2dDjWNBSsYR1kQdvFWV8fw52cG1hhcEKm6V8oxbH2uE2QuLzk0igDPeMhuimxG63eXGFcrx1Pli3STogVppklaapJVUWydn5N2N_I-JbONOyY9JaTdSiSQ7D6DpNMV0mn-ZzoxUf6m8KQe4v2Paqprv_4-ZX5IHkykuKBOvyM6wGcNrsut-Dqt-8yabMn7Pro9_AyPu_mE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+the+MHD+Williamson+nanofluid+flow+over+a+nonlinear+stretching+sheet+through+a+Darcy+porous+medium%3A+Modeling+and+simulation&rft.jtitle=Open+Physics&rft.au=Khader%2C+Mohamed+M.&rft.au=Ahmad%2C+Hijaz&rft.au=Adel%2C+Mohamed&rft.au=Megahed%2C+Ahmed+M.&rft.date=2024-05-04&rft.issn=2391-5471&rft.eissn=2391-5471&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1515%2Fphys-2024-0016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_phys_2024_0016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5471&client=summon