Corn Nitrogen Status Diagnosis with an Innovative Multi-Parameter Crop Circle Phenom Sensing System

Accurate and non-destructive in-season crop nitrogen (N) status diagnosis is important for the success of precision N management (PNM). Several active canopy sensors (ACS) with two or three spectral wavebands have been used for this purpose. The Crop Circle Phenom sensor is a new integrated multi-pa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 13; číslo 3; s. 401
Hlavní autoři: Cummings, Cadan, Miao, Yuxin, Paiao, Gabriel Dias, Kang, Shujiang, Fernández, Fabián G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.01.2021
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate and non-destructive in-season crop nitrogen (N) status diagnosis is important for the success of precision N management (PNM). Several active canopy sensors (ACS) with two or three spectral wavebands have been used for this purpose. The Crop Circle Phenom sensor is a new integrated multi-parameter proximal ACS system for in-field plant phenomics with the capability to measure reflectance, structural, and climatic attributes. The objective of this study was to evaluate this multi-parameter Crop Circle Phenom sensing system for in-season diagnosis of corn (Zea mays L.) N status across different soil drainage and tillage systems under variable N supply conditions. The four plant metrics used to approximate in-season N status consist of aboveground biomass (AGB), plant N concentration (PNC), plant N uptake (PNU), and N nutrition index (NNI). A field experiment was conducted in Wells, Minnesota during the 2018 and the 2019 growing seasons with a split-split plot design replicated four times with soil drainage (drained and undrained) as main block, tillage (conventional, no-till, and strip-till) as split plot, and pre-plant N (PPN) rate (0 to 225 in 45 kg ha−1 increment) as the split-split plot. Crop Circle Phenom measurements alongside destructive whole plant samples were collected at V8 +/−1 growth stage. Proximal sensor metrics were used to construct regression models to estimate N status indicators using simple regression (SR) and eXtreme Gradient Boosting (XGB) models. The sensor derived indices tested included normalized difference vegetation index (NDVI), normalized difference red edge (NDRE), estimated canopy chlorophyll content (eCCC), estimated leaf area index (eLAI), ratio vegetation index (RVI), canopy chlorophyll content index (CCCI), fractional photosynthetically active radiation (fPAR), and canopy and air temperature difference (ΔTemp). Management practices such as drainage, tillage, and PPN rate were also included to determine the potential improvement in corn N status diagnosis. Three of the four replicated drained and undrained blocks were randomly selected as training data, and the remaining drained and undrained blocks were used as testing data. The results indicated that SR modeling using NDVI would be sufficient for estimating AGB compared to more complex machine learning methods. Conversely, PNC, PNU, and NNI all benefitted from XGB modeling based on multiple inputs. Among different approaches of XGB modeling, combining management information and Crop Circle Phenom measurements together increased model performance for predicting each of the four plant N metrics compared with solely using sensing data. The PPN rate was the most important management metric for all models compared to drainage and tillage information. Combining Crop Circle Phenom sensor parameters and management information is a promising strategy for in-season diagnosis of corn N status. More studies are needed to further evaluate this new integrated sensing system under diverse on-farm conditions and to test other machine learning models.
AbstractList Accurate and non-destructive in-season crop nitrogen (N) status diagnosis is important for the success of precision N management (PNM). Several active canopy sensors (ACS) with two or three spectral wavebands have been used for this purpose. The Crop Circle Phenom sensor is a new integrated multi-parameter proximal ACS system for in-field plant phenomics with the capability to measure reflectance, structural, and climatic attributes. The objective of this study was to evaluate this multi-parameter Crop Circle Phenom sensing system for in-season diagnosis of corn (Zea mays L.) N status across different soil drainage and tillage systems under variable N supply conditions. The four plant metrics used to approximate in-season N status consist of aboveground biomass (AGB), plant N concentration (PNC), plant N uptake (PNU), and N nutrition index (NNI). A field experiment was conducted in Wells, Minnesota during the 2018 and the 2019 growing seasons with a split-split plot design replicated four times with soil drainage (drained and undrained) as main block, tillage (conventional, no-till, and strip-till) as split plot, and pre-plant N (PPN) rate (0 to 225 in 45 kg ha−1 increment) as the split-split plot. Crop Circle Phenom measurements alongside destructive whole plant samples were collected at V8 +/−1 growth stage. Proximal sensor metrics were used to construct regression models to estimate N status indicators using simple regression (SR) and eXtreme Gradient Boosting (XGB) models. The sensor derived indices tested included normalized difference vegetation index (NDVI), normalized difference red edge (NDRE), estimated canopy chlorophyll content (eCCC), estimated leaf area index (eLAI), ratio vegetation index (RVI), canopy chlorophyll content index (CCCI), fractional photosynthetically active radiation (fPAR), and canopy and air temperature difference (ΔTemp). Management practices such as drainage, tillage, and PPN rate were also included to determine the potential improvement in corn N status diagnosis. Three of the four replicated drained and undrained blocks were randomly selected as training data, and the remaining drained and undrained blocks were used as testing data. The results indicated that SR modeling using NDVI would be sufficient for estimating AGB compared to more complex machine learning methods. Conversely, PNC, PNU, and NNI all benefitted from XGB modeling based on multiple inputs. Among different approaches of XGB modeling, combining management information and Crop Circle Phenom measurements together increased model performance for predicting each of the four plant N metrics compared with solely using sensing data. The PPN rate was the most important management metric for all models compared to drainage and tillage information. Combining Crop Circle Phenom sensor parameters and management information is a promising strategy for in-season diagnosis of corn N status. More studies are needed to further evaluate this new integrated sensing system under diverse on-farm conditions and to test other machine learning models.
Accurate and non-destructive in-season crop nitrogen (N) status diagnosis is important for the success of precision N management (PNM). Several active canopy sensors (ACS) with two or three spectral wavebands have been used for this purpose. The Crop Circle Phenom sensor is a new integrated multi-parameter proximal ACS system for in-field plant phenomics with the capability to measure reflectance, structural, and climatic attributes. The objective of this study was to evaluate this multi-parameter Crop Circle Phenom sensing system for in-season diagnosis of corn (Zea mays L.) N status across different soil drainage and tillage systems under variable N supply conditions. The four plant metrics used to approximate in-season N status consist of aboveground biomass (AGB), plant N concentration (PNC), plant N uptake (PNU), and N nutrition index (NNI). A field experiment was conducted in Wells, Minnesota during the 2018 and the 2019 growing seasons with a split-split plot design replicated four times with soil drainage (drained and undrained) as main block, tillage (conventional, no-till, and strip-till) as split plot, and pre-plant N (PPN) rate (0 to 225 in 45 kg ha⁻¹ increment) as the split-split plot. Crop Circle Phenom measurements alongside destructive whole plant samples were collected at V8 +/-1 growth stage. Proximal sensor metrics were used to construct regression models to estimate N status indicators using simple regression (SR) and eXtreme Gradient Boosting (XGB) models. The sensor derived indices tested included normalized difference vegetation index (NDVI), normalized difference red edge (NDRE), estimated canopy chlorophyll content (eCCC), estimated leaf area index (eLAI), ratio vegetation index (RVI), canopy chlorophyll content index (CCCI), fractional photosynthetically active radiation (fPAR), and canopy and air temperature difference (ΔTemp). Management practices such as drainage, tillage, and PPN rate were also included to determine the potential improvement in corn N status diagnosis. Three of the four replicated drained and undrained blocks were randomly selected as training data, and the remaining drained and undrained blocks were used as testing data. The results indicated that SR modeling using NDVI would be sufficient for estimating AGB compared to more complex machine learning methods. Conversely, PNC, PNU, and NNI all benefitted from XGB modeling based on multiple inputs. Among different approaches of XGB modeling, combining management information and Crop Circle Phenom measurements together increased model performance for predicting each of the four plant N metrics compared with solely using sensing data. The PPN rate was the most important management metric for all models compared to drainage and tillage information. Combining Crop Circle Phenom sensor parameters and management information is a promising strategy for in-season diagnosis of corn N status. More studies are needed to further evaluate this new integrated sensing system under diverse on-farm conditions and to test other machine learning models.
Author Paiao, Gabriel Dias
Cummings, Cadan
Kang, Shujiang
Fernández, Fabián G.
Miao, Yuxin
Author_xml – sequence: 1
  givenname: Cadan
  surname: Cummings
  fullname: Cummings, Cadan
– sequence: 2
  givenname: Yuxin
  orcidid: 0000-0001-8419-6511
  surname: Miao
  fullname: Miao, Yuxin
– sequence: 3
  givenname: Gabriel Dias
  surname: Paiao
  fullname: Paiao, Gabriel Dias
– sequence: 4
  givenname: Shujiang
  surname: Kang
  fullname: Kang, Shujiang
– sequence: 5
  givenname: Fabián G.
  orcidid: 0000-0002-9539-0050
  surname: Fernández
  fullname: Fernández, Fabián G.
BookMark eNptkV1LHTEQhoNYqFpv_AUBb0RYO_nYj1yWra0HbCuceh2ys9ljDrvJaZK1-O-79ZRWpHMzw_DMyzu8x-TQB28JOWNwJYSC9zExAQIksANyxKHmheSKH76Y35LTlLawlBBMgTwi2Ibo6VeXY9hYT9fZ5DnRj85sfEgu0Z8uP1Dj6cr78Giye7T0yzxmV9yZaCabbaRtDDvauoijpXcP1oeJrq1Pzm_o-illO70jbwYzJnv6p5-Q-0_X39ub4vbb51X74bZAoWQuhsbyrmaAneDITQPYI0DZGaOs6CyrqnJoJPJKmgUQ3dALKCXrscSSDdiLE7La6_bBbPUuusnEJx2M08-LEDfaxOwWn7pTTPEKyhqAyZ73DYLEWmAjq543OCxaF3utXQw_ZpuynlxCO47G2zAnzcuSqUpKphb0_BW6DXP0y6eay4ZLWTfP1OWewhhSinb4a5CB_h2f_hffAsMrGN2SjAs-R-PG_538AnMTnZI
CitedBy_id crossref_primary_10_1016_j_eja_2025_127629
crossref_primary_10_1155_2024_8874325
crossref_primary_10_1149_1945_7111_ad22d8
crossref_primary_10_3390_agronomy12030555
crossref_primary_10_1016_j_agrformet_2021_108564
crossref_primary_10_1002_agj2_20892
crossref_primary_10_3389_fpls_2022_890892
crossref_primary_10_1007_s11119_021_09869_w
crossref_primary_10_1016_j_indcrop_2024_118627
crossref_primary_10_3390_rs17050743
crossref_primary_10_1007_s11056_024_10083_5
crossref_primary_10_1016_j_rse_2022_113141
crossref_primary_10_1002_moda_70018
crossref_primary_10_3390_rs14010120
crossref_primary_10_3390_agriengineering6040233
crossref_primary_10_3390_rs14020394
crossref_primary_10_1016_j_jia_2023_02_027
crossref_primary_10_1042_ETLS20200275
crossref_primary_10_1080_2150704X_2023_2282400
crossref_primary_10_1016_j_jag_2021_102416
crossref_primary_10_1016_j_fcr_2023_108844
crossref_primary_10_3390_agriculture13040835
crossref_primary_10_1016_j_compag_2024_108993
crossref_primary_10_1016_j_compag_2024_109565
crossref_primary_10_3389_fpls_2024_1319938
crossref_primary_10_1016_j_compag_2022_106998
Cites_doi 10.1145/2939672.2939785
10.2134/agronj2008.0016
10.1002/agj2.20248
10.2134/agronj2009.0021
10.1016/j.agwat.2015.03.023
10.2134/agronj2019.04.0309
10.1177/001316446002000104
10.3390/rs6076549
10.1016/j.fcr.2012.06.003
10.1038/s41592-019-0686-2
10.1007/BF00189456
10.2134/agronj2011.0124
10.1007/s11119-016-9431-3
10.3390/rs12020215
10.1016/j.compag.2019.104872
10.1016/j.fcr.2008.06.013
10.3390/rs8070605
10.1007/s11119-008-9091-z
10.1016/j.fcr.2013.12.018
10.1038/s41598-017-14597-1
10.4081/ija.2009.4.147
10.1016/j.eja.2017.12.006
10.2307/2529310
10.1126/science.1183899
10.1007/s13593-012-0111-z
10.1007/s10705-016-9810-1
10.2135/cropsci2000.403723x
10.3390/rs71114939
10.1023/A:1004783431055
10.2134/jeq2000.00472425002900040009x
10.1016/j.eja.2008.05.007
10.2307/1936256
10.1016/j.ecolmodel.2019.06.002
10.1109/Agro-Geoinformatics.2016.7577610
10.1029/WR017i004p01133
10.1017/S0021859610000018
10.1016/j.fcr.2017.09.033
10.1094/CM-2009-1211-01-RS
10.2134/agronj2017.12.0733
10.3390/su9081339
10.3390/rs70810646
10.1016/j.compag.2018.05.012
10.3390/rs10122026
10.2134/agronj2006.0135
10.1016/j.fcr.2010.01.010
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs13030401
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
AGRICOLA

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_b919260570014d2d8c04c73c846d28cf
10_3390_rs13030401
GeographicLocations United States--US
Minnesota
GeographicLocations_xml – name: Minnesota
– name: United States--US
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-f8e2b710cb32c2a80cdc005baa9e3be1665f84c264a32c3bfd30541dc5c51fcd3
IEDL.DBID DOA
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615466000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Mon Nov 17 07:19:38 EST 2025
Thu Sep 04 18:44:41 EDT 2025
Mon Oct 20 02:59:15 EDT 2025
Tue Nov 18 21:47:40 EST 2025
Sat Nov 29 07:19:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-f8e2b710cb32c2a80cdc005baa9e3be1665f84c264a32c3bfd30541dc5c51fcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9539-0050
0000-0001-8419-6511
OpenAccessLink https://doaj.org/article/b919260570014d2d8c04c73c846d28cf
PQID 2482447819
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_b919260570014d2d8c04c73c846d28cf
proquest_miscellaneous_2551964419
proquest_journals_2482447819
crossref_primary_10_3390_rs13030401
crossref_citationtrail_10_3390_rs13030401
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Jackson (ref_40) 1981; 17
Ma (ref_4) 2010; 102
Long (ref_27) 2009; 8
Yao (ref_52) 2015; 7
Andraski (ref_3) 2000; 29
ref_13
Ziadi (ref_14) 2008; 100
Cilia (ref_12) 2014; 6
ref_55
ref_10
Landis (ref_37) 1977; 33
ref_54
Fitzgerald (ref_48) 2010; 116
Paiao (ref_18) 2020; 112
DeJonge (ref_41) 2015; 156
ref_17
Lemaire (ref_11) 1999; 216
Basso (ref_16) 2009; 4
Alzaben (ref_22) 2019; 111
Diacono (ref_6) 2013; 33
ref_25
Pedregosa (ref_31) 2011; 12
Subedi (ref_2) 2009; 110
ref_24
Rouse (ref_19) 1974; Volume 351
Cao (ref_7) 2017; 214
Zhao (ref_15) 2018; 93
ref_20
Cammarano (ref_44) 2011; 103
Virtanen (ref_30) 2020; 17
Freeman (ref_38) 2007; 99
ref_29
ref_28
Gebbers (ref_1) 2010; 327
Chlingaryan (ref_53) 2018; 151
Jordan (ref_26) 1969; 50
ref_35
Huang (ref_34) 2015; 7
ref_32
Clarke (ref_47) 2001; 3
Fabrizzi (ref_23) 2017; 107
Serrano (ref_21) 2000; 40
ref_39
Jensen (ref_43) 1990; 11
Schratz (ref_33) 2019; 406
Yan (ref_42) 2010; 148
Bushong (ref_49) 2016; 17
Bean (ref_50) 2018; 110
Li (ref_46) 2014; 157
Perry (ref_45) 2012; 134
Cassman (ref_8) 2006; 79
Cohen (ref_36) 1960; 20
Ransom (ref_51) 2019; 164
ref_5
Mistele (ref_9) 2008; 29
References_xml – ident: ref_32
  doi: 10.1145/2939672.2939785
– volume: 3
  start-page: 1279
  year: 2001
  ident: ref_47
  article-title: Planar Domain Indices: A Method for Measuring a Quality of a Single Component in Two-Component Pixels
  publication-title: Int. Geosci. Remote Sens. Symp.
– volume: 100
  start-page: 1264
  year: 2008
  ident: ref_14
  article-title: Chlorophyll Measurements and Nitrogen Nutrition Index for the Evaluation of Corn Nitrogen Status
  publication-title: Agron. J.
  doi: 10.2134/agronj2008.0016
– volume: 112
  start-page: 2998
  year: 2020
  ident: ref_18
  article-title: Ground-Based Optical Canopy Sensing Technologies for Corn–Nitrogen Management in the Upper Midwest
  publication-title: Agron. J.
  doi: 10.1002/agj2.20248
– volume: 102
  start-page: 134
  year: 2010
  ident: ref_4
  article-title: On-Farm Assessment of the Amount and Timing of Nitrogen Fertilizer on Ammonia Volatilization
  publication-title: Agron. J.
  doi: 10.2134/agronj2009.0021
– volume: 156
  start-page: 51
  year: 2015
  ident: ref_41
  article-title: Comparison of Canopy Temperature-Based Water Stress Indices for Maize
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2015.03.023
– volume: 111
  start-page: 3207
  year: 2019
  ident: ref_22
  article-title: An Inverse Correlation between Corn Temperature and Nitrogen Stress: A Field Case Study
  publication-title: Agron. J.
  doi: 10.2134/agronj2019.04.0309
– volume: 20
  start-page: 37
  year: 1960
  ident: ref_36
  article-title: A Coefficient of Agreement for Nominal Scales
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316446002000104
– volume: 6
  start-page: 6549
  year: 2014
  ident: ref_12
  article-title: Nitrogen Status Assessment for Variable Rate Fertilization in Maize through Hyperspectral Imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs6076549
– volume: 134
  start-page: 158
  year: 2012
  ident: ref_45
  article-title: Rapid Estimation of Canopy Nitrogen of Cereal Crops at Paddock Scale Using a Canopy Chlorophyll Content Index
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2012.06.003
– volume: 17
  start-page: 261
  year: 2020
  ident: ref_30
  article-title: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 11
  start-page: 181
  year: 1990
  ident: ref_43
  article-title: Canopy-Air Temperature of Crops Grown under Different Irrigation Regimes in a Temperate Humid Climate
  publication-title: Irrig. Sci.
  doi: 10.1007/BF00189456
– volume: 103
  start-page: 1597
  year: 2011
  ident: ref_44
  article-title: Use of the Canopy Chlorophyl Content Index (CCCI) for Remote Estimation of Wheat Nitrogen Content in Rainfed Environments
  publication-title: Agron. J.
  doi: 10.2134/agronj2011.0124
– volume: 17
  start-page: 470
  year: 2016
  ident: ref_49
  article-title: Evaluation of Mid-Season Sensor Based Nitrogen Fertilizer Recommendations for Winter Wheat Using Different Estimates of Yield Potential
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-016-9431-3
– ident: ref_55
  doi: 10.3390/rs12020215
– ident: ref_10
– volume: 164
  start-page: 104872
  year: 2019
  ident: ref_51
  article-title: Statistical and Machine Learning Methods Evaluated for Incorporating Soil and Weather into Corn Nitrogen Recommendations
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104872
– volume: 110
  start-page: 21
  year: 2009
  ident: ref_2
  article-title: Assessment of Some Major Yield-Limiting Factors on Maize Production in a Humid Temperate Environment
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2008.06.013
– ident: ref_13
  doi: 10.3390/rs8070605
– ident: ref_17
  doi: 10.1007/s11119-008-9091-z
– volume: 157
  start-page: 111
  year: 2014
  ident: ref_46
  article-title: Improving Estimation of Summer Maize Nitrogen Status with Red Edge-Based Spectral Vegetation Indices
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2013.12.018
– ident: ref_35
  doi: 10.1038/s41598-017-14597-1
– volume: 4
  start-page: 147
  year: 2009
  ident: ref_16
  article-title: Criteria for Selecting Optimal Nitrogen Fertilizer Rates for Precision Agriculture
  publication-title: Ital. J. Agron.
  doi: 10.4081/ija.2009.4.147
– ident: ref_20
– volume: 93
  start-page: 113
  year: 2018
  ident: ref_15
  article-title: Exploring New Spectral Bands and Vegetation Indices for Estimating Nitrogen Nutrition Index of Summer Maize
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2017.12.006
– ident: ref_28
– volume: 33
  start-page: 159
  year: 1977
  ident: ref_37
  article-title: The Measurement of Observer Agreement for Categorical Data
  publication-title: Biometrics
  doi: 10.2307/2529310
– volume: 327
  start-page: 828
  year: 2010
  ident: ref_1
  article-title: Precision Agriculture and Food Security
  publication-title: Science
  doi: 10.1126/science.1183899
– ident: ref_24
– volume: 33
  start-page: 219
  year: 2013
  ident: ref_6
  article-title: Precision Nitrogen Management of Wheat. A Review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-012-0111-z
– volume: 107
  start-page: 33
  year: 2017
  ident: ref_23
  article-title: Corn and Soybean’s Season-Long in-Situ Nitrogen Mineralization in Drained and Undrained Soils
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-016-9810-1
– volume: 40
  start-page: 723
  year: 2000
  ident: ref_21
  article-title: Remote Sensing of Biomass and Yield of Winter Wheat under Different Nitrogen Supplies
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2000.403723x
– volume: 7
  start-page: 14939
  year: 2015
  ident: ref_52
  article-title: Evaluation of Six Algorithms to Monitor Wheat Leaf Nitrogen Concentration
  publication-title: Remote Sens.
  doi: 10.3390/rs71114939
– volume: 216
  start-page: 65
  year: 1999
  ident: ref_11
  article-title: Relationships between Dynamics of Nitrogen Uptake and Dry Matter Accumulation in Maize Crops. Determination of Critical N Concentration
  publication-title: Plant Soil
  doi: 10.1023/A:1004783431055
– volume: 29
  start-page: 1095
  year: 2000
  ident: ref_3
  article-title: Crop Management and Corn Nitrogen Rate Effects on Nitrate Leaching
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2000.00472425002900040009x
– volume: 29
  start-page: 184
  year: 2008
  ident: ref_9
  article-title: Estimating the Nitrogen Nutrition Index Using Spectral Canopy Reflectance Measurements
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2008.05.007
– volume: 50
  start-page: 663
  year: 1969
  ident: ref_26
  article-title: Derivation of Leaf-Area Index from Quality of Light on the Forest Floor
  publication-title: Ecology
  doi: 10.2307/1936256
– volume: 406
  start-page: 109
  year: 2019
  ident: ref_33
  article-title: Hyperparameter Tuning and Performance Assessment of Statistical and Machine-Learning Algorithms Using Spatial Data
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2019.06.002
– ident: ref_39
  doi: 10.1109/Agro-Geoinformatics.2016.7577610
– volume: 17
  start-page: 1133
  year: 1981
  ident: ref_40
  article-title: Canopy Temperature as a Crop Water Stress Indicator
  publication-title: Water Resour. Res.
  doi: 10.1029/WR017i004p01133
– volume: 148
  start-page: 329
  year: 2010
  ident: ref_42
  article-title: The Impact of Relative Humidity, Genotypes and Fertilizer Application Rates on Panicle, Leaf Temperature, Fertility and Seed Setting of Rice
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859610000018
– volume: 214
  start-page: 365
  year: 2017
  ident: ref_7
  article-title: Improving Nitrogen Use Efficiency with Minimal Environmental Risks Using an Active Canopy Sensor in a Wheat-Maize Cropping System
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2017.09.033
– volume: 8
  start-page: 1
  year: 2009
  ident: ref_27
  article-title: Assessing Nitrogen Status of Dryland Wheat Using the Canopy Chlorophyll Content Index
  publication-title: Crop Manag.
  doi: 10.1094/CM-2009-1211-01-RS
– volume: 110
  start-page: 2541
  year: 2018
  ident: ref_50
  article-title: Improving an Active-Optical Reflectance Sensor Algorithm Using Soil and Weather Information
  publication-title: Agron. J.
  doi: 10.2134/agronj2017.12.0733
– ident: ref_5
  doi: 10.3390/su9081339
– ident: ref_25
– volume: Volume 351
  start-page: 309
  year: 1974
  ident: ref_19
  article-title: Monitoring Vegetation Systems in the Great Plains with ERTS
  publication-title: Proceedings of the Third Earth Resources Technology Satellite—1 Symposium
– ident: ref_29
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_31
  article-title: Scikit-Learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 10646
  year: 2015
  ident: ref_34
  article-title: Satellite Remote Sensing-Based in-Season Diagnosis of Rice Nitrogen Status in Northeast China
  publication-title: Remote Sens.
  doi: 10.3390/rs70810646
– volume: 79
  start-page: 132
  year: 2006
  ident: ref_8
  article-title: Agroecosystems, Nitrogen-Use Efficiency, and Nitrogen Management
  publication-title: Biogeochemistry
– volume: 151
  start-page: 61
  year: 2018
  ident: ref_53
  article-title: Machine Learning Approaches for Crop Yield Prediction and Nitrogen Status Estimation in Precision Agriculture: A Review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.05.012
– ident: ref_54
  doi: 10.3390/rs10122026
– volume: 99
  start-page: 530
  year: 2007
  ident: ref_38
  article-title: By-Plant Prediction of Corn Forage Biomass and Nitrogen Uptake at Various Growth Stages Using Remote Sensing and Plant Height
  publication-title: Agron. J.
  doi: 10.2134/agronj2006.0135
– volume: 116
  start-page: 318
  year: 2010
  ident: ref_48
  article-title: Measuring and Predicting Canopy Nitrogen Nutrition in Wheat Using a Spectral Index-The Canopy Chlorophyll Content Index (CCCI)
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2010.01.010
SSID ssj0000331904
Score 2.4132824
Snippet Accurate and non-destructive in-season crop nitrogen (N) status diagnosis is important for the success of precision N management (PNM). Several active canopy...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 401
SubjectTerms aboveground biomass
active canopy sensing
Air temperature
Atmospheric pressure
Biomass
Canopies
canopy
Cell division
Chlorophyll
Corn
Crops
developmental stages
Diagnosis
Drainage
Drainage systems
experimental design
Farms
Fertilizers
field experimentation
Growing season
Growth stage
Humidity
Information management
integrated sensing system
Leaf area
Leaf area index
Learning algorithms
Machine learning
Minnesota
model validation
Modelling
Nitrogen
nitrogen content
nitrogen nutrition index
no-tillage
normalized difference vegetation index
Normalized difference vegetative index
Nutrition
Nutrition assessment
Parameters
Performance prediction
phenomics
photosynthetically active radiation
Plant growth
precision nitrogen management
reflectance
Regression analysis
Regression models
Remote sensing
Seasons
Sensors
soil
Soils
strip tillage
Tillage
Vegetables
Vegetation
Vegetation index
Zea mays
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagINEL5akutMgILhysJrbjdU6ILq3gslqpIPUW2WO7XQmSJdmtxL9n7Hi3QiAuXJNREmVen8fjbwh5a5SqVagsc8poJq0CZk2pmdIKOARMuC6kYRPT-VxfXtaLXHAbclvlNiamQO06iDXyEy41ZqIpJrD3qx8sTo2Ku6t5hMZdci-yJJSpde9iV2MpBBpYIUdWUoGr-5N-iDEbDbf8LQ8luv4_onFKMecH__txj8jDDC7ph9EaHpM7vn1CHuQ559c_nxKYdX1L58t136Hh0Ig0NwP9OLbbLQcaq7LUtPRznpV642k6ocsWJjZxoQ7orO9WdLbs8QV0ce3b7ju9iE3w7RUd2c-fka_nZ19mn1ges8BA1HLNgvbcItAAKzhwowtwgL5pjam9sL5UqgpaAiIngwLCBocxQpYOKqjKAE48J3tt1_pDQnXBnSlLkNPKyWCFscFXtYEglXKqMhPybvvTG8gc5HEUxrcG1yJRQc2tgibkzU52NTJv_FXqNOpuJxHZstOFrr9qsvM1tkYci-u2uMcuHXcaCglTAYi9HNcQJuRoq9Ymu_DQ3Op0Ql7vbqPzxR0V0_pugzKIN-uIKOsX_37ES7LPYzNMqt0ckb11v_HH5D7crJdD_ypZ7S9OsPgU
  priority: 102
  providerName: ProQuest
Title Corn Nitrogen Status Diagnosis with an Innovative Multi-Parameter Crop Circle Phenom Sensing System
URI https://www.proquest.com/docview/2482447819
https://www.proquest.com/docview/2551964419
https://doaj.org/article/b919260570014d2d8c04c73c846d28cf
Volume 13
WOSCitedRecordID wos000615466000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQQYILggJioaxcwYVD1MR2HPtIl63ooauItlLhEtlju12pTapktxIXvp1xki5FIHHpxYdkpFgznplne_KGkA9GSi1DbhMnjUqElZBYk6lEKgkMAiZcF_pmE8Vioc7OdHmn1VesCRvogQfF7VmNGAQxd7wfFY45BamAggPmTccUhBh900Lf2Uz1MZjj0krFwEfKcV-_13YxWuOSzf7IQD1R_19xuE8uB8_I0xEV0k_DbJ6TB77eJo_HBuUXP14QmDVtTRfLVdugxWmEiOuOfh7q5JYdjcep1NT0cGxyeuNp_2ttUppYfYXKo7O2uaazZYsfoOWFr5srehyr1-tzOtCWvySnB_OT2Zdk7I-QANdilQTlmUWEAJYzYEal4ACdyhqjPbc-kzIPSgBCHoMC3AaHzi0yBznkWQDHX5Gtuqn9a0JVypzJMhBF7kSw3Njgc20gCCmdzM2EfLzVWQUjeXjsYXFZ4SYi6rf6rd8Jeb-RvR4oM_4ptR9Vv5GINNf9AzR-NRq_-p_xJ2Tn1nDV6HtdxYRCzFIg1JmQ3c1r9Jp4FWJq36xRBoGijlBQv7mPebwlT1isdemPZnbI1qpd-3fkEdysll07JQ_354vy67RfotNYXXocx59zHMv8O74vD4_Kb78AEw7vUw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFqlceCMWChgBBw5RE9vxOgeEYEvVVdtVJIpUTsEe2-1KkCzJblH_FL-RcZLdCoG49cA1GdlK_M3D4_F8hLzUUmbSpyayUqtIGAmR0YmKpJLAwKPDtb4lmxhNp-rkJMs3yM_VXZhQVrmyia2hthWEHPkOEwo90Qgd2Nv59yiwRoXT1RWFRgeLA3fxA7dszZvJLq7vK8b2PhyP96OeVSACnolF5JVjBv0qGM6AaRWDBYSi0Tpz3LhEytQrARgoaBTgxltUCZFYSCFNPFiO414jmyKAfUA288lR_nmd1Yk5QjoWXR9UzrN4p26Cl0BVSX7zfC1BwB_2v3Vqe7f-t99xm9zsw2f6rsP7HbLhyrtkq2dyP7u4R2Bc1SWdzhZ1hapBQyy9bOhuV1A4a2jIO1Nd0knPBnvuaHsHOcp1KFNDlNFxXc3peFbjBDQ_c2X1jX4MZf7lKe36u98nn67kGx-QQVmV7iGhKmZWJwmIUWqFN1wb79JMgxdSWpnqIXm9WuQC-i7rgezja4G7rQCI4hIQQ_JiLTvveov8Vep9wMpaIvQDbx9U9WnRm5fCZBip4840VBEIy6yCWMCIA0aXlinwQ7K9glHRG6mmuMTQkDxfv0bzEs6MdOmqJcpgRJ2FmDl79O8hnpGt_eOjw-JwMj14TG6wUPrTZqq2yWBRL90Tch3OF7OmftrrDCVfrhqXvwCL-1id
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQcCFN2KhgBFw4BBt4jiOc0AIdlmxKlpFAqSKS7DHdrtSmyzJblH_Gr-OcR5bIRC3Hrgmo0SJv3n68wwhL5QQmXCJDoxQMuBaQKBVJAMhBTBw6HCNa4dNpIuFPDjI8h3yczgL42mVg01sDbWpwNfIx4xL9EQpOrCx62kR-XT2ZvU98BOk_E7rME6jg8i-PfuB6Vvzej7FtX7J2Oz958mHoJ8wEECc8XXgpGUafSzomAFTMgQDCEutVGZjbSMhEic5YNCgUCDWzqB68MhAAknkwMT43Evkcoo5pqcT5snXbX0njBHcIe86osZxFo7rxvsLVJroNx_Yjgr4wxO07m1283_-MbfIjT6opm87LbhNdmx5h1zr57sfnd0lMKnqki6W67pChaE-wt40dNrRDJcN9dVoqko672fEnlrankwOcuXJa4g9OqmrFZ0sa3wBzY9sWZ3QT578Xx7Sruv7PfLlQr7xPtktq9I-IFSGzKgoAp4mhjsdK-1skilwXAgjEjUir4YFL6Dvve5HgBwXmIN5cBTn4BiR51vZVddx5K9S7zxuthK-S3h7oaoPi97oFDrD-B3zVc8t4IYZCSGHNAaMOQ2T4EZkb4BU0ZuupjjH04g8295Go-N3klRpqw3KYJyd-Ug6e_jvRzwlVxGMxcf5Yv8Ruc48H6gtX-2R3XW9sY_JFThdL5v6Sas8lHy7aFD-AgiQYAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corn+Nitrogen+Status+Diagnosis+with+an+Innovative+Multi-Parameter+Crop+Circle+Phenom+Sensing+System&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Cummings%2C+Cadan&rft.au=Miao%2C+Yuxin&rft.au=Paiao%2C+Gabriel+Dias&rft.au=Kang%2C+Shujiang&rft.date=2021-01-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=3&rft.spage=401&rft_id=info:doi/10.3390%2Frs13030401&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs13030401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon