Fast and Accurate Terrain Image Classification for ASTER Remote Sensing by Data Stream Mining and Evolutionary-EAC Instance-Learning-Based Algorithm
Remote sensing streams continuous data feed from the satellite to ground station for data analysis. Often the data analytics involves analyzing data in real-time, such as emergency control, surveillance of military operations or scenarios that change rapidly. Traditional data mining requires all the...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 13; číslo 6; s. 1123 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
16.03.2021
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Remote sensing streams continuous data feed from the satellite to ground station for data analysis. Often the data analytics involves analyzing data in real-time, such as emergency control, surveillance of military operations or scenarios that change rapidly. Traditional data mining requires all the data to be available prior to inducing a model by supervised learning, for automatic image recognition or classification. Any new update on the data prompts the model to be built again by loading in all the previous and new data. Therefore, the training time will increase indefinitely making it unsuitable for real-time application in remote sensing. As a contribution to solving this problem, a new approach of data analytics for remote sensing for data stream mining is formulated and reported in this paper. Fresh data feed collected from afar is used to approximate an image recognition model without reloading the history, which helps eliminate the latency in building the model again and again. In the past, data stream mining has a drawback in approximating a classification model with a sufficiently high level of accuracy. This is due to the one-pass incremental learning mechanism inherently exists in the design of the data stream mining algorithm. In order to solve this problem, a novel streamlined sensor data processing method is proposed called evolutionary expand-and-contract instance-based learning algorithm (EEAC-IBL). The multivariate data stream is first expanded into many subspaces, and then the subspaces, which are corresponding to the characteristics of the features are selected and condensed into a significant feature subset. The selection operates stochastically instead of deterministically by evolutionary optimization, which approximates the best subgroup. Followed by data stream mining, the model learning for image recognition is done on the fly. This stochastic approximation method is fast and accurate, offering an alternative to the traditional machine learning method for image recognition application in remote sensing. Our experimental results show computing advantages over other classical approaches, with a mean accuracy improvement at 16.62%. |
|---|---|
| AbstractList | Remote sensing streams continuous data feed from the satellite to ground station for data analysis. Often the data analytics involves analyzing data in real-time, such as emergency control, surveillance of military operations or scenarios that change rapidly. Traditional data mining requires all the data to be available prior to inducing a model by supervised learning, for automatic image recognition or classification. Any new update on the data prompts the model to be built again by loading in all the previous and new data. Therefore, the training time will increase indefinitely making it unsuitable for real-time application in remote sensing. As a contribution to solving this problem, a new approach of data analytics for remote sensing for data stream mining is formulated and reported in this paper. Fresh data feed collected from afar is used to approximate an image recognition model without reloading the history, which helps eliminate the latency in building the model again and again. In the past, data stream mining has a drawback in approximating a classification model with a sufficiently high level of accuracy. This is due to the one-pass incremental learning mechanism inherently exists in the design of the data stream mining algorithm. In order to solve this problem, a novel streamlined sensor data processing method is proposed called evolutionary expand-and-contract instance-based learning algorithm (EEAC-IBL). The multivariate data stream is first expanded into many subspaces, and then the subspaces, which are corresponding to the characteristics of the features are selected and condensed into a significant feature subset. The selection operates stochastically instead of deterministically by evolutionary optimization, which approximates the best subgroup. Followed by data stream mining, the model learning for image recognition is done on the fly. This stochastic approximation method is fast and accurate, offering an alternative to the traditional machine learning method for image recognition application in remote sensing. Our experimental results show computing advantages over other classical approaches, with a mean accuracy improvement at 16.62%. |
| Author | Fong, Simon Yang, Shuang-Hua Fiaidhi, Jinan Hu, Shimin Yang, Lili Dey, Nilanjan Millham, Richard C. |
| Author_xml | – sequence: 1 givenname: Shimin surname: Hu fullname: Hu, Shimin – sequence: 2 givenname: Simon surname: Fong fullname: Fong, Simon – sequence: 3 givenname: Lili surname: Yang fullname: Yang, Lili – sequence: 4 givenname: Shuang-Hua surname: Yang fullname: Yang, Shuang-Hua – sequence: 5 givenname: Nilanjan surname: Dey fullname: Dey, Nilanjan – sequence: 6 givenname: Richard C. orcidid: 0000-0002-7970-9615 surname: Millham fullname: Millham, Richard C. – sequence: 7 givenname: Jinan surname: Fiaidhi fullname: Fiaidhi, Jinan |
| BookMark | eNptkV-L1DAUxYus4Lrui58g4IsI1fxr2jyO46wOjAg743NI05sxQ5usSSrs9_ADm-6IyuJ9yeXyO4cTzvPqwgcPVfWS4LeMSfwuJsKwIISyJ9UlxS2tOZX04p_9WXWd0gmXYYxIzC-rnzc6ZaT9gFbGzFFnQAeIUTuPtpM-AlqPOiVnndHZBY9siGi1P2xu0S1ModB78Mn5I-rv0QedNdrnCHpCn51frovx5kcY50Ws4329Wa3R1qesvYF6BzouWP1eJygJxmOILn-bXlRPrR4TXP9-r6qvN5vD-lO9-_Jxu17tasMkz7VtDMcArKGss0NLesG5wZ0VhApuO2GBykZ2PYeuHRoLDaZ86EmLBUg8GMKuqu3Zdwj6pO6im0pEFbRTD4cQj0rH7MwIyrSGEi5bwSnmRSv7nrVa0IbbvhMMF6_XZ6-7GL7PkLKaXDIwjtpDmJOiggkiOkx4QV89Qk9hjr78VNEGM4olw02h3pwpE0NKEeyfgASrpW_1t-8C40ewcfmhsVy6HP8n-QVGmK0M |
| CitedBy_id | crossref_primary_10_3390_app13148004 crossref_primary_10_3390_rs15092429 crossref_primary_10_1155_2022_4196174 crossref_primary_10_1155_2022_9974914 |
| Cites_doi | 10.1016/j.iot.2020.100218 10.1145/347090.347107 10.1109/SAI.2014.6918213 10.1080/01431161.2011.629637 10.3390/rs12233999 10.1109/ACCESS.2019.2963223 10.3390/rs12223733 10.3390/rs13020287 10.3390/rs13050876 10.1007/978-3-642-23424-8_1 10.11613/BM.2012.031 10.1007/978-3-319-47759-6 10.1002/ldr.3692 10.3390/rs12193141 10.1145/3195106.3195167 10.1016/j.ins.2008.06.001 10.1007/s10916-018-1003-9 10.3390/rs12193177 10.5721/EuJRS20144723 10.1007/s10115-007-0114-2 10.3390/rs13040662 10.1007/s42452-019-1433-0 10.1007/978-3-642-24471-1 |
| ContentType | Journal Article |
| Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs13061123 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_c7c2149764204dc19bb37a6254fb8630 10_3390_rs13061123 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c394t-f5c40ee35238fd71b644c08f61264f86fe29598b4e87d5fe5024db1706e90dc13 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000651971500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:50:47 EDT 2025 Thu Oct 02 06:18:19 EDT 2025 Mon Oct 20 01:50:23 EDT 2025 Sat Nov 29 07:18:58 EST 2025 Tue Nov 18 21:53:10 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-f5c40ee35238fd71b644c08f61264f86fe29598b4e87d5fe5024db1706e90dc13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7970-9615 |
| OpenAccessLink | https://www.proquest.com/docview/2503209305?pq-origsite=%requestingapplication% |
| PQID | 2503209305 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c7c2149764204dc19bb37a6254fb8630 proquest_miscellaneous_2636168014 proquest_journals_2503209305 crossref_primary_10_3390_rs13061123 crossref_citationtrail_10_3390_rs13061123 |
| PublicationCentury | 2000 |
| PublicationDate | 20210316 |
| PublicationDateYYYYMMDD | 2021-03-16 |
| PublicationDate_xml | – month: 03 year: 2021 text: 20210316 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Wang (ref_22) 2020; 8 Zhou (ref_16) 2007; Volume 4632 McHugh (ref_34) 2012; 22 ref_14 Wares (ref_23) 2019; 1 ref_36 Khan (ref_9) 2012; Volume 7239 ref_35 Wu (ref_20) 2007; 14 ref_33 ref_10 ref_31 ref_30 Abrams (ref_11) 2015; 38 Guindon (ref_19) 2019; Volume 29 Spruce (ref_25) 2009; 2009 ref_18 Gunal (ref_8) 2008; 178 ref_38 Li (ref_6) 2014; 47 ref_15 ref_37 Bifet (ref_28) 2010; 11 Lange (ref_17) 1994; Volume 872 Hu (ref_3) 2020; 10 Bagan (ref_4) 2020; 31 Lan (ref_27) 2018; 42 Piao (ref_32) 2017; Volume 10191 ref_24 Panov (ref_13) 2007; Volume 4723 Yaacoub (ref_21) 2020; 11 ref_1 ref_2 ref_29 ref_26 Johnson (ref_12) 2012; 3 ref_5 ref_7 |
| References_xml | – ident: ref_30 – volume: 11 start-page: 100218 year: 2020 ident: ref_21 article-title: Security analysis of drones systems: Attacks, limitations, and recommendations publication-title: Internet Things doi: 10.1016/j.iot.2020.100218 – volume: 2009 start-page: 1 year: 2009 ident: ref_25 article-title: Developing new coastal forest restoration products based on Landsat, ASTER, and MODIS data publication-title: OCEANS – ident: ref_5 – ident: ref_24 – ident: ref_29 doi: 10.1145/347090.347107 – ident: ref_7 doi: 10.1109/SAI.2014.6918213 – volume: 3 start-page: 491 year: 2012 ident: ref_12 article-title: Using geographically weighted variables for image classification publication-title: Remote Sens. Lett. doi: 10.1080/01431161.2011.629637 – ident: ref_26 – volume: Volume 4632 start-page: 1 year: 2007 ident: ref_16 article-title: Mining Ambiguous Data with Multi-instance Multi-label Representation publication-title: Computer Vision – ident: ref_38 doi: 10.3390/rs12233999 – volume: 8 start-page: 5550 year: 2020 ident: ref_22 article-title: Convergence of Satellite and Terrestrial Networks: A Comprehensive Survey publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2963223 – volume: 38 start-page: 292 year: 2015 ident: ref_11 article-title: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_2 doi: 10.3390/rs12223733 – ident: ref_1 doi: 10.3390/rs13020287 – ident: ref_33 doi: 10.3390/rs13050876 – ident: ref_14 doi: 10.1007/978-3-642-23424-8_1 – volume: 11 start-page: 1601 year: 2010 ident: ref_28 article-title: MOA: Massive Online Analysis publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 276 year: 2012 ident: ref_34 article-title: Interrater reliability: The kappa statistic publication-title: Biochem. Med. doi: 10.11613/BM.2012.031 – ident: ref_15 doi: 10.1007/978-3-319-47759-6 – volume: 31 start-page: 3024 year: 2020 ident: ref_4 article-title: Spatiotemporal analysis of deforestation in the Chapare region of Bolivia using LANDSAT images publication-title: Land Degrad. Dev. doi: 10.1002/ldr.3692 – ident: ref_37 doi: 10.3390/rs12193141 – ident: ref_31 doi: 10.1145/3195106.3195167 – volume: Volume 4723 start-page: 118 year: 2007 ident: ref_13 article-title: Combining Bagging and Random Subspaces to Create Better Ensembles publication-title: Constructive Side-Channel Analysis and Secure Design – volume: 178 start-page: 3716 year: 2008 ident: ref_8 article-title: Subspace based feature selection for pattern recognition publication-title: Inf. Sci. doi: 10.1016/j.ins.2008.06.001 – volume: 42 start-page: 139:1 year: 2018 ident: ref_27 article-title: A Survey of Data Mining and Deep Learning in Bioinformatics publication-title: J. Med. Syst. doi: 10.1007/s10916-018-1003-9 – ident: ref_10 – ident: ref_36 doi: 10.3390/rs12193177 – volume: 47 start-page: 389 year: 2014 ident: ref_6 article-title: A Review of Remote Sensing Image Classification Techniques: The Role of Spatio-contextual Information publication-title: Eur. J. Remote Sens. doi: 10.5721/EuJRS20144723 – volume: 14 start-page: 1 year: 2007 ident: ref_20 article-title: Top 10 algorithms in data mining publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-007-0114-2 – volume: 10 start-page: 1 year: 2020 ident: ref_3 article-title: Spatial–temporal dynamics and driving factor analysis of urban ecological land in Zhuhai city, China publication-title: Sci. Rep. – volume: Volume 872 start-page: 438 year: 1994 ident: ref_17 article-title: Machine discovery in the presence of incomplete or ambiguous data publication-title: Computer Vision – volume: Volume 7239 start-page: 328 year: 2012 ident: ref_9 article-title: Tutorial: Data Stream Mining and Its Applications publication-title: Computer Vision – ident: ref_35 doi: 10.3390/rs13040662 – volume: Volume 29 start-page: 21 year: 2019 ident: ref_19 article-title: Numerical Optimization Techniques in Maximum Likelihood Tree Inference publication-title: Advanced Structural Safety Studies – volume: 1 start-page: 1412 year: 2019 ident: ref_23 article-title: Data stream mining: Methods and challenges for handling concept drift publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-1433-0 – ident: ref_18 doi: 10.1007/978-3-642-24471-1 – volume: Volume 10191 start-page: 721 year: 2017 ident: ref_32 article-title: A Hybrid Feature Selection Method Based on Symmetrical Uncertainty and Support Vector Machine for High-Dimensional Data Classification publication-title: Constructive Side-Channel Analysis and Secure Design |
| SSID | ssj0000331904 |
| Score | 2.297448 |
| Snippet | Remote sensing streams continuous data feed from the satellite to ground station for data analysis. Often the data analytics involves analyzing data in... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1123 |
| SubjectTerms | Accuracy Algorithms Approximation Approximation method ASTER Classification Data analysis Data mining Data processing data stream mining Data transmission Emergency procedures Evolution Evolutionary algorithms evolutionary computing feature selection Ground stations image analysis Image classification landscapes Latency Learning algorithms Machine learning Military operations monitoring Multivariate analysis Object recognition Optimization Pattern recognition Remote sensing Satellites Subgroups Subspaces Surveillance |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA5SBH0RrYpXq6Toiw-huU02Px6v9Q770CK2Qt-WJDu5Fnp7srdXuP_DP9hJdntWKvji624IYWYy8w0Zvo-Qj5EHba3XzKnCMqlCzax2gQk7FpELI-vostiEPjszl5f26z2przQT1tMD94Y7DDoUiOI14mQu6zC23guNG5cyeqNE7tYR9dxrpnIOFhhaXPZ8pAL7-sN2hdlaIboQf1SgTNT_IA_n4jJ7Tp4NqJBO-tO8II-g2SVPBoHyq81L8nPmVh3Frp9OQlgnegd6AW2Sd6AnC0wJNItbprGfbGmKUJROzhGq0m-AzgB6ngbVmzn1G_rZdY6m12i3oKdZHyJvPL0dotC1GzadHNOTjBwDsIGDdc6OsOThCW7my_a6u1q8It9n04vjL2wQVGBBWNmxWAbJARBzCRNrPfYIhgI3EVGOktGoCIUtrfESjK7LCCUW8Nongh2wHG0vXpOdZtnAG0KjMiIYJbnjXiZOQ4k7RDC1Agfg44h8ujNyFQa28SR6cVNh15EcUv12yIh82K790XNs_HXVUfLVdkXixc4fMFqqIVqqf0XLiOzfeboaLuuqQhQoCm4x843IwfY3XrP0duIaWK5xjRJqrBLVzt7_OMdb8rRIwzFpMFDtk52uXcM78jjcdter9n2O5V_pN_fe priority: 102 providerName: Directory of Open Access Journals |
| Title | Fast and Accurate Terrain Image Classification for ASTER Remote Sensing by Data Stream Mining and Evolutionary-EAC Instance-Learning-Based Algorithm |
| URI | https://www.proquest.com/docview/2503209305 https://www.proquest.com/docview/2636168014 https://doaj.org/article/c7c2149764204dc19bb37a6254fb8630 |
| Volume | 13 |
| WOSCitedRecordID | wos000651971500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxELUgRYIL3xWBEhnBhYNVJ_Z67RNKykbk0GjVFKlwWXm9dorUbMpmUykXfgU_mLHjpEIgLlx8WFuWVzMev7FH7yH0zlGTKlWmRIuBIlyYiqhUG8JUnznKJK-cDmIT6XQqLy5UHi_cVrGschcTQ6CulsbfkR_DUc0GkH7T5MP1d-JVo_zrapTQuIsOPFMZ76CDUTbNz_a3LJSBi1G-5SVlkN8fNyuI2gJQBvvtJAqE_X_E43DIjB_97_Ieo4cRXuLh1h-eoDu2foruR6Xzy80z9HOsVy3WdYWHxqw9TwQ-t43XicCTBcQWHFQyff1QMBkGTIuHM8C8-MyCVS2e-Yr3eo7LDf6oW439s7Ze4NMgNBEmzm6iO-tmQ7LhCZ4ECGosiWSuczKCsxNWcDWHX2gvF8_R53F2fvKJRGUGYpjiLXGJ4dRaAG9Muirtl4CqDJUO4JLgTgpnBypRsuRWplXibAJIoCo9U49VtDJ9dog69bK2LxB2QjIjBaealtyTI3KYwVlZCautLV0Xvd9ZqTCRttyrZ1wVkL54ixa3Fu2it_ux11uyjr-OGnlj70d4gu3wYdnMi7hfC5OaASSPKaRnlMOKVVmyFPw54a6UgtEuOtr5QRF3_aq4dYIuerPvhv3qH2F0bZdrGCOY6AvP2fPy31O8Qg8Gvn7G1w6KI9Rpm7V9je6Zm_bbqulFR--FO4Ser1id-fZHBm2efIX-fHKaf_kFtjIODg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGLZGhzQu41t0DDACDhysubHj2AeEuq3Vqq1VxYo0Tpnj2B3Smo4kHer_4HfwG3mdJp0QiNsOXBPrleU8fj_sN8-D0FtHTaRUEhEtAkW4MClRkTaEqQ5zlEmeOl2JTUSjkTw7U-MN9LP5F8a3VTY-sXLU6dz4M_I9CNUsgPKbhh-vvhGvGuVvVxsJjRUsju3yO5RsxYfBIXzfd0HQ700OjkitKkAMU7wkLjScWguJB5MujToJZASGSgehXnAnhbOBCpVMuJVRGjobQhRLE88yYxVNTYeB3TtokwPYZQttjgfD8Zf1qQ5lAGnKVzyojCm6lxcQJQRkNey3yFcJBPzh_6ug1r__vy3HA7Rdp8-4u8L7Q7Rhs0doq1Zyv1g-Rj_6uiixzlLcNWbheTDwxOZeBwMPZuA7caUC6vujKkhiyNlx9xRyevzJAmotPvUd_dkUJ0t8qEuN_bW9nuFhJaRRGe5d19tV50vS6x7gQZViG0tqstop2YfcAGZwOYUlKy9mT9DnW1mUp6iVzTP7DGEnJDNScKppwj35IwcLzspUWG1t4trofYOK2NS07F4d5DKG8swjKL5BUBu9WY-9WpGR_HXUvgfXeoQnEK8ezPNpXPuj2EQmgOI4gvKTcpixShIWwX4NuUukYLSNdhvcxbVXK-Ib0LXR6_Vr8Ef-kklndr6AMYKJjvCcRDv_NvEKbR1NhifxyWB0_BzdC3yvkO-TFLuoVeYL-wLdNdfl1yJ_WW8yjM5vG8i_AJtJZDg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGLZGh4AL32iFAUbAgYNVN3Yc-4BQ-iWqQVVtQ9otOI7dTVrTkaRD_R_8Gn4dr9O0EwJx24FrYr2ynMfvh_3meRB646iJlEojokWgCBcmIyrShjDVZY4yyTOna7GJaDKRJydquoN-bv6F8W2VG59YO-psYfwZeQdCNQug_KZhxzVtEdPB6MPFN-IVpPxN60ZOYw2RA7v6DuVb-X48gG_9NghGw-P-R9IoDBDDFK-ICw2n1kISwqTLom4K2YGh0kHYF9xJ4WygQiVTbmWUhc6GENGy1DPOWEUz02Vg9wbalSKiQQvtTvu9-HB7wkMZwJvyNScqY4p2ihIihoAMh_0WBWuxgD9iQR3gRvf-56W5j-42aTWO1_vgAdqx-UN0u1F4P109Qj9GuqywzjMcG7P0_Bj42BZeHwOP5-BTca0O6vumaqhiyOVxfAS5Pj60gGaLj3ynfz7D6QoPdKWxv87Xc_y5FtioDQ8vm22sixUZxn08rlNvY0lDYjsjPcgZYAbnM1iy6nT-GH25lkV5glr5Ird7CDshmZGCU01T7kkhOVhwVmbCamtT10bvNghJTEPX7lVDzhMo2zyakis0tdHr7diLNUnJX0f1PNC2IzyxeP1gUcySxk8lJjIBFM0RlKWUw4xVmrII9nHIXSoFo220v8Fg0ni7MrkCYBu92r4GP-Uvn3RuF0sYI5joCs9V9PTfJl6iW4De5NN4cvAM3Ql8C5FvnxT7qFUVS_sc3TSX1VlZvGj2G0ZfrxvHvwDZj2yo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Accurate+Terrain+Image+Classification+for+ASTER+Remote+Sensing+by+Data+Stream+Mining+and+Evolutionary-EAC+Instance-Learning-Based+Algorithm&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Hu%2C+Shimin&rft.au=Fong%2C+Simon&rft.au=Yang%2C+Lili&rft.au=Yang%2C+Shuang-Hua&rft.date=2021-03-16&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=6&rft_id=info:doi/10.3390%2Frs13061123&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |