Numerical analysis of the MHD Williamson nanofluid flow over a nonlinear stretching sheet through a Darcy porous medium: Modeling and simulation
In the current study, we delve into examining the movement of a nanofluid within a Williamson boundary layer, focusing on the analysis of heat and mass transfer (HMT) processes. This particular flow occurs over a sheet that undergoes nonlinear stretching. A significant facet of this investigation in...
Uloženo v:
| Vydáno v: | Open Physics Ročník 22; číslo 1; s. 155 - 61 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
De Gruyter
04.05.2024
|
| Témata: | |
| ISSN: | 2391-5471, 2391-5471 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the current study, we delve into examining the movement of a nanofluid within a Williamson boundary layer, focusing on the analysis of heat and mass transfer (HMT) processes. This particular flow occurs over a sheet that undergoes nonlinear stretching. A significant facet of this investigation involves the incorporation of both the magnetic field and the influence of viscous dissipation within the model. The sheet is situated within a porous medium, and this medium conforms to the Darcy model. Since more precise outcomes are still required, the model assumes that both fluid conductivity and viscosity change with temperature. In this research, we encounter a system of extremely nonlinear ordinary differential equations that are treated through a numerical technique, specifically by employing the spectral collocation method. Graphical representations are used to illustrate how the relevant parameters impact the nanoparticle volume fraction, velocity, and temperature profiles. The study involves the computation and analysis of the effect of physical parameters on the local Sherwood number, skin friction coefficient, and local Nusselt number. Specific significant findings emerging from the present study highlight that the rate of mass transfer is particularly influenced by the thermophoresis factor, porous parameter, and Williamson parameter, showing heightened effects, while conversely, the Brownian motion parameter demonstrates an opposing pattern. The results were computed and subjected to a comparison with earlier research, indicating a notable degree of conformity and accord. |
|---|---|
| AbstractList | In the current study, we delve into examining the movement of a nanofluid within a Williamson boundary layer, focusing on the analysis of heat and mass transfer (HMT) processes. This particular flow occurs over a sheet that undergoes nonlinear stretching. A significant facet of this investigation involves the incorporation of both the magnetic field and the influence of viscous dissipation within the model. The sheet is situated within a porous medium, and this medium conforms to the Darcy model. Since more precise outcomes are still required, the model assumes that both fluid conductivity and viscosity change with temperature. In this research, we encounter a system of extremely nonlinear ordinary differential equations that are treated through a numerical technique, specifically by employing the spectral collocation method. Graphical representations are used to illustrate how the relevant parameters impact the nanoparticle volume fraction, velocity, and temperature profiles. The study involves the computation and analysis of the effect of physical parameters on the local Sherwood number, skin friction coefficient, and local Nusselt number. Specific significant findings emerging from the present study highlight that the rate of mass transfer is particularly influenced by the thermophoresis factor, porous parameter, and Williamson parameter, showing heightened effects, while conversely, the Brownian motion parameter demonstrates an opposing pattern. The results were computed and subjected to a comparison with earlier research, indicating a notable degree of conformity and accord. |
| Author | Khader, Mohamed M. Adel, Mohamed Ahmad, Hijaz Megahed, Ahmed M. |
| Author_xml | – sequence: 1 givenname: Mohamed M. surname: Khader fullname: Khader, Mohamed M. email: mmkhader@imamu.edu.sa organization: Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt – sequence: 2 givenname: Hijaz surname: Ahmad fullname: Ahmad, Hijaz email: hijaz.ahmad@neu.edu.tr organization: Operational Research Center in Healthcare, Near East University, Nicosia, PC: 99138, TRNC Mersin 10, Turkey – sequence: 3 givenname: Mohamed surname: Adel fullname: Adel, Mohamed email: adel@sci.cu.edu.eg organization: Department of Mathematics, Faculty of Science, Islamic University of Madinah, Medina, Saudi Arabia – sequence: 4 givenname: Ahmed M. surname: Megahed fullname: Megahed, Ahmed M. email: ahmed.abdelbaqk@fsc.bu.edu.eg organization: Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt |
| BookMark | eNp1kU9rFTEUxQepYK3dus4XmJpMMv_cSau20OpGcRnuJDfv5ZFJHknGMt_Cj2ymT0GErnJyOedwL7_X1ZkPHqvqLaNXrGXtu-N-TXVDG1FTyroX1XnDR1a3omdn_-hX1WVKB1osLe9FI86rX1-WGaNV4Ah4cGuyiQRD8h7Jw-0N-WGdszCn4IkHH4xbrCbGhUcSfmIkQMoaznqESFKOmNXe-h1Je8RcOmJYdvtiuoGoVnIM5Z_IjNou83vyEDS6zQ1ek2TnxUG2wb-pXhpwCS__vBfV908fv13f1vdfP99df7ivFR_bXDOuWzoYpQwAxbE32AjRFTFRNfa00XoSAkeqJuzLDLuO8lYMZkQ9DQ1oflHdnXp1gIM8RjtDXGUAK58GIe4kxGyVQwnQczN1ajAUBUxs4jB03TCIgSsxIC9d4tSlYkgpopHK5qdrcgTrJKNygyQ3SHKDJDdIJXb1X-zvGs8GxlPgEVzGqHEXl7UIeQhLLPTSM8GmYfw3rlWtxg |
| CitedBy_id | crossref_primary_10_1002_zamm_70208 crossref_primary_10_1186_s13661_025_02042_6 crossref_primary_10_1038_s41598_025_06912_y crossref_primary_10_1515_phys_2025_0175 |
| Cites_doi | 10.1142/S0129183120500199 10.3390/fractalfract6070363 10.1063/1.4934937 10.3390/pr10061221 10.1016/j.matcom.2020.09.014 10.1021/ie50239a035 10.1155/2022/3257808 10.2298/TSCI23S1129J 10.3390/math9111215 10.1515/ntrev-2022-0031 10.1007/s10483-019-2534-6 10.1590/S0104-66322013000300019 10.1515/nleng-2014-0002 10.1007/s40314-020-01207-6 10.1177/09544089211025376 10.2298/TSCI23S1141J 10.1016/j.csite.2023.103345 10.1016/j.aej.2022.03.032 10.1016/0020-7462(94)90034-5 10.1007/s40314-022-02024-9 10.1177/09544089221078153 10.1016/j.asej.2013.05.003 10.1016/j.matcom.2021.02.018 10.32604/fdmp.2022.020509 10.1080/00207160.2021.1876850 10.1007/s12648-021-02025-0 10.1186/s42787-020-00103-6 10.1016/j.ijmecsci.2017.05.042 10.24996/ijs.2018.59.1B.18 10.1080/02286203.2022.2062166 10.1002/htj.22648 10.1080/00986445.2010.500148 10.1016/j.amc.2006.06.077 10.1186/s42787-019-0016-y 10.3390/fractalfract7010094 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1515/phys-2024-0016 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2391-5471 |
| EndPage | 61 |
| ExternalDocumentID | oai_doaj_org_article_aa73fb6c8f0e4ab1b3a86688483c48e3 10_1515_phys_2024_0016 10_1515_phys_2024_0016221 |
| GroupedDBID | 5VS AAFWJ ABFKT ACGFS ADBBV ADMLS AENEX AFBDD AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS BCNDV EBS GROUPED_DOAJ KQ8 M48 M~E QD8 SLJYH Y2W AAYXX CITATION |
| ID | FETCH-LOGICAL-c395t-13d508fccfaa0e97fe2446e97b0c9702ddb44e90cbe77b0e6603548f9edb82ad3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001221234800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2391-5471 |
| IngestDate | Fri Oct 03 12:33:42 EDT 2025 Tue Nov 18 22:29:07 EST 2025 Sat Nov 29 03:16:23 EST 2025 Sat Nov 29 01:26:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c395t-13d508fccfaa0e97fe2446e97b0c9702ddb44e90cbe77b0e6603548f9edb82ad3 |
| OpenAccessLink | https://doaj.org/article/aa73fb6c8f0e4ab1b3a86688483c48e3 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_aa73fb6c8f0e4ab1b3a86688483c48e3 crossref_citationtrail_10_1515_phys_2024_0016 crossref_primary_10_1515_phys_2024_0016 walterdegruyter_journals_10_1515_phys_2024_0016221 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-04 |
| PublicationDateYYYYMMDD | 2024-05-04 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationTitle | Open Physics |
| PublicationYear | 2024 |
| Publisher | De Gruyter |
| Publisher_xml | – name: De Gruyter |
| References | Megahed, AM (j_phys-2024-0016_ref_005) 2019; 40 Khader, MM (j_phys-2024-0016_ref_025) 2021; 96 Khan, NA; Khan, HA (j_phys-2024-0016_ref_009) 2014; 3 Yousef, NS; Megahed, AM; Ghoneim, NI; Elsafi, M; Fares, E. (j_phys-2024-0016_ref_018) 2022; 61 Megahed, AM (j_phys-2024-0016_ref_032) 2019; 27 Humane, PP; Patil, VS; Rajput, GR (j_phys-2024-0016_ref_014) 2022; 236 Mehta, R; Kumar, R; Rathore, H; Singh, J. (j_phys-2024-0016_ref_035) 2022; 51 Cortell, R. (j_phys-2024-0016_ref_038) 2007; 184 Nadeem, S; Hussain, ST; Lee, C. (j_phys-2024-0016_ref_008) 2013; 30 Megahed, AM (j_phys-2024-0016_ref_031) 2021; 187 Malik, M; Salahuddin, T; Hussain, A; Bilal, S; Awais, M. (j_phys-2024-0016_ref_010) 2015; 5 Hari, MS; Mohammad, I. (j_phys-2024-0016_ref_037) 2023; 7 Khudair, WS; Al-Khafajy, DGS. (j_phys-2024-0016_ref_011) 2018; 59 Adel, M; Srivastava, HM; Khader, MM (j_phys-2024-0016_ref_030) 2022; 12 Cortell, R. (j_phys-2024-0016_ref_001) 1994; 29 Sadighi, S; Afshar, H; Jabbari, M; Ashtiani, HAD. (j_phys-2024-0016_ref_019) 2023; 49 Bilal, M; Ashbar, S. (j_phys-2024-0016_ref_006) 2020; 28 Noor, NAM; Shafie, S; Admon, MA (j_phys-2024-0016_ref_017) 2021; 9 Nikooeinejad, Z; Heydari, M; Loghmani, B. (j_phys-2024-0016_ref_023) 2021; 98 Mahmoud, MAM. (j_phys-2024-0016_ref_002) 2011; 198 Humane, PP; Patil, VS; Patil, AB (j_phys-2024-0016_ref_013) 2021; 235 Khader, MM; Eid, A; Adel, M. (j_phys-2024-0016_ref_026) 2022; 2022 Elham, A; Megahed, AM (j_phys-2024-0016_ref_020) 2022; 11 Ghoneim, NI; Megahed, AM (j_phys-2024-0016_ref_021) 2022; 18 Jain, R; Mehta, R; Mehta, T; Singh, J; Baleanu, D. (j_phys-2024-0016_ref_034) 2023; 27 Patil, VS; Humane, PP; Patil, AB (j_phys-2024-0016_ref_015) 2023; 43 Williamson, RV (j_phys-2024-0016_ref_007) 1929; 21 Choi, SUS. (j_phys-2024-0016_ref_016) 1995; 231 Pramanik, S. (j_phys-2024-0016_ref_003) 2014; 5 Megahed, AM (j_phys-2024-0016_ref_012) 2020; 31 Khader, MM; Sharma, RP (j_phys-2024-0016_ref_027) 2021; 181 Abbas, A; Jeelani, MB; Alnahdi, AS; Ilyas, A. (j_phys-2024-0016_ref_033) 2022; 10 Ahmed, F; Iqba, M. (j_phys-2024-0016_ref_004) 2017; 130 Delkhosh, M; Cheraghian, H. (j_phys-2024-0016_ref_028) 2022; 41 Khader, MM; Adel, M. (j_phys-2024-0016_ref_024) 2020; 39 Khader, MM; Adel, M. (j_phys-2024-0016_ref_029) 2022; 6 Jangid, S; Mehta, R; Singh, J; Baleanu, D; Alshomrani, AS (j_phys-2024-0016_ref_022) 2023; 27 2024050406412600181_j_phys-2024-0016_ref_001 2024050406412600181_j_phys-2024-0016_ref_023 2024050406412600181_j_phys-2024-0016_ref_022 2024050406412600181_j_phys-2024-0016_ref_021 2024050406412600181_j_phys-2024-0016_ref_020 2024050406412600181_j_phys-2024-0016_ref_009 2024050406412600181_j_phys-2024-0016_ref_008 2024050406412600181_j_phys-2024-0016_ref_007 2024050406412600181_j_phys-2024-0016_ref_029 2024050406412600181_j_phys-2024-0016_ref_006 2024050406412600181_j_phys-2024-0016_ref_028 2024050406412600181_j_phys-2024-0016_ref_005 2024050406412600181_j_phys-2024-0016_ref_027 2024050406412600181_j_phys-2024-0016_ref_004 2024050406412600181_j_phys-2024-0016_ref_026 2024050406412600181_j_phys-2024-0016_ref_003 2024050406412600181_j_phys-2024-0016_ref_025 2024050406412600181_j_phys-2024-0016_ref_002 2024050406412600181_j_phys-2024-0016_ref_024 2024050406412600181_j_phys-2024-0016_ref_012 2024050406412600181_j_phys-2024-0016_ref_034 2024050406412600181_j_phys-2024-0016_ref_011 2024050406412600181_j_phys-2024-0016_ref_033 2024050406412600181_j_phys-2024-0016_ref_010 2024050406412600181_j_phys-2024-0016_ref_032 2024050406412600181_j_phys-2024-0016_ref_031 2024050406412600181_j_phys-2024-0016_ref_030 2024050406412600181_j_phys-2024-0016_ref_019 2024050406412600181_j_phys-2024-0016_ref_018 2024050406412600181_j_phys-2024-0016_ref_017 2024050406412600181_j_phys-2024-0016_ref_016 2024050406412600181_j_phys-2024-0016_ref_038 2024050406412600181_j_phys-2024-0016_ref_015 2024050406412600181_j_phys-2024-0016_ref_037 2024050406412600181_j_phys-2024-0016_ref_014 2024050406412600181_j_phys-2024-0016_ref_036 2024050406412600181_j_phys-2024-0016_ref_013 2024050406412600181_j_phys-2024-0016_ref_035 |
| References_xml | – volume: 43 start-page: 185 issue: 3 year: 2023 end-page: 99 ident: j_phys-2024-0016_ref_015 article-title: MHD Williamson nanofluid flow past a permeable stretching sheet with thermal radiation and chemical reaction publication-title: Int J Model Simulat – volume: 187 start-page: 97 year: 2021 end-page: 109 ident: j_phys-2024-0016_ref_031 article-title: Improvement of heat transfer mechanism through a Maxwell fluid flow over a stretching sheet embedded in a porous medium and convectively heated publication-title: Math Comput Simulat – volume: 27 start-page: S141 issue: 1 year: 2023 end-page: 9 ident: j_phys-2024-0016_ref_034 article-title: MHD flow and heat and mass transport investigation over a decelerating disk with Ohmic heating and diffusive effect publication-title: Thermal Sci – volume: 198 start-page: 131 year: 2011 end-page: 46 ident: j_phys-2024-0016_ref_002 article-title: The effects of variable fluid properties on MHD Maxwell fluids over a stretching surface in the presence of heat generation/absorption publication-title: Chem Eng Comm. – volume: 231 start-page: 99 year: 1995 end-page: 105 ident: j_phys-2024-0016_ref_016 article-title: Enhancing thermal conductivity of fluid with nanoparticles, developments, and applications of non-Newtonian flow publication-title: ASME FED – volume: 235 start-page: 1 issue: 6 year: 2021 end-page: 13 ident: j_phys-2024-0016_ref_013 article-title: Chemical reaction and thermal radiation effects on magnetohydrodynamics flow of Casson-Williamson nanofluid over a porous stretching surface publication-title: Proc Instit Mech Eng Part E J Process Mech Eng – volume: 2022 start-page: 1 year: 2022 end-page: 13 ident: j_phys-2024-0016_ref_026 article-title: Implementing the Vieta-Lucas collocation optimization method for MHD Casson and Williamson model under the effects of heat generation and viscous dissipation publication-title: J Math – volume: 12 start-page: 1 year: 2022 end-page: 10 ident: j_phys-2024-0016_ref_030 article-title: Implementation of an accurate method for the analysis and simulation of electrical R-L circuits publication-title: Math Meth Appl Sci. – volume: 3 start-page: 107 year: 2014 end-page: 15 ident: j_phys-2024-0016_ref_009 article-title: A boundary layer flows of non-Newtonian Williamson fluid publication-title: Non-linear Eng. – volume: 5 start-page: 107227 year: 2015 ident: j_phys-2024-0016_ref_010 article-title: Homogeneous heterogeneous reactions in Williamson fluid model over a stretching cylinder by using Keller box method publication-title: AIP Advances – volume: 28 start-page: 40 year: 2020 ident: j_phys-2024-0016_ref_006 article-title: Flow and heat transfer analysis of Eyring-Powell fluid over stratified sheet with mixed convection publication-title: J Egypt Math Soc – volume: 21 start-page: 1108 year: 1929 end-page: 11 ident: j_phys-2024-0016_ref_007 article-title: The flow of pseudoplastic materials publication-title: Industrial Eng Chemistry Res – volume: 27 start-page: S129 issue: 1 year: 2023 end-page: S140 ident: j_phys-2024-0016_ref_022 article-title: Heat and mass transport of hydromagnetic Williamson nanofluid passing through a permeable media across an extended sheet of varying thickness publication-title: Thermal Sci – volume: 130 start-page: 508 year: 2017 end-page: 17 ident: j_phys-2024-0016_ref_004 article-title: MHD power-law fluid flow and heat transfer analysis through Darcy Brinkman porous media in the annular sector publication-title: Int J Mechanical Sci – volume: 98 start-page: 2156 year: 2021 end-page: 74 ident: j_phys-2024-0016_ref_023 article-title: Numerical solution of two-point BVPs in infinite-horizon optimal control theory: A combined quasilinearization method with exponential Bernstein functions publication-title: Int J Comput Math. – volume: 11 start-page: 463 year: 2022 end-page: 72 ident: j_phys-2024-0016_ref_020 article-title: MHD dissipative Casson nanofluid liquid film flow due to an unsteady stretching sheet with radiation influence and slip velocity phenomenon publication-title: Nanotechnol Rev – volume: 39 start-page: 1 issue: 166 year: 2020 end-page: 9 ident: j_phys-2024-0016_ref_024 article-title: Numerical approach for solving the Riccati and Logistic equations via QLM-rational Legendre collocation method publication-title: Comput Appl Math – volume: 5 start-page: 205 year: 2014 end-page: 12 ident: j_phys-2024-0016_ref_003 article-title: Casson fluid flow and heat transfer past an exponentially porous stretching surface in the presence of thermal radiation publication-title: Ain Shams Eng J – volume: 61 start-page: 10161 year: 2022 end-page: 70 ident: j_phys-2024-0016_ref_018 article-title: Chemical reaction impact on MHD dissipative Casson-Williamson nanofluid flow over a slippery stretching sheet through a porous medium publication-title: Alexandr Eng J – volume: 236 start-page: 1 issue: 5 year: 2022 end-page: 20 ident: j_phys-2024-0016_ref_014 article-title: Dynamics of multiple slip boundaries effect on MHD Casson-Williamson double-diffusive nanofluid flow past an inclined magnetic stretching sheet publication-title: Proc Instit Mech Eng Part E J Process Mech Eng – volume: 96 start-page: 777 year: 2021 end-page: 86 ident: j_phys-2024-0016_ref_025 article-title: Numerical study for unsteady Casson fluid flow with heat flux using a spectral collocation method publication-title: Indian J Phys – volume: 9 start-page: 1215 year: 2021 ident: j_phys-2024-0016_ref_017 article-title: Slip effects on MHD squeezing flow of Jeffrey nanofluid in a horizontal channel with chemical reaction publication-title: Mathematics – volume: 30 start-page: 619 year: 2013 end-page: 25 ident: j_phys-2024-0016_ref_008 article-title: Flow of a Williamson fluid over a stretching sheet publication-title: Braz J Chem Eng. – volume: 181 start-page: 333 year: 2021 end-page: 50 ident: j_phys-2024-0016_ref_027 article-title: Evaluating the unsteady MHD micropolar fluid flow past stretching/shirking sheet with heat source and thermal radiation: implementing fourth order predictor-corrector FDM publication-title: Math Comput Simulat – volume: 51 start-page: 7369 issue: 8 year: 2022 end-page: 86 ident: j_phys-2024-0016_ref_035 article-title: Joule heating effect on radiating MHD mixed convection stagnation point flow along vertical stretching sheet embedded in a permeable medium and heat generation/absorption publication-title: Heat Transfer – volume: 184 start-page: 864 year: 2007 end-page: 73 ident: j_phys-2024-0016_ref_038 article-title: Viscous flow and heat transfer over a nonlinear stretching sheet publication-title: Appl Math Comput. – volume: 49 start-page: 103345 year: 2023 ident: j_phys-2024-0016_ref_019 article-title: Heat and mass transfer for MHD nanofluid flow on a porous stretching sheet with prescribed boundary conditions publication-title: Case Studies Thermal Eng – volume: 40 start-page: 1615 year: 2019 end-page: 24 ident: j_phys-2024-0016_ref_005 article-title: Carreau fluid flow due to nonlinearly stretching sheet with thermal radiation, heat flux, and variable conductivity publication-title: Appl Math Mechanics – volume: 31 start-page: 2050019 year: 2020 ident: j_phys-2024-0016_ref_012 article-title: Steady flow of MHD Williamson fluid due to a continuously moving surface with viscous dissipation and slip velocity publication-title: Int J Modern Phys C – volume: 7 start-page: 1 issue: 94 year: 2023 end-page: 22 ident: j_phys-2024-0016_ref_037 article-title: Generalized shifted Airfoil polynomials of the second kind to solve a class of singular electrohydrodynamic fluid model of fractional order publication-title: Fractal Fract. – volume: 6 start-page: 1 issue: 363 year: 2022 end-page: 19 ident: j_phys-2024-0016_ref_029 article-title: Modeling and numerical simulation for covering the fractional COVID-19 model using spectral collocation-optimization algorithms publication-title: Fractal Fract. – volume: 59 start-page: 389 year: 2018 end-page: 97 ident: j_phys-2024-0016_ref_011 article-title: Influence of heat transfer on magnetohydrodynamics oscillatory flow for Williamson fluid through a porous medium publication-title: Iraqi J Sci – volume: 18 start-page: 1373 year: 2022 end-page: 88 ident: j_phys-2024-0016_ref_021 article-title: Hydromagnetic nanofluid film flow over a stretching sheet with prescribed heat flux and viscous dissipation publication-title: Fluid Dyn Material Process – volume: 29 start-page: 155 year: 1994 end-page: 61 ident: j_phys-2024-0016_ref_001 article-title: Similarity solutions for flow and heat transfer of a viscoelastic fluid over a stretching sheet publication-title: Int J Non-Linear Mechanics – volume: 27 start-page: 12 year: 2019 ident: j_phys-2024-0016_ref_032 article-title: Williamson fluid flow due to a nonlinearly stretching sheet with viscous dissipation and thermal radiation publication-title: J Egypt Math Soc – volume: 10 start-page: 12 year: 2022 end-page: 21 ident: j_phys-2024-0016_ref_033 article-title: MHD Williamson nanofluid fluid flow and heat transfer past a non-linear stretching sheet implanted in a porous medium: effects of heat generation and viscous dissipation publication-title: Processes – volume: 41 start-page: 1 year: 2022 end-page: 15 ident: j_phys-2024-0016_ref_028 article-title: An efficient hybrid method to solve nonlinear differential equations in applied sciences publication-title: Comp Appl Math. – ident: 2024050406412600181_j_phys-2024-0016_ref_012 doi: 10.1142/S0129183120500199 – ident: 2024050406412600181_j_phys-2024-0016_ref_029 doi: 10.3390/fractalfract6070363 – ident: 2024050406412600181_j_phys-2024-0016_ref_010 doi: 10.1063/1.4934937 – ident: 2024050406412600181_j_phys-2024-0016_ref_033 doi: 10.3390/pr10061221 – ident: 2024050406412600181_j_phys-2024-0016_ref_027 doi: 10.1016/j.matcom.2020.09.014 – ident: 2024050406412600181_j_phys-2024-0016_ref_007 doi: 10.1021/ie50239a035 – ident: 2024050406412600181_j_phys-2024-0016_ref_016 – ident: 2024050406412600181_j_phys-2024-0016_ref_026 doi: 10.1155/2022/3257808 – ident: 2024050406412600181_j_phys-2024-0016_ref_022 doi: 10.2298/TSCI23S1129J – ident: 2024050406412600181_j_phys-2024-0016_ref_017 doi: 10.3390/math9111215 – ident: 2024050406412600181_j_phys-2024-0016_ref_020 doi: 10.1515/ntrev-2022-0031 – ident: 2024050406412600181_j_phys-2024-0016_ref_005 doi: 10.1007/s10483-019-2534-6 – ident: 2024050406412600181_j_phys-2024-0016_ref_008 doi: 10.1590/S0104-66322013000300019 – ident: 2024050406412600181_j_phys-2024-0016_ref_009 doi: 10.1515/nleng-2014-0002 – ident: 2024050406412600181_j_phys-2024-0016_ref_024 doi: 10.1007/s40314-020-01207-6 – ident: 2024050406412600181_j_phys-2024-0016_ref_013 doi: 10.1177/09544089211025376 – ident: 2024050406412600181_j_phys-2024-0016_ref_034 doi: 10.2298/TSCI23S1141J – ident: 2024050406412600181_j_phys-2024-0016_ref_019 doi: 10.1016/j.csite.2023.103345 – ident: 2024050406412600181_j_phys-2024-0016_ref_018 doi: 10.1016/j.aej.2022.03.032 – ident: 2024050406412600181_j_phys-2024-0016_ref_001 doi: 10.1016/0020-7462(94)90034-5 – ident: 2024050406412600181_j_phys-2024-0016_ref_028 doi: 10.1007/s40314-022-02024-9 – ident: 2024050406412600181_j_phys-2024-0016_ref_014 doi: 10.1177/09544089221078153 – ident: 2024050406412600181_j_phys-2024-0016_ref_003 doi: 10.1016/j.asej.2013.05.003 – ident: 2024050406412600181_j_phys-2024-0016_ref_036 – ident: 2024050406412600181_j_phys-2024-0016_ref_031 doi: 10.1016/j.matcom.2021.02.018 – ident: 2024050406412600181_j_phys-2024-0016_ref_021 doi: 10.32604/fdmp.2022.020509 – ident: 2024050406412600181_j_phys-2024-0016_ref_023 doi: 10.1080/00207160.2021.1876850 – ident: 2024050406412600181_j_phys-2024-0016_ref_025 doi: 10.1007/s12648-021-02025-0 – ident: 2024050406412600181_j_phys-2024-0016_ref_006 doi: 10.1186/s42787-020-00103-6 – ident: 2024050406412600181_j_phys-2024-0016_ref_004 doi: 10.1016/j.ijmecsci.2017.05.042 – ident: 2024050406412600181_j_phys-2024-0016_ref_011 doi: 10.24996/ijs.2018.59.1B.18 – ident: 2024050406412600181_j_phys-2024-0016_ref_015 doi: 10.1080/02286203.2022.2062166 – ident: 2024050406412600181_j_phys-2024-0016_ref_030 – ident: 2024050406412600181_j_phys-2024-0016_ref_035 doi: 10.1002/htj.22648 – ident: 2024050406412600181_j_phys-2024-0016_ref_002 doi: 10.1080/00986445.2010.500148 – ident: 2024050406412600181_j_phys-2024-0016_ref_038 doi: 10.1016/j.amc.2006.06.077 – ident: 2024050406412600181_j_phys-2024-0016_ref_032 doi: 10.1186/s42787-019-0016-y – ident: 2024050406412600181_j_phys-2024-0016_ref_037 doi: 10.3390/fractalfract7010094 |
| SSID | ssj0001537424 |
| Score | 2.3459032 |
| Snippet | In the current study, we delve into examining the movement of a nanofluid within a Williamson boundary layer, focusing on the analysis of heat and mass... |
| SourceID | doaj crossref walterdegruyter |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 155 |
| SubjectTerms | convergence analysis magnetic field porous medium shifted airfoil polynomials spectral collocation method Williamson nanofluid |
| Title | Numerical analysis of the MHD Williamson nanofluid flow over a nonlinear stretching sheet through a Darcy porous medium: Modeling and simulation |
| URI | https://www.degruyter.com/doi/10.1515/phys-2024-0016 https://doaj.org/article/aa73fb6c8f0e4ab1b3a86688483c48e3 |
| Volume | 22 |
| WOSCitedRecordID | wos001221234800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2391-5471 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537424 issn: 2391-5471 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2391-5471 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537424 issn: 2391-5471 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlpNAeQvpFt03LHAo9iciW1rZ6S5qEHJqlh7bkZvQxahc2dljbDbn0N_QnZyR7Q1oIvfRijBmQ0BszM9LoPcbeEcYovUCeB2240phxg1ZxwhqVlCEzSRvw26dysajOz_XnO1JfsSdspAceF27fmFIGW7gqCFTGZlaaqiiqSlXSqQoTz6co9Z1iarwfLKnmUxNLI8Xs_bhRQC6RKx6znD-iUCLrf8x2rtIBtcfv6-G63xyIpjhzsst2pgQRDsaJPWEPsHnKHqZGTdc9Y78Xw3jGsgIz8YlAG4DSODg7PYLN9knbQGOaNqyGpYewaq8gtmqCgWakxjBriLdE-tRJCd0PxB4myR4yOiLvvwbKzNuhg3j6Plx8gKiaFu-u07geuuXFpPv1nH09Of7y8ZRPqgrcST2P2vOekrLgXDBGoC4DUoQv6MUKp0uRe2-VQi2cxZK-YVEISWVN0OhtlRsvX7Atmiu-ZDD3TlrrjcwKT4Uh5ZpV7g2Bn8ksoFAzxjerXLuJcjwqX6zqWHoQKnVEpY6oxN66Ysbe39pfjmQb91oeRtBurSJJdvpArlNPrlP_y3VmLP8L8nr6gbt7hs3z7NX_GPk1ezS64pwLtce2-vWAb9i2-9kvu_Xb5Mr0PPt1fAP2O_7G |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+the+MHD+Williamson+nanofluid+flow+over+a+nonlinear+stretching+sheet+through+a+Darcy+porous+medium%3A+Modeling+and+simulation&rft.jtitle=Open+Physics&rft.au=Khader%2C+Mohamed+M.&rft.au=Ahmad%2C+Hijaz&rft.au=Adel%2C+Mohamed&rft.au=Megahed%2C+Ahmed+M.&rft.date=2024-05-04&rft.issn=2391-5471&rft.eissn=2391-5471&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1515%2Fphys-2024-0016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_phys_2024_0016 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5471&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5471&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5471&client=summon |