Robust Facial Expression Recognition Based on Local Directional Pattern

Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance‐based feature descriptor, the local...

Full description

Saved in:
Bibliographic Details
Published in:ETRI journal Vol. 32; no. 5; pp. 784 - 794
Main Authors: Jabid, Taskeed, Kabir, Md. Hasanul, Chae, Oksam
Format: Journal Article
Language:English
Published: 한국전자통신연구원 01.10.2010
Subjects:
ISSN:1225-6463, 2233-7326
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance‐based feature descriptor, the local directional pattern (LDP), to represent facial geometry and analyze its performance in expression recognition. An LDP feature is obtained by computing the edge response values in 8 directions at each pixel and encoding them into an 8 bit binary number using the relative strength of these edge responses. The LDP descriptor, a distribution of LDP codes within an image or image patch, is used to describe each expression image. The effectiveness of dimensionality reduction techniques, such as principal component analysis and AdaBoost, is also analyzed in terms of computational cost saving and classification accuracy. Two well‐known machine learning methods, template matching and support vector machine, are used for classification using the Cohn‐Kanade and Japanese female facial expression databases. Better classification accuracy shows the superiority of LDP descriptor against other appearance‐based feature descriptors.
AbstractList Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance-based feature descriptor, the local directional pattern (LDP), to represent facial geometry and analyze its performance in expression recognition. An LDP feature is obtained by computing the edge response values in 8 directions at each pixel and encoding them into an 8 bit binary number using the relative strength of these edge responses. The LDP descriptor, a distribution of LDP codes within an image or image patch, is used to describe each expression image. The effectiveness of dimensionality reduction techniques, such as principal component analysis and AdaBoost, is also analyzed in terms of computational cost saving and classification accuracy. Two well-known machine learning methods, template matching and support vector machine, are used for classification using the Cohn-Kanade and Japanese female facial expression databases. Better classification accuracy shows the superiority of LDP descriptor against other appearance-based feature descriptors. KCI Citation Count: 139
Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance‐based feature descriptor, the local directional pattern (LDP), to represent facial geometry and analyze its performance in expression recognition. An LDP feature is obtained by computing the edge response values in 8 directions at each pixel and encoding them into an 8 bit binary number using the relative strength of these edge responses. The LDP descriptor, a distribution of LDP codes within an image or image patch, is used to describe each expression image. The effectiveness of dimensionality reduction techniques, such as principal component analysis and AdaBoost, is also analyzed in terms of computational cost saving and classification accuracy. Two well‐known machine learning methods, template matching and support vector machine, are used for classification using the Cohn‐Kanade and Japanese female facial expression databases. Better classification accuracy shows the superiority of LDP descriptor against other appearance‐based feature descriptors.
Author Jabid, Taskeed
Chae, Oksam
Kabir, Md. Hasanul
Author_xml – sequence: 1
  givenname: Taskeed
  surname: Jabid
  fullname: Jabid, Taskeed
– sequence: 2
  givenname: Md. Hasanul
  surname: Kabir
  fullname: Kabir, Md. Hasanul
– sequence: 3
  givenname: Oksam
  surname: Chae
  fullname: Chae, Oksam
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001486695$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqNUE1PAjEQbQwmAvoHPO3Ry2KnH7vtERHQhESzwXPT7XZJAbekXaP8e3fBkycuM-9l3pvJvBEaNL6xCN0DnjAC4tG2wW0nHQPeFQyUXKEhIZSmOSXZAA2BEJ5mLKM3aBTjFmOCGRdDtCx8-RXbZKGN0_tk_nMINkbnm6Swxm8a1_b4SUdbJR1YedOpnl2wph90-F23rQ3NLbqu9T7au78-Rh-L-Xr2kq7elq-z6So1VHKWUsg445xiZqqyYhSqjFtpgVec8BKgrAELQQUBm1vGylzKSkqbi8rKHLigY_Rw3tuEWu2MU167U994tQtqWqxflYRcAumk5Cw1wccYbK0OwX3qcFSAVZ-aOqXWsz411afWmcQ_k3Gt7n9tg3b7i6zfbm-PFxxT83VBcC4Y_QXriYWZ
CitedBy_id crossref_primary_10_1007_s11042_016_4321_2
crossref_primary_10_1016_j_ins_2024_120518
crossref_primary_10_1007_s00371_022_02571_6
crossref_primary_10_1007_s40747_021_00526_3
crossref_primary_10_1155_2019_3587036
crossref_primary_10_1186_s13673_018_0156_3
crossref_primary_10_1007_s00371_025_03911_y
crossref_primary_10_1016_j_ijleo_2022_168925
crossref_primary_10_1007_s11760_025_03984_1
crossref_primary_10_1007_s11042_019_07816_6
crossref_primary_10_3233_JIFS_18696
crossref_primary_10_1016_j_asoc_2024_111762
crossref_primary_10_1049_el_2012_1841
crossref_primary_10_1007_s11760_013_0561_z
crossref_primary_10_1109_TAFFC_2014_2386334
crossref_primary_10_3390_s19040833
crossref_primary_10_1109_ACCESS_2021_3053276
crossref_primary_10_1186_s13640_017_0190_5
crossref_primary_10_1016_j_patcog_2015_08_025
crossref_primary_10_1109_ACCESS_2025_3585596
crossref_primary_10_1109_TCSVT_2019_2890835
crossref_primary_10_3390_e24070882
crossref_primary_10_1016_j_eswa_2016_06_031
crossref_primary_10_3390_info9030048
crossref_primary_10_1109_ACCESS_2020_2992219
crossref_primary_10_1016_j_procs_2020_07_101
crossref_primary_10_1109_TCE_2014_7027346
crossref_primary_10_3390_electronics10091036
crossref_primary_10_1007_s41060_024_00601_1
crossref_primary_10_1109_ACCESS_2019_2928983
crossref_primary_10_1007_s10489_017_1121_y
crossref_primary_10_1109_TMM_2021_3096068
crossref_primary_10_3390_s19081899
crossref_primary_10_1155_2013_831747
crossref_primary_10_3390_info5020305
crossref_primary_10_3390_math11030776
crossref_primary_10_1007_s11042_025_20880_5
crossref_primary_10_1007_s11356_022_20265_3
crossref_primary_10_1016_j_ecoinf_2025_103365
crossref_primary_10_1016_j_patcog_2018_02_027
crossref_primary_10_3233_JIFS_17422
crossref_primary_10_1016_j_eswa_2017_08_013
crossref_primary_10_1016_j_neucom_2021_10_038
crossref_primary_10_1108_IDD_01_2019_0011
crossref_primary_10_1109_ACCESS_2020_2976117
crossref_primary_10_1007_s11042_020_09663_2
crossref_primary_10_1155_2013_820979
crossref_primary_10_1007_s11042_014_2082_3
crossref_primary_10_3390_s111211357
crossref_primary_10_2478_amns_2023_2_00053
crossref_primary_10_1109_TAFFC_2020_2995432
crossref_primary_10_1007_s11760_014_0732_6
crossref_primary_10_3390_app122312156
crossref_primary_10_1109_TIP_2020_3039895
crossref_primary_10_1155_2020_8886872
crossref_primary_10_1109_ACCESS_2022_3202893
crossref_primary_10_1007_s11571_022_09824_z
crossref_primary_10_3390_s130607714
crossref_primary_10_1007_s11042_024_20518_y
crossref_primary_10_3390_s19132844
crossref_primary_10_1007_s11042_020_09806_5
crossref_primary_10_1109_TAFFC_2018_2829707
crossref_primary_10_1109_TAFFC_2020_2970418
crossref_primary_10_1109_TIM_2020_3031835
crossref_primary_10_1016_j_patcog_2017_06_007
crossref_primary_10_1109_ACCESS_2018_2872493
crossref_primary_10_1007_s00530_014_0400_2
crossref_primary_10_1016_j_patcog_2019_03_019
crossref_primary_10_1007_s11042_022_12025_9
crossref_primary_10_1109_ACCESS_2021_3113337
crossref_primary_10_1002_cpe_6701
crossref_primary_10_1007_s11042_020_09566_2
crossref_primary_10_1109_TIFS_2019_2911165
crossref_primary_10_1080_02564602_2015_1117403
crossref_primary_10_12688_f1000research_73630_1
crossref_primary_10_1007_s11042_020_09581_3
crossref_primary_10_1007_s12652_016_0408_x
crossref_primary_10_1049_iet_cvi_2017_0340
crossref_primary_10_1007_s11760_021_01941_2
crossref_primary_10_1080_1206212X_2017_1395134
crossref_primary_10_1109_TIP_2017_2726010
crossref_primary_10_1007_s12652_020_02517_7
crossref_primary_10_1109_TIFS_2017_2695456
crossref_primary_10_1109_TSMC_2020_3003021
crossref_primary_10_1109_TCYB_2017_2682272
crossref_primary_10_1007_s12652_021_03384_6
crossref_primary_10_1016_j_ins_2019_03_027
crossref_primary_10_3390_s120303747
crossref_primary_10_1016_j_image_2019_01_002
crossref_primary_10_1007_s11801_019_8136_z
crossref_primary_10_3390_s22218089
crossref_primary_10_1109_TMM_2018_2844085
crossref_primary_10_4028_www_scientific_net_AMM_548_549_1110
crossref_primary_10_1155_2022_5707930
crossref_primary_10_1109_ACCESS_2022_3193941
crossref_primary_10_1109_ACCESS_2017_2704087
crossref_primary_10_1007_s00500_023_08143_7
crossref_primary_10_1007_s11042_024_18108_z
crossref_primary_10_1049_iet_ipr_2014_0905
crossref_primary_10_1134_S105466181603010X
crossref_primary_10_1007_s11042_023_15410_0
crossref_primary_10_1049_bme2_12012
crossref_primary_10_1109_TIP_2017_2705424
crossref_primary_10_3389_fphys_2024_1380459
crossref_primary_10_3233_JIFS_232985
crossref_primary_10_1109_TITS_2020_2981737
crossref_primary_10_1016_j_eswa_2022_117646
crossref_primary_10_1007_s00521_021_06632_0
crossref_primary_10_4218_etrij_13_0113_0194
crossref_primary_10_1007_s11042_024_19364_9
crossref_primary_10_1109_ACCESS_2017_2712788
crossref_primary_10_7717_peerj_cs_2272
crossref_primary_10_1587_transinf_E96_D_538
crossref_primary_10_1007_s00371_019_01707_5
crossref_primary_10_1007_s00371_020_01858_w
crossref_primary_10_1016_j_neucom_2020_01_034
crossref_primary_10_1109_TIP_2015_2405346
crossref_primary_10_1109_TSMC_2018_2795609
crossref_primary_10_1007_s11042_017_5141_8
crossref_primary_10_1007_s42979_025_04210_y
crossref_primary_10_1049_iet_ipr_2018_6423
crossref_primary_10_1109_TIP_2012_2235848
crossref_primary_10_1016_j_jvcir_2017_10_008
crossref_primary_10_1088_1742_6596_2107_1_012044
crossref_primary_10_1109_ACCESS_2017_2672829
crossref_primary_10_1007_s11042_020_09456_7
crossref_primary_10_3390_app13179910
crossref_primary_10_1007_s11042_021_11270_8
crossref_primary_10_2478_amcs_2018_0030
crossref_primary_10_4018_IJITSA_292042
crossref_primary_10_1109_TMM_2016_2542580
crossref_primary_10_1080_02564602_2015_1017542
crossref_primary_10_1049_iet_ipr_2018_5683
crossref_primary_10_1016_j_cviu_2018_01_004
crossref_primary_10_1109_THMS_2014_2380828
crossref_primary_10_1016_j_ijleo_2015_10_147
crossref_primary_10_1007_s11277_023_10819_0
crossref_primary_10_1007_s12652_017_0473_9
crossref_primary_10_1007_s11042_020_10105_2
crossref_primary_10_1007_s11042_019_7646_9
crossref_primary_10_1016_j_imavis_2019_02_001
crossref_primary_10_3390_s21144896
crossref_primary_10_1007_s11042_019_08487_z
crossref_primary_10_1007_s13369_021_05417_w
crossref_primary_10_1109_ACCESS_2021_3109441
crossref_primary_10_1007_s10489_020_01965_0
crossref_primary_10_1109_TIM_2023_3238753
crossref_primary_10_3390_sym11101189
crossref_primary_10_1007_s11042_018_6967_4
ContentType Journal Article
Copyright 2010 ETRI
Copyright_xml – notice: 2010 ETRI
DBID AAYXX
CITATION
ACYCR
DOI 10.4218/etrij.10.1510.0132
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2233-7326
EndPage 794
ExternalDocumentID oai_kci_go_kr_ARTI_917912
10_4218_etrij_10_1510_0132
ETR20784
Genre article
GrantInformation_xml – fundername: Korea Research Foundation
– fundername: Korean Government
  funderid: KRF‐2010‐0015908
GroupedDBID -~X
.4S
.DC
.UV
0R~
1OC
29G
2WC
5GY
5VS
9ZL
AAKPC
AAYBS
ACGFS
ACXQS
ACYCR
ADBBV
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVUZU
BCNDV
DU5
E3Z
EBS
EDO
EJD
GROUPED_DOAJ
IPNFZ
ITG
ITH
JDI
KQ8
KVFHK
MK~
ML~
O9-
OK1
P5Y
RIG
RNS
TR2
TUS
WIN
XSB
AAMMB
AAYXX
ADMLS
AEFGJ
AGXDD
AIDQK
AIDYY
ALUQN
CITATION
OVT
ID FETCH-LOGICAL-c3954-3165455304cdbd431d65e9e15d525b11bf10883821e7e44b799d99e78de971583
IEDL.DBID WIN
ISICitedReferencesCount 245
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000282921200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1225-6463
IngestDate Sat Oct 25 08:02:08 EDT 2025
Sat Nov 29 03:21:22 EST 2025
Tue Nov 18 21:31:34 EST 2025
Wed Jan 22 16:33:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3954-3165455304cdbd431d65e9e15d525b11bf10883821e7e44b799d99e78de971583
Notes G704-001110.2010.32.5.005
OpenAccessLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001486695
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_917912
crossref_primary_10_4218_etrij_10_1510_0132
crossref_citationtrail_10_4218_etrij_10_1510_0132
wiley_primary_10_4218_etrij_10_1510_0132_ETR20784
PublicationCentury 2000
PublicationDate October 2010
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: October 2010
PublicationDecade 2010
PublicationTitle ETRI journal
PublicationYear 2010
Publisher 한국전자통신연구원
Publisher_xml – name: 한국전자통신연구원
References 1996; 18
1979; 37
2004; 60
2010
2000; 22
2002; 13
2006; 39
1998
2009
2003; 36
2008
2006
1999; 21
1995
2005
2004
2003
1991
2007; 53
2009; 27
1997; 9
1978
1995; 20
2009; 55
2007; 29
2009; 30
2000
2002; 24
2006; 28
1999; 37
2003; 25
2009; 6
2005; 3
2005; 15
2008; 178
2009; 18
References_xml – year: 2003
  article-title: Real World Real‐time Automatic Recognition of Facial Expressions
– volume: 18
  start-page: 1314
  issue: 6
  year: 2009
  end-page: 1325
  article-title: Facial Recognition Using Multisensor Images Based on Localized Kernel Eigen Spaces
  publication-title: IEEE Trans. Image Process.
– volume: 22
  start-page: 1424
  issue: 12
  year: 2000
  end-page: 1445
  article-title: Automatic Analysis of Facial Expressions: The State of the Art
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 37
  start-page: 2049
  issue: 11
  year: 1979
  end-page: 2058
  article-title: Emotion Recognition: The Role of Facial Movement and the Relative Importance of Upper and Lower Areas of the Face
  publication-title: J. Personality Social Psychology
– volume: 36
  start-page: 259
  issue: 1
  year: 2003
  end-page: 275
  article-title: Automatic Facial Expression Analysis: A Survey
  publication-title: Pattern Recog.
– volume: 15
  start-page: 546
  issue: 2
  year: 2005
  end-page: 548
  article-title: Facial Expression Recognition with Local Binary Patterns and Linear Programming
  publication-title: Pattern Recog. Image Anal.
– start-page: 149
  year: 2006
  article-title: Fully Automatic Facial Action Unit Detection and Temporal Analysis
– start-page: 329
  year: 2010
  end-page: 330
  article-title: Local Directional Pattern (LDP) for Face Recognition
– start-page: 568
  year: 2005
  end-page: 573
  article-title: Recognizing Facial Expression: Machine Learning and Application to Spontaneous Behavior
– volume: 29
  start-page: 243
  issue: 2
  year: 2007
  end-page: 245
  article-title: Facial Feature Extraction Based on Private Energy Map in DCT Domain
  publication-title: ETRI J.
– year: 2003
  article-title: Facial Expression Analysis
– volume: 28
  start-page: 2037
  issue: 12
  year: 2006
  end-page: 2041
  article-title: Face Description with Local Binary Patterns: Application to Face Recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  article-title: Support Vector Networks
  publication-title: Machine Learning
– volume: 24
  start-page: 971
  issue: 7
  year: 2002
  end-page: 987
  article-title: Multiresolution Gray‐Scale and Rotation Invariant Texture Classification with Local Binary Patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 178
  start-page: 4314
  issue: 22
  year: 2008
  end-page: 4325
  article-title: A Novel Extended Local Binary Pattern Operator for Texture Analysis
  publication-title: Inf. Science
– volume: 6
  start-page: 217
  issue: 2
  year: 2009
  end-page: 227
  article-title: Analysis of Unsupervised Dimensionality Reduction Techniques
  publication-title: Comput. Sci. Inf. Syst.
– start-page: 23
  year: 1995
  end-page: 37
  article-title: A Decision‐Theoretic Generalization of On‐line Learning and an Application to Boosting
– volume: 30
  start-page: 1117
  issue: 12
  year: 2009
  end-page: 1127
  article-title: Boosted Multi‐resolution Spatio‐Temporal Descriptors for Facial Expression Recognition
  publication-title: Pattern Recognit. Lett.
– volume: 21
  start-page: 1357
  issue: 12
  year: 1999
  end-page: 1362
  article-title: Automatic Classification of Single Facial Images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 55
  start-page: 2216
  issue: 4
  year: 2009
  end-page: 2224
  article-title: An Enhanced Independent Component‐Based Human Facial Expression Recognition from Video
  publication-title: IEEE Trans. Consum. Electron.
– volume: 13
  start-page: 1450
  issue: 6
  year: 2002
  end-page: 1464
  article-title: Face Recognition by Independent Component Analysis
  publication-title: IEEE Trans. Neural Networks
– volume: 13
  start-page: 415
  issue: 2
  year: 2002
  end-page: 425
  article-title: A Comparison on Methods for Multiclass Support Vector Machines
  publication-title: IEEE Trans. Neural Networks
– volume: 9
  year: 1997
  article-title: Representation Face Images for Emotion Classification
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  end-page: 110
  article-title: Distinctive Image Features from Scale Invariant Key Points
  publication-title: Int. J. Comput. Vision
– start-page: 482
  year: 2010
  end-page: 487
  article-title: Local Directional Pattern (LDP): A Robust Image Descriptor for Object Recognition
– volume: 53
  start-page: 218
  issue: 1
  year: 2007
  end-page: 226
  article-title: Person Identification System for Future Digital TV with Intelligence
  publication-title: IEEE Trans. Consum. Electron.
– volume: 39
  start-page: 1795
  issue: 9
  year: 2006
  end-page: 1798
  article-title: Recognizing Facial Action Units using Independent Component Analysis and Support Vector Machine
  publication-title: Pattern Recog.
– volume: 21
  start-page: 974
  issue: 10
  year: 1999
  end-page: 989
  article-title: Classifying Facial Actions
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 740
  year: 2009
  end-page: 747
  article-title: Human Action Recognition Using LBPTOP as Sparse Spatio‐Temporal Feature Descriptor
– volume: 25
  start-page: 140
  issue: 2
  year: 2003
  end-page: 143
  article-title: A Probabilistic Network for Facial Feature Verification
  publication-title: ETRI J.
– start-page: 454
  year: 1998
  end-page: 459
  article-title: Comparison between Geometry‐Based and Gabor‐wavelets‐based Facial Expression Recognition Using Multi‐layer Perceptron
– start-page: 586
  year: 1991
  end-page: 591
  article-title: Face Recognition Using Eigenfaces
– start-page: 46
  year: 2000
  end-page: 53
  article-title: Comprehensive Database for Facial Expression Analysis
– volume: 18
  start-page: 648
  issue: 6
  year: 1996
  end-page: 652
  article-title: Off‐line Recognition of Totally Unconstrained Handwritten Numerals Using Multilayer Cluster Neural Network
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 53
  start-page: 917
  issue: 3
  year: 2007
  end-page: 925
  article-title: Biometric Access Control for Digital Media Streams in Home Networks
  publication-title: IEEE Trans. Consum. Electron.
– volume: 37
  start-page: 297
  issue: 3
  year: 1999
  end-page: 336
  article-title: Improved Boosting Algorithms using Confidence‐Rated Predictions
  publication-title: Maching Learning
– start-page: 914
  year: 2005
  end-page: 917
  article-title: Robust Facial Expression Recognition using Local Binary Patterns
– year: 1978
– start-page: 178
  year: 2006
  end-page: 188
  article-title: Gaze Estimation from Low Resolution Images
– start-page: 82
  year: 2004
  article-title: Evaluation of Face Resolution for Expression Analysis
– volume: 27
  start-page: 803
  issue: 6
  year: 2009
  end-page: 816
  article-title: Facial Expression Recognition based on Local Binary Patterns: A Comprehensive Study
  publication-title: Image Vision Comput.
– volume: 3
  start-page: 76
  year: 2005
  end-page: 84
  article-title: Facial Action Unit Detection using Probabilistic Actively Learned Support Vector Machines on Tracked Facial Point Data
  publication-title: IEEE CVPR Workshop
– start-page: 2144
  year: 2008
  end-page: 2147
  article-title: Sobel‐LBP
– volume: 29
  start-page: 915
  issue: 6
  year: 2007
  end-page: 928
  article-title: Dynamic Texture Recognition using Local Binary Patterns with An Application to Facial Expressions
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1216
  year: 2006
  end-page: 1219
  article-title: 2D Cascaded AdaBoost for Eye Localization
SSID ssj0020458
Score 2.4026432
Snippet Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully...
SourceID nrf
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 784
SubjectTerms facial expression recognition
features extraction
Image representation
local directional pattern
principal component analysis
support vector machine
전자/정보통신공학
Title Robust Facial Expression Recognition Based on Local Directional Pattern
URI https://onlinelibrary.wiley.com/doi/abs/10.4218%2Fetrij.10.1510.0132
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001486695
Volume 32
WOSCitedRecordID wos000282921200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ETRI Journal, 2010, 32(5), , pp.784-794
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2233-7326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020458
  issn: 1225-6463
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA9z-KAPfovziwq-SXFpkrZ59GPTgYwxJu4ttEkqY9JJt4l_vndpNxRBRHxqCslR7pL76uV3hJxTroPUcOlbHWmfpyLwEx2GPsTLWcTAh23KstlE1O3Gw6Hs1cjt4i5MiQ-xTLjhyXD6Gg94krouJBysEgpxVozgoGNuBMuzIKoCRUw5xTYGT53uMurCP4EYdcHG9UMesvLmDBK5_E7ii3VayYvsq8_qjE57838-d4tsVE6nd1Xukm1Ss_kOWf8ERbhL7vqTdD6dee0Ec-he670qkM29_qLECMbXYPOMB4MHNIFepS_Rmfd6Dqgz3yOP7dbg5t6vmiz4mknBQQeH4EQJ1uTagNAYNaGw0lJhRCBSStOMgiJicUBtZDlPIymNlDaKjZURFTHbJ_V8ktsD4lmTNDWEmIwnmoc6iLMwtgmQibMYfZEGoQvmKl0hkGMjjBcFkQiySTkm4RsySSGTGuRiuea1xN_4cfYZyEyN9UghbDY-nydqXCgIDjpKIhQrzKFOTr8gp1qDfgA-FD_8w5ojsuYqDVzh3zGpz4q5PSGr-m02mhanbo9-AIEs5Zw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8NADA_bFNQHv8X5WcE3Ke7a68c9qmxuOMcYE_d2tNerjEkn3Sb--SZtNxyCiPjUK9yFklySX9JcDuCScWWFERemVp4yeehYZqBc18R4OfZsxLA1kV824XU6_mAguiWoz8_C5P0hFgk30ozMXpOCU0KatJyjWyIpTtMhajolR6g-C8OqMqxwRBx0g8Nzq7OIu-hfIMVduHVNl7t2fnaGqFx_p7Hkn8pJGi-j1sztNLb-6YO3YbPAncZNvlF2oKSTXdj40o1wD-5743A2mRqNgNLoRv2jqJFNjN68ygjHt-j2IgMHbfKCRmEyCc8b3axXZ7IPT416_65pFvcsmMoWDkcz7CKOcuwaVxHKzWaR62ihmRM5lhMyFsYMbZHtW0x7mvPQEyISQnt-pIXHHN8-gEoyTvQhGDoKagqjTJsHirvK8mPX1wGS8WOf4EgV2Jy7UhVNyOkujFeJwQixSWZMojdikiQmVeFqseYtb8Hx4-wLFJocqaGkztn0fBnLUSoxPmhJQd1YcQ7LBPULcrLe71kIo_jRH9acw1qz_9iW7Vbn4RjWs8KDrA7wBCrTdKZPYVW9T4eT9CzbsJ_19-m6
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rS8MwED_mA9EPvsW3FfwmxaVN0-ajj02HMsZQ2LfQJqmMSTe6Kf753rXdUAQR8VNTSI5yl3v8rpcLwBnj2ksMl67VoXZ5EnhurIVwES-noY8xbF2Wl02E7XbU68lODRrTszBlf4hZwo00o7DXpOB2ZFLSco5uiaQ4yfuo6ZQcofoshFVzsMAFAnM6WNJqz3AX_Qsk3IVb1xVc-OXZGaJy8Z3GF_80l-Xp16i1cDvNtX_64HVYreJO57LcKBtQs9kmrHzqRrgFt91h8jqeOM2Y0uhO472qkc2c7rTKCMdX6PaMg4MH8oJOZTIpnnc6Ra_ObBuemo3H6zu3umfB1b4MOJphgXFU4Ne5Nig3nxkRWGlZYAIvSBhLUoa2yI88ZkPLeRJKaaS0YWSsDFkQ-Tswnw0zuwuONXFdI8r0eay50F6UisjGSCZKIwpH9oBNuat01YSc7sJ4UQhGiE2qYBK9EZMUMWkPzmdrRmULjh9nn6LQ1ED3FXXOpufzUA1yhfigpSR1Y8U5rBDUL8ipxmPXwzCK7_9hzQksdW6a6qHVvj-A5aLuoCgDPIT5Sf5qj2BRv0364_y42K8ft_jpPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Facial+Expression+Recognition+Based+on+Local+Directional+Pattern&rft.jtitle=ETRI+journal&rft.au=Jabid%2C+Taskeed&rft.au=Kabir%2C+Md.+Hasanul&rft.au=Chae%2C+Oksam&rft.date=2010-10-01&rft.issn=1225-6463&rft.eissn=2233-7326&rft.volume=32&rft.issue=5&rft.spage=784&rft.epage=794&rft_id=info:doi/10.4218%2Fetrij.10.1510.0132&rft.externalDBID=10.4218%252Fetrij.10.1510.0132&rft.externalDocID=ETR20784
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-6463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-6463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-6463&client=summon