Global optimization of a combinatorially complex generalized pooling problem

Global optimization strategies are described for a generalization of the pooling problem that is important to the petrochemical, chemical, and wastewater treatment industries. The problem involves both discrete variables, modeling the structure of a flow network, and continuous variables, modeling f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIChE journal Ročník 52; číslo 3; s. 1027 - 1037
Hlavní autoři: Meyer, Clifford A., Floudas, Christodoulos A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.03.2006
Wiley Subscription Services
American Institute of Chemical Engineers
Témata:
ISSN:0001-1541, 1547-5905
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Global optimization strategies are described for a generalization of the pooling problem that is important to the petrochemical, chemical, and wastewater treatment industries. The problem involves both discrete variables, modeling the structure of a flow network, and continuous variables, modeling flow rates, and stream attributes. The continuous relaxation of this mixed integer nonlinear programming problem is nonconvex because of the presence of bilinear terms in the constraint functions. We propose an algorithm to find the global solution using the principles of the reformulation‐linearization technique (RLT). A novel piecewise linear RLT formulation is proposed and applied to the class of generalized pooling problems. Using this approach we verify the global solution of a combinatorially complex industrial problem containing 156 bilinear terms and 55 binary variables, reducing the gap between upper and lower bounds to within 1.2%. © 2005 American Institute of Chemical Engineers AIChE J, 2006
Bibliografie:istex:60A919EC1DD584A9AA5C5F9F01C88579D64B3FDB
ark:/67375/WNG-L0KHZHZ9-1
AspenTech Inc.
National Science Foundation
ArticleID:AIC10717
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.10717