Electromagnetic Signal Classification Based on Class Exemplar Selection and Multi-Objective Linear Programming
In the increasingly complex electromagnetic environment, a variety of new signal types are appearing; however, existing electromagnetic signal classification (ESC) models cannot handle new signal types. In this context, the emergence of class-incremental learning aims to incrementally update the cla...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 14; číslo 5; s. 1177 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.03.2022
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the increasingly complex electromagnetic environment, a variety of new signal types are appearing; however, existing electromagnetic signal classification (ESC) models cannot handle new signal types. In this context, the emergence of class-incremental learning aims to incrementally update the classification model as new categories emerge. In this paper, an electromagnetic signal classification framework based on class exemplar selection and a multi-objective linear programming classifier (CES-MOLPC) is proposed in order to continuously learn new classes in an incremental manner. Specifically, our approach involves the adaptive selection of class exemplars considering normalized mutual information and a multi-objective linear programming classifier. The former is used to maintain the classification capability of the model for previous categories by selecting key samples, while the latter is used to allow the model to adapt quickly to new categories. Meanwhile, a weighted loss function based on cross-entropy and distillation loss is presented in order to fine-tune the model. We demonstrate the effectiveness of the proposed CES-MOLPC method through extensive experiments on the public RML2016.04c data set and the large-scale real-world ACARS signal data set. The results of the comparative experiments demonstrate that our method can achieve significant improvements over state-of-the-art methods. |
|---|---|
| AbstractList | In the increasingly complex electromagnetic environment, a variety of new signal types are appearing; however, existing electromagnetic signal classification (ESC) models cannot handle new signal types. In this context, the emergence of class-incremental learning aims to incrementally update the classification model as new categories emerge. In this paper, an electromagnetic signal classification framework based on class exemplar selection and a multi-objective linear programming classifier (CES-MOLPC) is proposed in order to continuously learn new classes in an incremental manner. Specifically, our approach involves the adaptive selection of class exemplars considering normalized mutual information and a multi-objective linear programming classifier. The former is used to maintain the classification capability of the model for previous categories by selecting key samples, while the latter is used to allow the model to adapt quickly to new categories. Meanwhile, a weighted loss function based on cross-entropy and distillation loss is presented in order to fine-tune the model. We demonstrate the effectiveness of the proposed CES-MOLPC method through extensive experiments on the public RML2016.04c data set and the large-scale real-world ACARS signal data set. The results of the comparative experiments demonstrate that our method can achieve significant improvements over state-of-the-art methods. |
| Author | Zheng, Shilian Xu, Jie Jiao, Licheng Yang, Xiaoniu Bai, Jing Zhou, Huaji Xiao, Zhu Niu, Linchun |
| Author_xml | – sequence: 1 givenname: Huaji surname: Zhou fullname: Zhou, Huaji – sequence: 2 givenname: Jing orcidid: 0000-0001-5412-7793 surname: Bai fullname: Bai, Jing – sequence: 3 givenname: Linchun surname: Niu fullname: Niu, Linchun – sequence: 4 givenname: Jie surname: Xu fullname: Xu, Jie – sequence: 5 givenname: Zhu orcidid: 0000-0001-5645-160X surname: Xiao fullname: Xiao, Zhu – sequence: 6 givenname: Shilian orcidid: 0000-0002-3089-4346 surname: Zheng fullname: Zheng, Shilian – sequence: 7 givenname: Licheng surname: Jiao fullname: Jiao, Licheng – sequence: 8 givenname: Xiaoniu surname: Yang fullname: Yang, Xiaoniu |
| BookMark | eNptkV2L1DAUhoOs4Drujb-g4I0I1Xy1aS91GHVhZIXV63CanpQMaTImHdF_bzqjKIu5yeHwnPc9H0_JVYgBCXnO6GshevomZSZpw5hSj8g1p4rXkvf86p_4CbnJ-UDLE4L1VF6TsPNolhRnmAIuzlT3bgrgq62HnJ11BhYXQ_UOMo5VCc75avcD56OHVN3jWr4SEMbq08kvrr4bDmvuO1Z7F7BAn1OcEsyzC9Mz8tiCz3jz-9-Qr-93X7Yf6_3dh9vt231tRC-X2vZKtnLkVqAQtmsMgARheYuDwkYJLnvWWjHQQRqLTNCWc8ro2KlhlO3Yiw25veiOEQ76mNwM6aeO4PQ5EdOkIZVxPeoW5Ih98WVSyeLTj1IqbhrOipfgomi9vGgdU_x2wrzo2WWD3kPAeMqat7LrRNOUvjbkxQP0EE-p7HOlhFKdkrwrFL1QJsWcE1pt3HLe85LAec2oXu-p_96zlLx6UPJnpv_AvwA6M6FX |
| CitedBy_id | crossref_primary_10_1016_j_phycom_2023_102055 crossref_primary_10_3390_electronics14030430 |
| Cites_doi | 10.1109/TVT.2020.3037152 10.1109/CVPR42600.2020.00701 10.1109/ACSSC.2017.8335483 10.1109/TMTT.2021.3112199 10.1109/JSTSP.2018.2797022 10.1109/TVT.2019.2893928 10.1109/CVPR.2019.00092 10.23919/JCC.2020.10.011 10.23919/ICN.2020.0006 10.1109/TNNLS.2018.2850703 10.1109/CVPR.2017.587 10.3390/s16101675 10.1109/TWC.2021.3052222 10.1109/TKDE.2017.2772239 10.1109/CVPR46437.2021.00812 10.1109/TAP.2004.841326 10.23919/Eusipco47968.2020.9287608 10.1016/j.neunet.2019.01.012 10.1007/978-3-319-07176-3_69 10.1109/LWC.2019.2963828 10.23919/JCC.2020.02.012 10.3390/rs13152867 10.1007/978-3-030-01219-9_9 10.1007/978-3-319-44188-7_16 10.3390/rs13214376 10.3390/app11114970 10.1109/CVPR.2017.506 10.3390/e22101088 10.1109/LWC.2020.3034913 10.1007/978-3-030-01252-6_33 10.1109/TCCN.2020.3048113 10.1109/CVPR42600.2020.01322 10.1109/TGRS.2019.2891266 10.1109/CVPRW53098.2021.00398 10.1109/CVPR.2016.90 10.1109/CVPR.2019.00046 10.1109/SPAWC.2019.8815481 10.1109/TPAMI.2017.2707495 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs14051177 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_6a4de9c391474aa49d4472c521b7e323 10_3390_rs14051177 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO 7S9 L.6 |
| ID | FETCH-LOGICAL-c394t-f97464d2f3e33f85caa4a3f26eb7e57324916f3b0b4cfe130622010d87bd46d93 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000768777000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 14:54:48 EDT 2025 Sun Nov 09 14:34:12 EST 2025 Sat Sep 06 14:43:49 EDT 2025 Sat Nov 29 07:09:04 EST 2025 Tue Nov 18 21:25:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-f97464d2f3e33f85caa4a3f26eb7e57324916f3b0b4cfe130622010d87bd46d93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5412-7793 0000-0002-3089-4346 0000-0001-5645-160X |
| OpenAccessLink | https://www.proquest.com/docview/2637787428?pq-origsite=%requestingapplication% |
| PQID | 2637787428 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6a4de9c391474aa49d4472c521b7e323 proquest_miscellaneous_2648835557 proquest_journals_2637787428 crossref_citationtrail_10_3390_rs14051177 crossref_primary_10_3390_rs14051177 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Shao (ref_42) 2017; 30 Parisi (ref_38) 2019; 113 ref_36 ref_35 (ref_3) 2005; 53 ref_34 ref_33 ref_10 ref_32 ref_31 ref_30 Cai (ref_5) 2020; 1 ref_19 ref_16 Peng (ref_18) 2018; 30 Cui (ref_39) 2018; 15 ref_15 ref_37 Dang (ref_44) 2019; 57 Liu (ref_12) 2020; 9 Roy (ref_17) 2018; 12 Wei (ref_14) 2021; 69 Huang (ref_11) 2019; 68 Zhuang (ref_4) 2020; 69 ref_25 ref_47 ref_24 ref_46 ref_23 ref_45 ref_22 ref_43 ref_20 ref_41 ref_1 Zhou (ref_8) 2020; 17 Huang (ref_2) 2020; 7 Rudd (ref_40) 2017; 40 ref_29 Wang (ref_21) 2021; 20 ref_28 ref_27 ref_26 ref_48 ref_9 Li (ref_13) 2020; 10 Zheng (ref_6) 2020; 17 ref_7 |
| References_xml | – volume: 69 start-page: 15216 year: 2020 ident: ref_4 article-title: Optimal Resource Allocation for RF-Powered Underlay Cognitive Radio Networks With Ambient Backscatter Communication publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.3037152 – ident: ref_34 doi: 10.1109/CVPR42600.2020.00701 – ident: ref_9 – ident: ref_20 doi: 10.1109/ACSSC.2017.8335483 – volume: 69 start-page: 5160 year: 2021 ident: ref_14 article-title: Self-Attention Bi-LSTM Networks for Radar Signal Modulation Recognition publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2021.3112199 – ident: ref_32 – ident: ref_24 – ident: ref_26 – volume: 12 start-page: 168 year: 2018 ident: ref_17 article-title: Over-the-air deep learning based radio signal classification publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2018.2797022 – volume: 68 start-page: 3027 year: 2019 ident: ref_11 article-title: Deep-learning-based millimeter-wave massive MIMO for hybrid precoding publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2893928 – ident: ref_36 doi: 10.1109/CVPR.2019.00092 – volume: 17 start-page: 157 year: 2020 ident: ref_8 article-title: Generative adversarial network-based electromagnetic signal classification: A semi-supervised learning framework publication-title: China Commun. doi: 10.23919/JCC.2020.10.011 – volume: 1 start-page: 79 year: 2020 ident: ref_5 article-title: Intelligent cognitive spectrum collaboration: Convergence of spectrum sensing, spectrum access, and coding technology publication-title: Intell. Converg. Netw. doi: 10.23919/ICN.2020.0006 – volume: 30 start-page: 718 year: 2018 ident: ref_18 article-title: Modulation classification based on signal constellation diagrams and deep learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2850703 – ident: ref_30 doi: 10.1109/CVPR.2017.587 – ident: ref_7 doi: 10.3390/s16101675 – volume: 20 start-page: 3587 year: 2021 ident: ref_21 article-title: Multi-task learning for generalized automatic modulation classification under non-Gaussian noise with varying SNR conditions publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2021.3052222 – volume: 30 start-page: 978 year: 2017 ident: ref_42 article-title: Robust prototype-based learning on data streams publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2772239 – ident: ref_47 doi: 10.1109/CVPR46437.2021.00812 – volume: 53 start-page: 766 year: 2005 ident: ref_3 article-title: Real time electromagnetic target classification using a novel feature extraction technique with PCA-based fusion publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2004.841326 – ident: ref_19 doi: 10.23919/Eusipco47968.2020.9287608 – volume: 113 start-page: 54 year: 2019 ident: ref_38 article-title: Continual lifelong learning with neural networks: A review publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.01.012 – volume: 15 start-page: 1585 year: 2018 ident: ref_39 article-title: SAR unlabeled target recognition based on updating CNN with assistant decision publication-title: IEEE Geosci. Remote Sens. Lett. – ident: ref_25 – ident: ref_43 doi: 10.1007/978-3-319-07176-3_69 – volume: 9 start-page: 624 year: 2020 ident: ref_12 article-title: Modulation recognition with graph convolutional network publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2019.2963828 – ident: ref_29 – ident: ref_33 – ident: ref_27 – volume: 17 start-page: 138 year: 2020 ident: ref_6 article-title: Spectrum sensing based on deep learning classification for cognitive radios publication-title: China Commun. doi: 10.23919/JCC.2020.02.012 – ident: ref_10 doi: 10.3390/rs13152867 – ident: ref_28 doi: 10.1007/978-3-030-01219-9_9 – ident: ref_15 doi: 10.1007/978-3-319-44188-7_16 – ident: ref_1 doi: 10.3390/rs13214376 – ident: ref_46 doi: 10.3390/app11114970 – ident: ref_41 doi: 10.1109/CVPR.2017.506 – ident: ref_48 doi: 10.3390/e22101088 – volume: 10 start-page: 474 year: 2020 ident: ref_13 article-title: Automatic Modulation Recognition: A Few-Shot Learning Method Based on the Capsule Network publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2020.3034913 – ident: ref_23 doi: 10.1007/978-3-030-01252-6_33 – volume: 7 start-page: 47 year: 2020 ident: ref_2 article-title: Visualizing deep learning-based radio modulation classifier publication-title: IEEE Trans. Cognit. Commun. Netw. doi: 10.1109/TCCN.2020.3048113 – ident: ref_45 – ident: ref_37 doi: 10.1109/CVPR42600.2020.01322 – volume: 57 start-page: 4445 year: 2019 ident: ref_44 article-title: Open set incremental learning for automatic target recognition publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2891266 – ident: ref_35 doi: 10.1109/CVPRW53098.2021.00398 – ident: ref_16 doi: 10.1109/CVPR.2016.90 – ident: ref_31 doi: 10.1109/CVPR.2019.00046 – ident: ref_22 doi: 10.1109/SPAWC.2019.8815481 – volume: 40 start-page: 762 year: 2017 ident: ref_40 article-title: The extreme value machine publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2707495 |
| SSID | ssj0000331904 |
| Score | 2.3302407 |
| Snippet | In the increasingly complex electromagnetic environment, a variety of new signal types are appearing; however, existing electromagnetic signal classification... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1177 |
| SubjectTerms | Algorithms Bias Categories class exemplar selection class incremental learning Classification Classifiers data collection Datasets Deep learning Distillation electromagnetic signal classification Entropy Linear programming multi-objective linear programming Multiple objective analysis Neural networks normalized mutual information Radiation Radio equipment Receivers & amplifiers Remote sensing Signal classification Signal processing Teaching methods |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4igl7EJ65WiejFw9LdJJvsHq1UPEgtVMHbsptHVey29CH6750k21pR8OItZGchfJnMzEcmMwidcxkLA5Y_LBNNQmYi5UeElzISMoaQw5XMvxWdTvr4mHWXWn3ZnDBfHtgD1-QFUzqTNIuZYEXBMsWYIBK8Tik0Ja7OZySyJTLlbDAF1YqYr0dKgdc3xxOgEom9ovzmgVyh_h922DmX6y20WUeF-NKvZhut6GoHrdcNyp8-dlHV9u1qBkW_ss8Oce-5b_9wPS1tto8DGLfAJykMAzeP2-96MALqinuu242VKCqF3aPb8K588cYOAx8Ffcddn6o1AGe2hx6u2_dXN2HdKiEEZNg0NEALOFPEUE2pSRMJSBXUEK4BpURA1ARhoKFlVDJpNPgtTuw1uEpFqRhXGd1Hq9Ww0gcIS8pTZlhmHRWLdZxmEAQxlRaxIhLoW4Au5vDlsq4jbttZvObAJyzU-RfUATpbyI589YxfpVp2FxYStuK1mwA9yGs9yP_SgwA15nuY18dwkhNOBVgkoFgBOl18hgNkb0WKSg9nVgZsGERdiTj8j3UcoQ1iX0i4NLUGWp2OZ_oYrcm36fNkfOK09BOWi-r2 priority: 102 providerName: Directory of Open Access Journals |
| Title | Electromagnetic Signal Classification Based on Class Exemplar Selection and Multi-Objective Linear Programming |
| URI | https://www.proquest.com/docview/2637787428 https://www.proquest.com/docview/2648835557 https://doaj.org/article/6a4de9c391474aa49d4472c521b7e323 |
| Volume | 14 |
| WOSCitedRecordID | wos000768777000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Nb9Mw9Ak2JHYZ31phVEZw4RAtsR07OSGKMoEEJaIgDS5R4o-yaU1L201w4bfznpN2QiAuXCzLfonivG_7-T2AZ8ok2qPkj5rU8Uj62HY9rhoTa5OgyRFS5r_V43F2cpKX_Ybbqg-r3MjEIKjt3NAe-RFXQiNxobX8YvEtoqpRdLral9C4DruUJSEJoXuT7R5LLJDAYtllJRXo3R8tV-hQpHRQ-ZseCun6_5DGQcUc3_rfj7sN-71xyV521HAHrrn2Ltzs65x__XEP2qKrejOrpy3dXmST0yk9EUpjUtBQwBMboWqzDDthnBXf3WyBHjCbhKI5BFG3loW7u9H75qyTmQzdWmQbVnYRXzPUiffh03Hx8dXrqK-4EBmRy3Xk0btQ0nIvnBA-S01dy1p4rlyjXarR-EJr0osmbqTxDtWf4nSabjPdWKlsLh7ATjtv3QEwI1QmvcxJ38nEJVmOtpS0WZ1YbtALHMDzzf-vTJ-OnKpinFfolhCuqitcDeDpFnbRJeH4K9SI0LiFoMTZYWC-nFY9H1aqltbluNpEaomry62Umhs0YnCFgosBHG4wXPXcvKqu0DuAJ9tp5EM6XKlbN78gGBSFaLyl-uG_X_EI9jhdoQhxbIews15euMdww1yuT1fLIeyOinH5YRj2BoaBnKn9WWBbpl9wvnzzrvz8CwANAFo |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKVK5lLdIW2ARcOBg1d5de-0DQhRSNWoaIrVI5WTsfaRFxAlJCvRP8RuZWdupEIhbD9wse2xp7M_ffLOPGYDniY6UQ-YPytjyQLrQ1Ec8KXWodISSw5fMH6jhMD09zUZr8LPdC0PLKltO9ERtpprGyHd5IhSCC9Xy69nXgLpG0exq20KjhsWhvfyOKdviVf8dft8XnO_3Tt4eBE1XgUCLTC4Dhwo6kYY7YYVwaayLQhbC8cSWysYKBQYqJifKsJTaWaT4hNOMsUlVaWRiqPgSUv66JLB3YH3UPxp9XI3qhAIhHcq6DqoQWbg7X2AKE9PU6G-RzzcI-IP_fVDbv_W_vY7bsNnIZ_amxvsdWLPVXdhoOrmfXd6Dqlf39ZkU44r2Z7Lj8zHd4Zt_0rIoj0S2h8HbMDzw51nvh53MMMdnx74tEFkUlWF-d3LwvvxcRwWGiTu6zEb1mrYJRv378OFa3H0AnWpa2YfAtEhS6WRGEV1GNkozVIvSpEVkuMY8twsv2--d66bgOvX9-JJj4kXYyK-w0YVnK9tZXWbkr1Z7BJuVBZUG9yem83HeME2eFNLYDL2NpJLoXWakVFyjTEMPBRdd2GkRlTd8tciv4NSFp6vLyDQ0fVRUdnpBNkj2KE9jtfXvRzyBjYOTo0E-6A8Pt-Empw0jftXeDnSW8wv7CG7ob8vzxfxx8_sw-HTdEP0FRVRXdA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VBQEXvhGBAouAAwcr9u561z4gRGkiqlYhUkGquBh7P9JWxAlJCvSv8euYWdupEIhbD9wsZ2Jp7OeZN97ZeQDPlUm0x8gfVanjkfSxbY64qkysTYKUI4zM39ejUXZ4mI834Ge3F4baKruYGAK1nRn6Rt7nSmgEF7Llvm_bIsY7w9fzrxEpSNFKayen0UBkz519x_Jt-Wp3B5_1C86Hgw9v30WtwkBkRC5XkUc2raTlXjghfJaaspSl8Fy5SrtUI9lA9uRFFVfSeIfhXnFaPbaZrqxUlgYxYfi_hBfJqZ1wnH5af9-JBYI7ls1EVCHyuL9YYjGT0iLpbzkwSAX8kQlCehve-J9vzE243pJq9qZ5C27Bhqtvw9VW3_3o7A7Ug0btZ1pOatq1yQ6OJ_SPIAlKzVIBn2wbU7pleBDOs8EPN51j5c8OglgQWZS1ZWHPcvS-OmlyBcNyHl1m46bTbYpc4C58vBB378FmPavdfWBGqEx6mVOel4lLshw5pLRZmVhusPrtwcvu2RemHcNOaiBfCizHCCfFOU568GxtO2-Gj_zVapsgtLaggeHhxGwxKdr4U6hSWpejt4nUEr3LrZSaGyRv6KHgogdbHbqKNooti3No9eDp-meMP7SoVNZudko2mAKQtKb6wb8v8QSuIC6L_d3R3kO4xmkXSWjl24LN1eLUPYLL5tvqeLl4HN4jBp8vGp-_AAk4Xtc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromagnetic+Signal+Classification+Based+on+Class+Exemplar+Selection+and+Multi-Objective+Linear+Programming&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhou%2C+Huaji&rft.au=Bai%2C+Jing&rft.au=Niu%2C+Linchun&rft.au=Xu%2C+Jie&rft.date=2022-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=5&rft_id=info:doi/10.3390%2Frs14051177&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |