Electromagnetic Signal Classification Based on Class Exemplar Selection and Multi-Objective Linear Programming

In the increasingly complex electromagnetic environment, a variety of new signal types are appearing; however, existing electromagnetic signal classification (ESC) models cannot handle new signal types. In this context, the emergence of class-incremental learning aims to incrementally update the cla...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 14; číslo 5; s. 1177
Hlavní autoři: Zhou, Huaji, Bai, Jing, Niu, Linchun, Xu, Jie, Xiao, Zhu, Zheng, Shilian, Jiao, Licheng, Yang, Xiaoniu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.03.2022
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the increasingly complex electromagnetic environment, a variety of new signal types are appearing; however, existing electromagnetic signal classification (ESC) models cannot handle new signal types. In this context, the emergence of class-incremental learning aims to incrementally update the classification model as new categories emerge. In this paper, an electromagnetic signal classification framework based on class exemplar selection and a multi-objective linear programming classifier (CES-MOLPC) is proposed in order to continuously learn new classes in an incremental manner. Specifically, our approach involves the adaptive selection of class exemplars considering normalized mutual information and a multi-objective linear programming classifier. The former is used to maintain the classification capability of the model for previous categories by selecting key samples, while the latter is used to allow the model to adapt quickly to new categories. Meanwhile, a weighted loss function based on cross-entropy and distillation loss is presented in order to fine-tune the model. We demonstrate the effectiveness of the proposed CES-MOLPC method through extensive experiments on the public RML2016.04c data set and the large-scale real-world ACARS signal data set. The results of the comparative experiments demonstrate that our method can achieve significant improvements over state-of-the-art methods.
AbstractList In the increasingly complex electromagnetic environment, a variety of new signal types are appearing; however, existing electromagnetic signal classification (ESC) models cannot handle new signal types. In this context, the emergence of class-incremental learning aims to incrementally update the classification model as new categories emerge. In this paper, an electromagnetic signal classification framework based on class exemplar selection and a multi-objective linear programming classifier (CES-MOLPC) is proposed in order to continuously learn new classes in an incremental manner. Specifically, our approach involves the adaptive selection of class exemplars considering normalized mutual information and a multi-objective linear programming classifier. The former is used to maintain the classification capability of the model for previous categories by selecting key samples, while the latter is used to allow the model to adapt quickly to new categories. Meanwhile, a weighted loss function based on cross-entropy and distillation loss is presented in order to fine-tune the model. We demonstrate the effectiveness of the proposed CES-MOLPC method through extensive experiments on the public RML2016.04c data set and the large-scale real-world ACARS signal data set. The results of the comparative experiments demonstrate that our method can achieve significant improvements over state-of-the-art methods.
Author Zheng, Shilian
Xu, Jie
Jiao, Licheng
Yang, Xiaoniu
Bai, Jing
Zhou, Huaji
Xiao, Zhu
Niu, Linchun
Author_xml – sequence: 1
  givenname: Huaji
  surname: Zhou
  fullname: Zhou, Huaji
– sequence: 2
  givenname: Jing
  orcidid: 0000-0001-5412-7793
  surname: Bai
  fullname: Bai, Jing
– sequence: 3
  givenname: Linchun
  surname: Niu
  fullname: Niu, Linchun
– sequence: 4
  givenname: Jie
  surname: Xu
  fullname: Xu, Jie
– sequence: 5
  givenname: Zhu
  orcidid: 0000-0001-5645-160X
  surname: Xiao
  fullname: Xiao, Zhu
– sequence: 6
  givenname: Shilian
  orcidid: 0000-0002-3089-4346
  surname: Zheng
  fullname: Zheng, Shilian
– sequence: 7
  givenname: Licheng
  surname: Jiao
  fullname: Jiao, Licheng
– sequence: 8
  givenname: Xiaoniu
  surname: Yang
  fullname: Yang, Xiaoniu
BookMark eNptkV2L1DAUhoOs4Drujb-g4I0I1Xy1aS91GHVhZIXV63CanpQMaTImHdF_bzqjKIu5yeHwnPc9H0_JVYgBCXnO6GshevomZSZpw5hSj8g1p4rXkvf86p_4CbnJ-UDLE4L1VF6TsPNolhRnmAIuzlT3bgrgq62HnJ11BhYXQ_UOMo5VCc75avcD56OHVN3jWr4SEMbq08kvrr4bDmvuO1Z7F7BAn1OcEsyzC9Mz8tiCz3jz-9-Qr-93X7Yf6_3dh9vt231tRC-X2vZKtnLkVqAQtmsMgARheYuDwkYJLnvWWjHQQRqLTNCWc8ro2KlhlO3Yiw25veiOEQ76mNwM6aeO4PQ5EdOkIZVxPeoW5Ih98WVSyeLTj1IqbhrOipfgomi9vGgdU_x2wrzo2WWD3kPAeMqat7LrRNOUvjbkxQP0EE-p7HOlhFKdkrwrFL1QJsWcE1pt3HLe85LAec2oXu-p_96zlLx6UPJnpv_AvwA6M6FX
CitedBy_id crossref_primary_10_1016_j_phycom_2023_102055
crossref_primary_10_3390_electronics14030430
Cites_doi 10.1109/TVT.2020.3037152
10.1109/CVPR42600.2020.00701
10.1109/ACSSC.2017.8335483
10.1109/TMTT.2021.3112199
10.1109/JSTSP.2018.2797022
10.1109/TVT.2019.2893928
10.1109/CVPR.2019.00092
10.23919/JCC.2020.10.011
10.23919/ICN.2020.0006
10.1109/TNNLS.2018.2850703
10.1109/CVPR.2017.587
10.3390/s16101675
10.1109/TWC.2021.3052222
10.1109/TKDE.2017.2772239
10.1109/CVPR46437.2021.00812
10.1109/TAP.2004.841326
10.23919/Eusipco47968.2020.9287608
10.1016/j.neunet.2019.01.012
10.1007/978-3-319-07176-3_69
10.1109/LWC.2019.2963828
10.23919/JCC.2020.02.012
10.3390/rs13152867
10.1007/978-3-030-01219-9_9
10.1007/978-3-319-44188-7_16
10.3390/rs13214376
10.3390/app11114970
10.1109/CVPR.2017.506
10.3390/e22101088
10.1109/LWC.2020.3034913
10.1007/978-3-030-01252-6_33
10.1109/TCCN.2020.3048113
10.1109/CVPR42600.2020.01322
10.1109/TGRS.2019.2891266
10.1109/CVPRW53098.2021.00398
10.1109/CVPR.2016.90
10.1109/CVPR.2019.00046
10.1109/SPAWC.2019.8815481
10.1109/TPAMI.2017.2707495
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14051177
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_6a4de9c391474aa49d4472c521b7e323
10_3390_rs14051177
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c394t-f97464d2f3e33f85caa4a3f26eb7e57324916f3b0b4cfe130622010d87bd46d93
IEDL.DBID M7S
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000768777000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Tue Oct 14 14:54:48 EDT 2025
Sun Nov 09 14:34:12 EST 2025
Sat Sep 06 14:43:49 EDT 2025
Sat Nov 29 07:09:04 EST 2025
Tue Nov 18 21:25:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-f97464d2f3e33f85caa4a3f26eb7e57324916f3b0b4cfe130622010d87bd46d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5412-7793
0000-0002-3089-4346
0000-0001-5645-160X
OpenAccessLink https://www.proquest.com/docview/2637787428?pq-origsite=%requestingapplication%
PQID 2637787428
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_6a4de9c391474aa49d4472c521b7e323
proquest_miscellaneous_2648835557
proquest_journals_2637787428
crossref_citationtrail_10_3390_rs14051177
crossref_primary_10_3390_rs14051177
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shao (ref_42) 2017; 30
Parisi (ref_38) 2019; 113
ref_36
ref_35
(ref_3) 2005; 53
ref_34
ref_33
ref_10
ref_32
ref_31
ref_30
Cai (ref_5) 2020; 1
ref_19
ref_16
Peng (ref_18) 2018; 30
Cui (ref_39) 2018; 15
ref_15
ref_37
Dang (ref_44) 2019; 57
Liu (ref_12) 2020; 9
Roy (ref_17) 2018; 12
Wei (ref_14) 2021; 69
Huang (ref_11) 2019; 68
Zhuang (ref_4) 2020; 69
ref_25
ref_47
ref_24
ref_46
ref_23
ref_45
ref_22
ref_43
ref_20
ref_41
ref_1
Zhou (ref_8) 2020; 17
Huang (ref_2) 2020; 7
Rudd (ref_40) 2017; 40
ref_29
Wang (ref_21) 2021; 20
ref_28
ref_27
ref_26
ref_48
ref_9
Li (ref_13) 2020; 10
Zheng (ref_6) 2020; 17
ref_7
References_xml – volume: 69
  start-page: 15216
  year: 2020
  ident: ref_4
  article-title: Optimal Resource Allocation for RF-Powered Underlay Cognitive Radio Networks With Ambient Backscatter Communication
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3037152
– ident: ref_34
  doi: 10.1109/CVPR42600.2020.00701
– ident: ref_9
– ident: ref_20
  doi: 10.1109/ACSSC.2017.8335483
– volume: 69
  start-page: 5160
  year: 2021
  ident: ref_14
  article-title: Self-Attention Bi-LSTM Networks for Radar Signal Modulation Recognition
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2021.3112199
– ident: ref_32
– ident: ref_24
– ident: ref_26
– volume: 12
  start-page: 168
  year: 2018
  ident: ref_17
  article-title: Over-the-air deep learning based radio signal classification
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2018.2797022
– volume: 68
  start-page: 3027
  year: 2019
  ident: ref_11
  article-title: Deep-learning-based millimeter-wave massive MIMO for hybrid precoding
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2893928
– ident: ref_36
  doi: 10.1109/CVPR.2019.00092
– volume: 17
  start-page: 157
  year: 2020
  ident: ref_8
  article-title: Generative adversarial network-based electromagnetic signal classification: A semi-supervised learning framework
  publication-title: China Commun.
  doi: 10.23919/JCC.2020.10.011
– volume: 1
  start-page: 79
  year: 2020
  ident: ref_5
  article-title: Intelligent cognitive spectrum collaboration: Convergence of spectrum sensing, spectrum access, and coding technology
  publication-title: Intell. Converg. Netw.
  doi: 10.23919/ICN.2020.0006
– volume: 30
  start-page: 718
  year: 2018
  ident: ref_18
  article-title: Modulation classification based on signal constellation diagrams and deep learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2850703
– ident: ref_30
  doi: 10.1109/CVPR.2017.587
– ident: ref_7
  doi: 10.3390/s16101675
– volume: 20
  start-page: 3587
  year: 2021
  ident: ref_21
  article-title: Multi-task learning for generalized automatic modulation classification under non-Gaussian noise with varying SNR conditions
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2021.3052222
– volume: 30
  start-page: 978
  year: 2017
  ident: ref_42
  article-title: Robust prototype-based learning on data streams
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2772239
– ident: ref_47
  doi: 10.1109/CVPR46437.2021.00812
– volume: 53
  start-page: 766
  year: 2005
  ident: ref_3
  article-title: Real time electromagnetic target classification using a novel feature extraction technique with PCA-based fusion
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2004.841326
– ident: ref_19
  doi: 10.23919/Eusipco47968.2020.9287608
– volume: 113
  start-page: 54
  year: 2019
  ident: ref_38
  article-title: Continual lifelong learning with neural networks: A review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.01.012
– volume: 15
  start-page: 1585
  year: 2018
  ident: ref_39
  article-title: SAR unlabeled target recognition based on updating CNN with assistant decision
  publication-title: IEEE Geosci. Remote Sens. Lett.
– ident: ref_25
– ident: ref_43
  doi: 10.1007/978-3-319-07176-3_69
– volume: 9
  start-page: 624
  year: 2020
  ident: ref_12
  article-title: Modulation recognition with graph convolutional network
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2019.2963828
– ident: ref_29
– ident: ref_33
– ident: ref_27
– volume: 17
  start-page: 138
  year: 2020
  ident: ref_6
  article-title: Spectrum sensing based on deep learning classification for cognitive radios
  publication-title: China Commun.
  doi: 10.23919/JCC.2020.02.012
– ident: ref_10
  doi: 10.3390/rs13152867
– ident: ref_28
  doi: 10.1007/978-3-030-01219-9_9
– ident: ref_15
  doi: 10.1007/978-3-319-44188-7_16
– ident: ref_1
  doi: 10.3390/rs13214376
– ident: ref_46
  doi: 10.3390/app11114970
– ident: ref_41
  doi: 10.1109/CVPR.2017.506
– ident: ref_48
  doi: 10.3390/e22101088
– volume: 10
  start-page: 474
  year: 2020
  ident: ref_13
  article-title: Automatic Modulation Recognition: A Few-Shot Learning Method Based on the Capsule Network
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2020.3034913
– ident: ref_23
  doi: 10.1007/978-3-030-01252-6_33
– volume: 7
  start-page: 47
  year: 2020
  ident: ref_2
  article-title: Visualizing deep learning-based radio modulation classifier
  publication-title: IEEE Trans. Cognit. Commun. Netw.
  doi: 10.1109/TCCN.2020.3048113
– ident: ref_45
– ident: ref_37
  doi: 10.1109/CVPR42600.2020.01322
– volume: 57
  start-page: 4445
  year: 2019
  ident: ref_44
  article-title: Open set incremental learning for automatic target recognition
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2891266
– ident: ref_35
  doi: 10.1109/CVPRW53098.2021.00398
– ident: ref_16
  doi: 10.1109/CVPR.2016.90
– ident: ref_31
  doi: 10.1109/CVPR.2019.00046
– ident: ref_22
  doi: 10.1109/SPAWC.2019.8815481
– volume: 40
  start-page: 762
  year: 2017
  ident: ref_40
  article-title: The extreme value machine
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2707495
SSID ssj0000331904
Score 2.3302407
Snippet In the increasingly complex electromagnetic environment, a variety of new signal types are appearing; however, existing electromagnetic signal classification...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1177
SubjectTerms Algorithms
Bias
Categories
class exemplar selection
class incremental learning
Classification
Classifiers
data collection
Datasets
Deep learning
Distillation
electromagnetic signal classification
Entropy
Linear programming
multi-objective linear programming
Multiple objective analysis
Neural networks
normalized mutual information
Radiation
Radio equipment
Receivers & amplifiers
Remote sensing
Signal classification
Signal processing
Teaching methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4igl7EJ65WiejFw9LdJJvsHq1UPEgtVMHbsptHVey29CH6750k21pR8OItZGchfJnMzEcmMwidcxkLA5Y_LBNNQmYi5UeElzISMoaQw5XMvxWdTvr4mHWXWn3ZnDBfHtgD1-QFUzqTNIuZYEXBMsWYIBK8Tik0Ja7OZySyJTLlbDAF1YqYr0dKgdc3xxOgEom9ovzmgVyh_h922DmX6y20WUeF-NKvZhut6GoHrdcNyp8-dlHV9u1qBkW_ss8Oce-5b_9wPS1tto8DGLfAJykMAzeP2-96MALqinuu242VKCqF3aPb8K588cYOAx8Ffcddn6o1AGe2hx6u2_dXN2HdKiEEZNg0NEALOFPEUE2pSRMJSBXUEK4BpURA1ARhoKFlVDJpNPgtTuw1uEpFqRhXGd1Hq9Ww0gcIS8pTZlhmHRWLdZxmEAQxlRaxIhLoW4Au5vDlsq4jbttZvObAJyzU-RfUATpbyI589YxfpVp2FxYStuK1mwA9yGs9yP_SgwA15nuY18dwkhNOBVgkoFgBOl18hgNkb0WKSg9nVgZsGERdiTj8j3UcoQ1iX0i4NLUGWp2OZ_oYrcm36fNkfOK09BOWi-r2
  priority: 102
  providerName: Directory of Open Access Journals
Title Electromagnetic Signal Classification Based on Class Exemplar Selection and Multi-Objective Linear Programming
URI https://www.proquest.com/docview/2637787428
https://www.proquest.com/docview/2648835557
https://doaj.org/article/6a4de9c391474aa49d4472c521b7e323
Volume 14
WOSCitedRecordID wos000768777000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Nb9Mw9Ak2JHYZ31phVEZw4RAtsR07OSGKMoEEJaIgDS5R4o-yaU1L201w4bfznpN2QiAuXCzLfonivG_7-T2AZ8ok2qPkj5rU8Uj62HY9rhoTa5OgyRFS5r_V43F2cpKX_Ybbqg-r3MjEIKjt3NAe-RFXQiNxobX8YvEtoqpRdLral9C4DruUJSEJoXuT7R5LLJDAYtllJRXo3R8tV-hQpHRQ-ZseCun6_5DGQcUc3_rfj7sN-71xyV521HAHrrn2Ltzs65x__XEP2qKrejOrpy3dXmST0yk9EUpjUtBQwBMboWqzDDthnBXf3WyBHjCbhKI5BFG3loW7u9H75qyTmQzdWmQbVnYRXzPUiffh03Hx8dXrqK-4EBmRy3Xk0btQ0nIvnBA-S01dy1p4rlyjXarR-EJr0osmbqTxDtWf4nSabjPdWKlsLh7ATjtv3QEwI1QmvcxJ38nEJVmOtpS0WZ1YbtALHMDzzf-vTJ-OnKpinFfolhCuqitcDeDpFnbRJeH4K9SI0LiFoMTZYWC-nFY9H1aqltbluNpEaomry62Umhs0YnCFgosBHG4wXPXcvKqu0DuAJ9tp5EM6XKlbN78gGBSFaLyl-uG_X_EI9jhdoQhxbIews15euMdww1yuT1fLIeyOinH5YRj2BoaBnKn9WWBbpl9wvnzzrvz8CwANAFo
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKVK5lLdIW2ARcOBg1d5de-0DQhRSNWoaIrVI5WTsfaRFxAlJCvRP8RuZWdupEIhbD9wse2xp7M_ffLOPGYDniY6UQ-YPytjyQLrQ1Ec8KXWodISSw5fMH6jhMD09zUZr8LPdC0PLKltO9ERtpprGyHd5IhSCC9Xy69nXgLpG0exq20KjhsWhvfyOKdviVf8dft8XnO_3Tt4eBE1XgUCLTC4Dhwo6kYY7YYVwaayLQhbC8cSWysYKBQYqJifKsJTaWaT4hNOMsUlVaWRiqPgSUv66JLB3YH3UPxp9XI3qhAIhHcq6DqoQWbg7X2AKE9PU6G-RzzcI-IP_fVDbv_W_vY7bsNnIZ_amxvsdWLPVXdhoOrmfXd6Dqlf39ZkU44r2Z7Lj8zHd4Zt_0rIoj0S2h8HbMDzw51nvh53MMMdnx74tEFkUlWF-d3LwvvxcRwWGiTu6zEb1mrYJRv378OFa3H0AnWpa2YfAtEhS6WRGEV1GNkozVIvSpEVkuMY8twsv2--d66bgOvX9-JJj4kXYyK-w0YVnK9tZXWbkr1Z7BJuVBZUG9yem83HeME2eFNLYDL2NpJLoXWakVFyjTEMPBRdd2GkRlTd8tciv4NSFp6vLyDQ0fVRUdnpBNkj2KE9jtfXvRzyBjYOTo0E-6A8Pt-Empw0jftXeDnSW8wv7CG7ob8vzxfxx8_sw-HTdEP0FRVRXdA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VBQEXvhGBAouAAwcr9u561z4gRGkiqlYhUkGquBh7P9JWxAlJCvSv8euYWdupEIhbD9wsZ2Jp7OeZN97ZeQDPlUm0x8gfVanjkfSxbY64qkysTYKUI4zM39ejUXZ4mI834Ge3F4baKruYGAK1nRn6Rt7nSmgEF7Llvm_bIsY7w9fzrxEpSNFKayen0UBkz519x_Jt-Wp3B5_1C86Hgw9v30WtwkBkRC5XkUc2raTlXjghfJaaspSl8Fy5SrtUI9lA9uRFFVfSeIfhXnFaPbaZrqxUlgYxYfi_hBfJqZ1wnH5af9-JBYI7ls1EVCHyuL9YYjGT0iLpbzkwSAX8kQlCehve-J9vzE243pJq9qZ5C27Bhqtvw9VW3_3o7A7Ug0btZ1pOatq1yQ6OJ_SPIAlKzVIBn2wbU7pleBDOs8EPN51j5c8OglgQWZS1ZWHPcvS-OmlyBcNyHl1m46bTbYpc4C58vBB378FmPavdfWBGqEx6mVOel4lLshw5pLRZmVhusPrtwcvu2RemHcNOaiBfCizHCCfFOU568GxtO2-Gj_zVapsgtLaggeHhxGwxKdr4U6hSWpejt4nUEr3LrZSaGyRv6KHgogdbHbqKNooti3No9eDp-meMP7SoVNZudko2mAKQtKb6wb8v8QSuIC6L_d3R3kO4xmkXSWjl24LN1eLUPYLL5tvqeLl4HN4jBp8vGp-_AAk4Xtc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromagnetic+Signal+Classification+Based+on+Class+Exemplar+Selection+and+Multi-Objective+Linear+Programming&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhou%2C+Huaji&rft.au=Bai%2C+Jing&rft.au=Niu%2C+Linchun&rft.au=Xu%2C+Jie&rft.date=2022-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=5&rft_id=info:doi/10.3390%2Frs14051177&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon