Fast and Accurate Terrain Image Classification for ASTER Remote Sensing by Data Stream Mining and Evolutionary-EAC Instance-Learning-Based Algorithm

Remote sensing streams continuous data feed from the satellite to ground station for data analysis. Often the data analytics involves analyzing data in real-time, such as emergency control, surveillance of military operations or scenarios that change rapidly. Traditional data mining requires all the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 13; číslo 6; s. 1123
Hlavní autoři: Hu, Shimin, Fong, Simon, Yang, Lili, Yang, Shuang-Hua, Dey, Nilanjan, Millham, Richard C., Fiaidhi, Jinan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 16.03.2021
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Remote sensing streams continuous data feed from the satellite to ground station for data analysis. Often the data analytics involves analyzing data in real-time, such as emergency control, surveillance of military operations or scenarios that change rapidly. Traditional data mining requires all the data to be available prior to inducing a model by supervised learning, for automatic image recognition or classification. Any new update on the data prompts the model to be built again by loading in all the previous and new data. Therefore, the training time will increase indefinitely making it unsuitable for real-time application in remote sensing. As a contribution to solving this problem, a new approach of data analytics for remote sensing for data stream mining is formulated and reported in this paper. Fresh data feed collected from afar is used to approximate an image recognition model without reloading the history, which helps eliminate the latency in building the model again and again. In the past, data stream mining has a drawback in approximating a classification model with a sufficiently high level of accuracy. This is due to the one-pass incremental learning mechanism inherently exists in the design of the data stream mining algorithm. In order to solve this problem, a novel streamlined sensor data processing method is proposed called evolutionary expand-and-contract instance-based learning algorithm (EEAC-IBL). The multivariate data stream is first expanded into many subspaces, and then the subspaces, which are corresponding to the characteristics of the features are selected and condensed into a significant feature subset. The selection operates stochastically instead of deterministically by evolutionary optimization, which approximates the best subgroup. Followed by data stream mining, the model learning for image recognition is done on the fly. This stochastic approximation method is fast and accurate, offering an alternative to the traditional machine learning method for image recognition application in remote sensing. Our experimental results show computing advantages over other classical approaches, with a mean accuracy improvement at 16.62%.
AbstractList Remote sensing streams continuous data feed from the satellite to ground station for data analysis. Often the data analytics involves analyzing data in real-time, such as emergency control, surveillance of military operations or scenarios that change rapidly. Traditional data mining requires all the data to be available prior to inducing a model by supervised learning, for automatic image recognition or classification. Any new update on the data prompts the model to be built again by loading in all the previous and new data. Therefore, the training time will increase indefinitely making it unsuitable for real-time application in remote sensing. As a contribution to solving this problem, a new approach of data analytics for remote sensing for data stream mining is formulated and reported in this paper. Fresh data feed collected from afar is used to approximate an image recognition model without reloading the history, which helps eliminate the latency in building the model again and again. In the past, data stream mining has a drawback in approximating a classification model with a sufficiently high level of accuracy. This is due to the one-pass incremental learning mechanism inherently exists in the design of the data stream mining algorithm. In order to solve this problem, a novel streamlined sensor data processing method is proposed called evolutionary expand-and-contract instance-based learning algorithm (EEAC-IBL). The multivariate data stream is first expanded into many subspaces, and then the subspaces, which are corresponding to the characteristics of the features are selected and condensed into a significant feature subset. The selection operates stochastically instead of deterministically by evolutionary optimization, which approximates the best subgroup. Followed by data stream mining, the model learning for image recognition is done on the fly. This stochastic approximation method is fast and accurate, offering an alternative to the traditional machine learning method for image recognition application in remote sensing. Our experimental results show computing advantages over other classical approaches, with a mean accuracy improvement at 16.62%.
Author Fong, Simon
Yang, Shuang-Hua
Fiaidhi, Jinan
Hu, Shimin
Yang, Lili
Dey, Nilanjan
Millham, Richard C.
Author_xml – sequence: 1
  givenname: Shimin
  surname: Hu
  fullname: Hu, Shimin
– sequence: 2
  givenname: Simon
  surname: Fong
  fullname: Fong, Simon
– sequence: 3
  givenname: Lili
  surname: Yang
  fullname: Yang, Lili
– sequence: 4
  givenname: Shuang-Hua
  surname: Yang
  fullname: Yang, Shuang-Hua
– sequence: 5
  givenname: Nilanjan
  surname: Dey
  fullname: Dey, Nilanjan
– sequence: 6
  givenname: Richard C.
  orcidid: 0000-0002-7970-9615
  surname: Millham
  fullname: Millham, Richard C.
– sequence: 7
  givenname: Jinan
  surname: Fiaidhi
  fullname: Fiaidhi, Jinan
BookMark eNptkV-L1DAUxYus4Lrui58g4IsI1fxr2jyO46wOjAg743NI05sxQ5usSSrs9_ADm-6IyuJ9yeXyO4cTzvPqwgcPVfWS4LeMSfwuJsKwIISyJ9UlxS2tOZX04p_9WXWd0gmXYYxIzC-rnzc6ZaT9gFbGzFFnQAeIUTuPtpM-AlqPOiVnndHZBY9siGi1P2xu0S1ModB78Mn5I-rv0QedNdrnCHpCn51frovx5kcY50Ws4329Wa3R1qesvYF6BzouWP1eJygJxmOILn-bXlRPrR4TXP9-r6qvN5vD-lO9-_Jxu17tasMkz7VtDMcArKGss0NLesG5wZ0VhApuO2GBykZ2PYeuHRoLDaZ86EmLBUg8GMKuqu3Zdwj6pO6im0pEFbRTD4cQj0rH7MwIyrSGEi5bwSnmRSv7nrVa0IbbvhMMF6_XZ6-7GL7PkLKaXDIwjtpDmJOiggkiOkx4QV89Qk9hjr78VNEGM4olw02h3pwpE0NKEeyfgASrpW_1t-8C40ewcfmhsVy6HP8n-QVGmK0M
CitedBy_id crossref_primary_10_3390_app13148004
crossref_primary_10_3390_rs15092429
crossref_primary_10_1155_2022_4196174
crossref_primary_10_1155_2022_9974914
Cites_doi 10.1016/j.iot.2020.100218
10.1145/347090.347107
10.1109/SAI.2014.6918213
10.1080/01431161.2011.629637
10.3390/rs12233999
10.1109/ACCESS.2019.2963223
10.3390/rs12223733
10.3390/rs13020287
10.3390/rs13050876
10.1007/978-3-642-23424-8_1
10.11613/BM.2012.031
10.1007/978-3-319-47759-6
10.1002/ldr.3692
10.3390/rs12193141
10.1145/3195106.3195167
10.1016/j.ins.2008.06.001
10.1007/s10916-018-1003-9
10.3390/rs12193177
10.5721/EuJRS20144723
10.1007/s10115-007-0114-2
10.3390/rs13040662
10.1007/s42452-019-1433-0
10.1007/978-3-642-24471-1
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs13061123
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_c7c2149764204dc19bb37a6254fb8630
10_3390_rs13061123
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-f5c40ee35238fd71b644c08f61264f86fe29598b4e87d5fe5024db1706e90dc13
IEDL.DBID BENPR
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000651971500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:50:47 EDT 2025
Thu Oct 02 06:18:19 EDT 2025
Mon Oct 20 01:50:23 EDT 2025
Sat Nov 29 07:18:58 EST 2025
Tue Nov 18 21:53:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-f5c40ee35238fd71b644c08f61264f86fe29598b4e87d5fe5024db1706e90dc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7970-9615
OpenAccessLink https://www.proquest.com/docview/2503209305?pq-origsite=%requestingapplication%
PQID 2503209305
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_c7c2149764204dc19bb37a6254fb8630
proquest_miscellaneous_2636168014
proquest_journals_2503209305
crossref_primary_10_3390_rs13061123
crossref_citationtrail_10_3390_rs13061123
PublicationCentury 2000
PublicationDate 20210316
PublicationDateYYYYMMDD 2021-03-16
PublicationDate_xml – month: 03
  year: 2021
  text: 20210316
  day: 16
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wang (ref_22) 2020; 8
Zhou (ref_16) 2007; Volume 4632
McHugh (ref_34) 2012; 22
ref_14
Wares (ref_23) 2019; 1
ref_36
Khan (ref_9) 2012; Volume 7239
ref_35
Wu (ref_20) 2007; 14
ref_33
ref_10
ref_31
ref_30
Abrams (ref_11) 2015; 38
Guindon (ref_19) 2019; Volume 29
Spruce (ref_25) 2009; 2009
ref_18
Gunal (ref_8) 2008; 178
ref_38
Li (ref_6) 2014; 47
ref_15
ref_37
Bifet (ref_28) 2010; 11
Lange (ref_17) 1994; Volume 872
Hu (ref_3) 2020; 10
Bagan (ref_4) 2020; 31
Lan (ref_27) 2018; 42
Piao (ref_32) 2017; Volume 10191
ref_24
Panov (ref_13) 2007; Volume 4723
Yaacoub (ref_21) 2020; 11
ref_1
ref_2
ref_29
ref_26
Johnson (ref_12) 2012; 3
ref_5
ref_7
References_xml – ident: ref_30
– volume: 11
  start-page: 100218
  year: 2020
  ident: ref_21
  article-title: Security analysis of drones systems: Attacks, limitations, and recommendations
  publication-title: Internet Things
  doi: 10.1016/j.iot.2020.100218
– volume: 2009
  start-page: 1
  year: 2009
  ident: ref_25
  article-title: Developing new coastal forest restoration products based on Landsat, ASTER, and MODIS data
  publication-title: OCEANS
– ident: ref_5
– ident: ref_24
– ident: ref_29
  doi: 10.1145/347090.347107
– ident: ref_7
  doi: 10.1109/SAI.2014.6918213
– volume: 3
  start-page: 491
  year: 2012
  ident: ref_12
  article-title: Using geographically weighted variables for image classification
  publication-title: Remote Sens. Lett.
  doi: 10.1080/01431161.2011.629637
– ident: ref_26
– volume: Volume 4632
  start-page: 1
  year: 2007
  ident: ref_16
  article-title: Mining Ambiguous Data with Multi-instance Multi-label Representation
  publication-title: Computer Vision
– ident: ref_38
  doi: 10.3390/rs12233999
– volume: 8
  start-page: 5550
  year: 2020
  ident: ref_22
  article-title: Convergence of Satellite and Terrestrial Networks: A Comprehensive Survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963223
– volume: 38
  start-page: 292
  year: 2015
  ident: ref_11
  article-title: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_2
  doi: 10.3390/rs12223733
– ident: ref_1
  doi: 10.3390/rs13020287
– ident: ref_33
  doi: 10.3390/rs13050876
– ident: ref_14
  doi: 10.1007/978-3-642-23424-8_1
– volume: 11
  start-page: 1601
  year: 2010
  ident: ref_28
  article-title: MOA: Massive Online Analysis
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 276
  year: 2012
  ident: ref_34
  article-title: Interrater reliability: The kappa statistic
  publication-title: Biochem. Med.
  doi: 10.11613/BM.2012.031
– ident: ref_15
  doi: 10.1007/978-3-319-47759-6
– volume: 31
  start-page: 3024
  year: 2020
  ident: ref_4
  article-title: Spatiotemporal analysis of deforestation in the Chapare region of Bolivia using LANDSAT images
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.3692
– ident: ref_37
  doi: 10.3390/rs12193141
– ident: ref_31
  doi: 10.1145/3195106.3195167
– volume: Volume 4723
  start-page: 118
  year: 2007
  ident: ref_13
  article-title: Combining Bagging and Random Subspaces to Create Better Ensembles
  publication-title: Constructive Side-Channel Analysis and Secure Design
– volume: 178
  start-page: 3716
  year: 2008
  ident: ref_8
  article-title: Subspace based feature selection for pattern recognition
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2008.06.001
– volume: 42
  start-page: 139:1
  year: 2018
  ident: ref_27
  article-title: A Survey of Data Mining and Deep Learning in Bioinformatics
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-1003-9
– ident: ref_10
– ident: ref_36
  doi: 10.3390/rs12193177
– volume: 47
  start-page: 389
  year: 2014
  ident: ref_6
  article-title: A Review of Remote Sensing Image Classification Techniques: The Role of Spatio-contextual Information
  publication-title: Eur. J. Remote Sens.
  doi: 10.5721/EuJRS20144723
– volume: 14
  start-page: 1
  year: 2007
  ident: ref_20
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-007-0114-2
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_3
  article-title: Spatial–temporal dynamics and driving factor analysis of urban ecological land in Zhuhai city, China
  publication-title: Sci. Rep.
– volume: Volume 872
  start-page: 438
  year: 1994
  ident: ref_17
  article-title: Machine discovery in the presence of incomplete or ambiguous data
  publication-title: Computer Vision
– volume: Volume 7239
  start-page: 328
  year: 2012
  ident: ref_9
  article-title: Tutorial: Data Stream Mining and Its Applications
  publication-title: Computer Vision
– ident: ref_35
  doi: 10.3390/rs13040662
– volume: Volume 29
  start-page: 21
  year: 2019
  ident: ref_19
  article-title: Numerical Optimization Techniques in Maximum Likelihood Tree Inference
  publication-title: Advanced Structural Safety Studies
– volume: 1
  start-page: 1412
  year: 2019
  ident: ref_23
  article-title: Data stream mining: Methods and challenges for handling concept drift
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-1433-0
– ident: ref_18
  doi: 10.1007/978-3-642-24471-1
– volume: Volume 10191
  start-page: 721
  year: 2017
  ident: ref_32
  article-title: A Hybrid Feature Selection Method Based on Symmetrical Uncertainty and Support Vector Machine for High-Dimensional Data Classification
  publication-title: Constructive Side-Channel Analysis and Secure Design
SSID ssj0000331904
Score 2.297448
Snippet Remote sensing streams continuous data feed from the satellite to ground station for data analysis. Often the data analytics involves analyzing data in...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1123
SubjectTerms Accuracy
Algorithms
Approximation
Approximation method
ASTER
Classification
Data analysis
Data mining
Data processing
data stream mining
Data transmission
Emergency procedures
Evolution
Evolutionary algorithms
evolutionary computing
feature selection
Ground stations
image analysis
Image classification
landscapes
Latency
Learning algorithms
Machine learning
Military operations
monitoring
Multivariate analysis
Object recognition
Optimization
Pattern recognition
Remote sensing
Satellites
Subgroups
Subspaces
Surveillance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA5SBH0RrYpXq6Toiw-huU02Px6v9Q770CK2Qt-WJDu5Fnp7srdXuP_DP9hJdntWKvji624IYWYy8w0Zvo-Qj5EHba3XzKnCMqlCzax2gQk7FpELI-vostiEPjszl5f26z2przQT1tMD94Y7DDoUiOI14mQu6zC23guNG5cyeqNE7tYR9dxrpnIOFhhaXPZ8pAL7-sN2hdlaIboQf1SgTNT_IA_n4jJ7Tp4NqJBO-tO8II-g2SVPBoHyq81L8nPmVh3Frp9OQlgnegd6AW2Sd6AnC0wJNItbprGfbGmKUJROzhGq0m-AzgB6ngbVmzn1G_rZdY6m12i3oKdZHyJvPL0dotC1GzadHNOTjBwDsIGDdc6OsOThCW7my_a6u1q8It9n04vjL2wQVGBBWNmxWAbJARBzCRNrPfYIhgI3EVGOktGoCIUtrfESjK7LCCUW8Nongh2wHG0vXpOdZtnAG0KjMiIYJbnjXiZOQ4k7RDC1Agfg44h8ujNyFQa28SR6cVNh15EcUv12yIh82K790XNs_HXVUfLVdkXixc4fMFqqIVqqf0XLiOzfeboaLuuqQhQoCm4x843IwfY3XrP0duIaWK5xjRJqrBLVzt7_OMdb8rRIwzFpMFDtk52uXcM78jjcdter9n2O5V_pN_fe
  priority: 102
  providerName: Directory of Open Access Journals
Title Fast and Accurate Terrain Image Classification for ASTER Remote Sensing by Data Stream Mining and Evolutionary-EAC Instance-Learning-Based Algorithm
URI https://www.proquest.com/docview/2503209305
https://www.proquest.com/docview/2636168014
https://doaj.org/article/c7c2149764204dc19bb37a6254fb8630
Volume 13
WOSCitedRecordID wos000651971500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxELUgRYIL3xWBEhnBhYNVJ_Z67RNKykbk0GjVFKlwWXm9dorUbMpmUykXfgU_mLHjpEIgLlx8WFuWVzMev7FH7yH0zlGTKlWmRIuBIlyYiqhUG8JUnznKJK-cDmIT6XQqLy5UHi_cVrGschcTQ6CulsbfkR_DUc0GkH7T5MP1d-JVo_zrapTQuIsOPFMZ76CDUTbNz_a3LJSBi1G-5SVlkN8fNyuI2gJQBvvtJAqE_X_E43DIjB_97_Ieo4cRXuLh1h-eoDu2foruR6Xzy80z9HOsVy3WdYWHxqw9TwQ-t43XicCTBcQWHFQyff1QMBkGTIuHM8C8-MyCVS2e-Yr3eo7LDf6oW439s7Ze4NMgNBEmzm6iO-tmQ7LhCZ4ECGosiWSuczKCsxNWcDWHX2gvF8_R53F2fvKJRGUGYpjiLXGJ4dRaAG9Muirtl4CqDJUO4JLgTgpnBypRsuRWplXibAJIoCo9U49VtDJ9dog69bK2LxB2QjIjBaealtyTI3KYwVlZCautLV0Xvd9ZqTCRttyrZ1wVkL54ixa3Fu2it_ux11uyjr-OGnlj70d4gu3wYdnMi7hfC5OaASSPKaRnlMOKVVmyFPw54a6UgtEuOtr5QRF3_aq4dYIuerPvhv3qH2F0bZdrGCOY6AvP2fPy31O8Qg8Gvn7G1w6KI9Rpm7V9je6Zm_bbqulFR--FO4Ser1id-fZHBm2efIX-fHKaf_kFtjIODg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGLZGhzQu41t0DDACDhysubHj2AeEuq3Vqq1VxYo0Tpnj2B3Smo4kHer_4HfwG3mdJp0QiNsOXBPrleU8fj_sN8-D0FtHTaRUEhEtAkW4MClRkTaEqQ5zlEmeOl2JTUSjkTw7U-MN9LP5F8a3VTY-sXLU6dz4M_I9CNUsgPKbhh-vvhGvGuVvVxsJjRUsju3yO5RsxYfBIXzfd0HQ700OjkitKkAMU7wkLjScWguJB5MujToJZASGSgehXnAnhbOBCpVMuJVRGjobQhRLE88yYxVNTYeB3TtokwPYZQttjgfD8Zf1qQ5lAGnKVzyojCm6lxcQJQRkNey3yFcJBPzh_6ug1r__vy3HA7Rdp8-4u8L7Q7Rhs0doq1Zyv1g-Rj_6uiixzlLcNWbheTDwxOZeBwMPZuA7caUC6vujKkhiyNlx9xRyevzJAmotPvUd_dkUJ0t8qEuN_bW9nuFhJaRRGe5d19tV50vS6x7gQZViG0tqstop2YfcAGZwOYUlKy9mT9DnW1mUp6iVzTP7DGEnJDNScKppwj35IwcLzspUWG1t4trofYOK2NS07F4d5DKG8swjKL5BUBu9WY-9WpGR_HXUvgfXeoQnEK8ezPNpXPuj2EQmgOI4gvKTcpixShIWwX4NuUukYLSNdhvcxbVXK-Ib0LXR6_Vr8Ef-kklndr6AMYKJjvCcRDv_NvEKbR1NhifxyWB0_BzdC3yvkO-TFLuoVeYL-wLdNdfl1yJ_WW8yjM5vG8i_AJtJZDg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGLZGh4AL32iFAUbAgYNVN3Yc-4BQ-iWqQVVtQ9otOI7dTVrTkaRD_R_8Gn4dr9O0EwJx24FrYr2ynMfvh_3meRB646iJlEojokWgCBcmIyrShjDVZY4yyTOna7GJaDKRJydquoN-bv6F8W2VG59YO-psYfwZeQdCNQug_KZhxzVtEdPB6MPFN-IVpPxN60ZOYw2RA7v6DuVb-X48gG_9NghGw-P-R9IoDBDDFK-ICw2n1kISwqTLom4K2YGh0kHYF9xJ4WygQiVTbmWUhc6GENGy1DPOWEUz02Vg9wbalSKiQQvtTvu9-HB7wkMZwJvyNScqY4p2ihIihoAMh_0WBWuxgD9iQR3gRvf-56W5j-42aTWO1_vgAdqx-UN0u1F4P109Qj9GuqywzjMcG7P0_Bj42BZeHwOP5-BTca0O6vumaqhiyOVxfAS5Pj60gGaLj3ynfz7D6QoPdKWxv87Xc_y5FtioDQ8vm22sixUZxn08rlNvY0lDYjsjPcgZYAbnM1iy6nT-GH25lkV5glr5Ird7CDshmZGCU01T7kkhOVhwVmbCamtT10bvNghJTEPX7lVDzhMo2zyakis0tdHr7diLNUnJX0f1PNC2IzyxeP1gUcySxk8lJjIBFM0RlKWUw4xVmrII9nHIXSoFo220v8Fg0ni7MrkCYBu92r4GP-Uvn3RuF0sYI5joCs9V9PTfJl6iW4De5NN4cvAM3Ql8C5FvnxT7qFUVS_sc3TSX1VlZvGj2G0ZfrxvHvwDZj2yo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Accurate+Terrain+Image+Classification+for+ASTER+Remote+Sensing+by+Data+Stream+Mining+and+Evolutionary-EAC+Instance-Learning-Based+Algorithm&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Hu%2C+Shimin&rft.au=Fong%2C+Simon&rft.au=Yang%2C+Lili&rft.au=Yang%2C+Shuang-Hua&rft.date=2021-03-16&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=6&rft_id=info:doi/10.3390%2Frs13061123&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon