Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring

Continuous glucose monitoring (CGM) devices could be useful for real-time management of diabetes therapy. In particular, CGM information could be used in real time to predict future glucose levels in order to prevent hypo-/hyperglycemic events. This article proposes a new online method for predictin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Diabetes technology & therapeutics Ročník 12; číslo 1; s. 81
Hlavní autori: Pérez-Gandía, C, Facchinetti, A, Sparacino, G, Cobelli, C, Gómez, E J, Rigla, M, de Leiva, A, Hernando, M E
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.01.2010
Predmet:
ISSN:1557-8593, 1557-8593
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Continuous glucose monitoring (CGM) devices could be useful for real-time management of diabetes therapy. In particular, CGM information could be used in real time to predict future glucose levels in order to prevent hypo-/hyperglycemic events. This article proposes a new online method for predicting future glucose concentration levels from CGM data. The predictor is implemented with an artificial neural network model (NNM). The inputs of the NNM are the values provided by the CGM sensor during the preceding 20 min, while the output is the prediction of glucose concentration at the chosen prediction horizon (PH) time. The method performance is assessed using datasets from two different CGM systems (nine subjects using the Medtronic [Northridge, CA] Guardian and six subjects using the Abbott [Abbott Park, IL] Navigator. Three different PHs are used: 15, 30, and 45 min. The NNM accuracy has been estimated by using the root mean square error (RMSE) and prediction delay. The RMSE is around 10, 18, and 27 mg/dL for 15, 30, and 45 min of PH, respectively. The prediction delay is around 4, 9, and 14 min for upward trends and 5, 15, and 26 min for downward trends, respectively. A comparison with a previously published technique, based on an autoregressive model (ARM), has been performed. The comparison shows that the proposed NNM is more accurate than the ARM, with no significant deterioration in the prediction delay. The proposed NNM is a reliable solution for the online prediction of future glucose concentrations from CGM data.
AbstractList Continuous glucose monitoring (CGM) devices could be useful for real-time management of diabetes therapy. In particular, CGM information could be used in real time to predict future glucose levels in order to prevent hypo-/hyperglycemic events. This article proposes a new online method for predicting future glucose concentration levels from CGM data. The predictor is implemented with an artificial neural network model (NNM). The inputs of the NNM are the values provided by the CGM sensor during the preceding 20 min, while the output is the prediction of glucose concentration at the chosen prediction horizon (PH) time. The method performance is assessed using datasets from two different CGM systems (nine subjects using the Medtronic [Northridge, CA] Guardian and six subjects using the Abbott [Abbott Park, IL] Navigator. Three different PHs are used: 15, 30, and 45 min. The NNM accuracy has been estimated by using the root mean square error (RMSE) and prediction delay. The RMSE is around 10, 18, and 27 mg/dL for 15, 30, and 45 min of PH, respectively. The prediction delay is around 4, 9, and 14 min for upward trends and 5, 15, and 26 min for downward trends, respectively. A comparison with a previously published technique, based on an autoregressive model (ARM), has been performed. The comparison shows that the proposed NNM is more accurate than the ARM, with no significant deterioration in the prediction delay. The proposed NNM is a reliable solution for the online prediction of future glucose concentrations from CGM data.
Continuous glucose monitoring (CGM) devices could be useful for real-time management of diabetes therapy. In particular, CGM information could be used in real time to predict future glucose levels in order to prevent hypo-/hyperglycemic events. This article proposes a new online method for predicting future glucose concentration levels from CGM data.BACKGROUND AND AIMSContinuous glucose monitoring (CGM) devices could be useful for real-time management of diabetes therapy. In particular, CGM information could be used in real time to predict future glucose levels in order to prevent hypo-/hyperglycemic events. This article proposes a new online method for predicting future glucose concentration levels from CGM data.The predictor is implemented with an artificial neural network model (NNM). The inputs of the NNM are the values provided by the CGM sensor during the preceding 20 min, while the output is the prediction of glucose concentration at the chosen prediction horizon (PH) time. The method performance is assessed using datasets from two different CGM systems (nine subjects using the Medtronic [Northridge, CA] Guardian and six subjects using the Abbott [Abbott Park, IL] Navigator. Three different PHs are used: 15, 30, and 45 min. The NNM accuracy has been estimated by using the root mean square error (RMSE) and prediction delay.METHODSThe predictor is implemented with an artificial neural network model (NNM). The inputs of the NNM are the values provided by the CGM sensor during the preceding 20 min, while the output is the prediction of glucose concentration at the chosen prediction horizon (PH) time. The method performance is assessed using datasets from two different CGM systems (nine subjects using the Medtronic [Northridge, CA] Guardian and six subjects using the Abbott [Abbott Park, IL] Navigator. Three different PHs are used: 15, 30, and 45 min. The NNM accuracy has been estimated by using the root mean square error (RMSE) and prediction delay.The RMSE is around 10, 18, and 27 mg/dL for 15, 30, and 45 min of PH, respectively. The prediction delay is around 4, 9, and 14 min for upward trends and 5, 15, and 26 min for downward trends, respectively. A comparison with a previously published technique, based on an autoregressive model (ARM), has been performed. The comparison shows that the proposed NNM is more accurate than the ARM, with no significant deterioration in the prediction delay.RESULTSThe RMSE is around 10, 18, and 27 mg/dL for 15, 30, and 45 min of PH, respectively. The prediction delay is around 4, 9, and 14 min for upward trends and 5, 15, and 26 min for downward trends, respectively. A comparison with a previously published technique, based on an autoregressive model (ARM), has been performed. The comparison shows that the proposed NNM is more accurate than the ARM, with no significant deterioration in the prediction delay.The proposed NNM is a reliable solution for the online prediction of future glucose concentrations from CGM data.CONCLUSIONSThe proposed NNM is a reliable solution for the online prediction of future glucose concentrations from CGM data.
Author Gómez, E J
Sparacino, G
Rigla, M
Facchinetti, A
de Leiva, A
Pérez-Gandía, C
Hernando, M E
Cobelli, C
Author_xml – sequence: 1
  givenname: C
  surname: Pérez-Gandía
  fullname: Pérez-Gandía, C
  email: cperez@gbt.tfo.upm.es
  organization: Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain. cperez@gbt.tfo.upm.es
– sequence: 2
  givenname: A
  surname: Facchinetti
  fullname: Facchinetti, A
– sequence: 3
  givenname: G
  surname: Sparacino
  fullname: Sparacino, G
– sequence: 4
  givenname: C
  surname: Cobelli
  fullname: Cobelli, C
– sequence: 5
  givenname: E J
  surname: Gómez
  fullname: Gómez, E J
– sequence: 6
  givenname: M
  surname: Rigla
  fullname: Rigla, M
– sequence: 7
  givenname: A
  surname: de Leiva
  fullname: de Leiva, A
– sequence: 8
  givenname: M E
  surname: Hernando
  fullname: Hernando, M E
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20082589$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1PwzAYhC1UREthZEXemFIcJ_4aq4ovqRILzJFjvy6GxC6OI8S_J4KCmO6G506nO0WzEAMgdFGSVUmkurZeryghakWI4EdoUTImCslUNfvn5-h0GF7JhFS0PEHzKSApk2qB7Dpl77zxusMBxvQt-SOmN6y7XUw-v_TYxYRj6HwAvOtGEwfA-wTWm-xjwC7FHpsYsg9jHIc_pI_B56kh7M7QsdPdAOcHXaLn25unzX2xfbx72Ky3halUnQsA0_IapGPOcSda4UxLwTgtadkqzYXmUjBgtbW0NUo542RteW215loIRZfo6qd3n-L7CENuej8Y6DodYFrWiKpShAleTuTlgRzbHmyzT77X6bP5PYZ-Ae64avc
CitedBy_id crossref_primary_10_3390_app10124381
crossref_primary_10_1049_iet_syb_2017_0036
crossref_primary_10_1186_s12911_025_02856_5
crossref_primary_10_1002_jctb_4591
crossref_primary_10_1016_j_cmpb_2013_09_016
crossref_primary_10_1016_j_cmpb_2020_105523
crossref_primary_10_1007_s11517_015_1263_1
crossref_primary_10_1017_cts_2020_545
crossref_primary_10_1016_j_bios_2022_114348
crossref_primary_10_1016_j_ifacol_2017_08_268
crossref_primary_10_1109_TITB_2012_2219876
crossref_primary_10_1002_dmrr_3348
crossref_primary_10_1177_1932296820922622
crossref_primary_10_1109_JBHI_2022_3233486
crossref_primary_10_2196_10775
crossref_primary_10_1016_j_bbe_2018_02_005
crossref_primary_10_1038_s41746_022_00626_5
crossref_primary_10_1155_2022_7902418
crossref_primary_10_2196_18660
crossref_primary_10_1016_j_chemolab_2018_01_010
crossref_primary_10_1016_j_bbe_2020_10_004
crossref_primary_10_1007_s41666_019_00059_y
crossref_primary_10_1007_s00521_020_05248_0
crossref_primary_10_1007_s10916_015_0377_1
crossref_primary_10_1109_JBHI_2019_2931842
crossref_primary_10_3390_electronics12030756
crossref_primary_10_1016_j_compbiomed_2021_104865
crossref_primary_10_1007_s10916_014_0166_2
crossref_primary_10_1016_j_bspc_2023_105077
crossref_primary_10_3390_s21093188
crossref_primary_10_1016_j_bspc_2025_108468
crossref_primary_10_1371_journal_pone_0307136
crossref_primary_10_1109_TBME_2023_3276193
crossref_primary_10_1016_j_jnca_2018_06_007
crossref_primary_10_1007_s10710_024_09500_7
crossref_primary_10_1089_dia_2011_0093
crossref_primary_10_1177_19322968221100839
crossref_primary_10_1007_s40747_021_00360_7
crossref_primary_10_1093_bib_bbac324
crossref_primary_10_1108_LHT_08_2019_0171
crossref_primary_10_1080_13102818_2024_2371354
crossref_primary_10_1109_JBHI_2019_2908488
crossref_primary_10_1109_TBME_2012_2185234
crossref_primary_10_1177_193229681100500109
crossref_primary_10_1177_19322968211018246
crossref_primary_10_1016_j_patrec_2019_06_005
crossref_primary_10_1016_j_artmed_2019_07_007
crossref_primary_10_1002_aisy_202400822
crossref_primary_10_1177_1932296816654161
crossref_primary_10_2196_mhealth_9236
crossref_primary_10_1016_j_biosystems_2010_09_012
crossref_primary_10_3390_s20113214
crossref_primary_10_1016_j_heliyon_2024_e41199
crossref_primary_10_1177_19322968221103561
crossref_primary_10_1109_RBME_2023_3331297
crossref_primary_10_1016_j_conengprac_2023_105498
crossref_primary_10_1016_j_yofte_2022_102822
crossref_primary_10_1177_193229681200600317
crossref_primary_10_1371_journal_pone_0069475
crossref_primary_10_1007_s11517_021_02433_8
crossref_primary_10_1016_j_eswa_2021_115367
crossref_primary_10_1177_0959651819870328
crossref_primary_10_3390_s121013753
crossref_primary_10_3390_s19204538
crossref_primary_10_1007_s11517_018_1859_3
crossref_primary_10_3390_s20226460
crossref_primary_10_1177_1932296814524080
crossref_primary_10_1038_s41598_017_06478_4
crossref_primary_10_1109_JBHI_2018_2823763
crossref_primary_10_1109_JSSC_2014_2384037
crossref_primary_10_1089_dia_2019_0435
crossref_primary_10_1186_s12911_021_01403_2
crossref_primary_10_1016_j_ifacol_2025_06_003
crossref_primary_10_1109_TBME_2024_3424665
crossref_primary_10_1007_s41666_020_00068_2
crossref_primary_10_1109_JBHI_2023_3348334
crossref_primary_10_1109_TBME_2014_2387293
crossref_primary_10_1002_cnm_2833
crossref_primary_10_1155_2011_681786
crossref_primary_10_3390_pharmaceutics17060777
crossref_primary_10_3390_s20143896
crossref_primary_10_1177_193229681300700116
crossref_primary_10_1109_TCST_2018_2843785
crossref_primary_10_1111_dom_14783
crossref_primary_10_1177_19322968211042621
crossref_primary_10_1016_j_smhl_2021_100193
crossref_primary_10_1016_j_ijmedinf_2021_104472
crossref_primary_10_1016_j_neunet_2012_05_004
crossref_primary_10_1007_s11517_023_02866_3
crossref_primary_10_3390_s19040800
crossref_primary_10_1177_1932296818761457
crossref_primary_10_1007_s11042_024_19766_9
crossref_primary_10_1016_j_iot_2023_100945
crossref_primary_10_1007_s11428_022_00966_6
crossref_primary_10_1109_JIOT_2022_3143375
crossref_primary_10_1016_j_conengprac_2017_10_013
crossref_primary_10_1109_TBME_2012_2188893
crossref_primary_10_1089_dia_2012_0208
crossref_primary_10_1089_dia_2010_0151
crossref_primary_10_7554_eLife_58820
crossref_primary_10_3390_sym11091164
crossref_primary_10_1177_193229681300700126
crossref_primary_10_1177_193229681300700522
crossref_primary_10_1016_j_bspc_2023_105167
crossref_primary_10_1016_j_mehy_2011_08_042
crossref_primary_10_1089_dia_2012_0285
crossref_primary_10_3390_s22228682
crossref_primary_10_1088_1757_899X_803_1_012012
crossref_primary_10_21307_ijssis_2017_878
crossref_primary_10_1177_1932296817710475
crossref_primary_10_1016_j_heliyon_2022_e11648
crossref_primary_10_1186_s12911_019_0943_4
crossref_primary_10_1016_j_asoc_2019_01_020
crossref_primary_10_1109_ACCESS_2021_3059858
crossref_primary_10_1007_s00449_012_0750_0
crossref_primary_10_1111_aor_13104
crossref_primary_10_1109_JBHI_2020_3014556
crossref_primary_10_3390_s100706751
crossref_primary_10_3390_s22051843
crossref_primary_10_1002_idm2_12069
crossref_primary_10_1155_2022_7511806
crossref_primary_10_1109_ACCESS_2021_3059343
crossref_primary_10_1109_TBME_2012_2227256
crossref_primary_10_1016_j_bspc_2020_101923
crossref_primary_10_2196_26909
crossref_primary_10_1016_j_cmpb_2021_106424
crossref_primary_10_4316_AECE_2011_04010
crossref_primary_10_1002_aisy_202500235
crossref_primary_10_3390_healthcare11060779
crossref_primary_10_3390_s20143870
crossref_primary_10_2337_dc12_0736
crossref_primary_10_1007_s11517_015_1320_9
crossref_primary_10_1089_dia_2020_0061
crossref_primary_10_1109_ACCESS_2019_2919184
crossref_primary_10_1109_ACCESS_2023_3244712
crossref_primary_10_1177_19322968211008442
crossref_primary_10_1109_TITB_2011_2177469
crossref_primary_10_1016_j_bspc_2024_107204
crossref_primary_10_1088_2632_2153_ae023f
crossref_primary_10_3390_nu12020302
crossref_primary_10_1186_s12911_021_01462_5
crossref_primary_10_1002_dmrr_1023
crossref_primary_10_1109_JBHI_2019_2956704
crossref_primary_10_1007_s11517_018_1872_6
crossref_primary_10_1002_aic_15983
crossref_primary_10_2196_47833
crossref_primary_10_2196_40524
crossref_primary_10_1109_JSEN_2021_3070706
crossref_primary_10_3390_s21051647
crossref_primary_10_3389_fbioe_2023_1280233
crossref_primary_10_1007_s42979_024_03318_x
crossref_primary_10_1016_j_bbe_2018_06_005
crossref_primary_10_1089_dia_2010_0104
crossref_primary_10_1089_dia_2013_0229
crossref_primary_10_1177_193229681300700314
crossref_primary_10_1109_JBHI_2018_2840690
crossref_primary_10_1088_1757_899X_646_1_012018
crossref_primary_10_1186_s12902_019_0456_2
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1089/dia.2009.0076
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1557-8593
ExternalDocumentID 20082589
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
29F
34G
39C
4.4
53G
6PF
AAWTL
ABBKN
ABJNI
ACGFS
ADBBV
AENEX
AHMBA
ALMA_UNASSIGNED_HOLDINGS
BNQNF
CAG
CGR
COF
CS3
CUY
CVF
DU5
EBS
ECM
EIF
EJD
F5P
IAO
IER
IHR
IM4
INH
INR
ITC
MV1
NPM
NQHIM
O9-
PQQKQ
RIG
RML
UE5
7X8
J8X
SAUOL
SCNPE
SFC
ID FETCH-LOGICAL-c394t-eecb64e8f5ff6f7b7fcb2ecfa821b9a67a6875e54dd2bc99fcf84d64daa6a7792
IEDL.DBID 7X8
ISICitedReferencesCount 207
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000273676100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1557-8593
IngestDate Sun Nov 09 12:13:48 EST 2025
Thu Jan 02 22:06:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-eecb64e8f5ff6f7b7fcb2ecfa821b9a67a6875e54dd2bc99fcf84d64daa6a7792
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20082589
PQID 733905761
PQPubID 23479
ParticipantIDs proquest_miscellaneous_733905761
pubmed_primary_20082589
PublicationCentury 2000
PublicationDate 2010-Jan
20100101
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-Jan
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Diabetes technology & therapeutics
PublicationTitleAlternate Diabetes Technol Ther
PublicationYear 2010
SSID ssj0007321
Score 2.406739
Snippet Continuous glucose monitoring (CGM) devices could be useful for real-time management of diabetes therapy. In particular, CGM information could be used in real...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 81
SubjectTerms Algorithms
Biosensing Techniques
Blood Glucose - analysis
Equipment Design
Humans
Hydrogen-Ion Concentration
Monitoring, Ambulatory - instrumentation
Monitoring, Ambulatory - methods
Neural Networks (Computer)
Predictive Value of Tests
Title Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring
URI https://www.ncbi.nlm.nih.gov/pubmed/20082589
https://www.proquest.com/docview/733905761
Volume 12
WOSCitedRecordID wos000273676100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLaAIsTCXSiXPLBGTeJ7QghRMdCqA6BulU-oRNPSg9-P7bhlQgwsyeDEsp6dl-9d3wPgBjvKDJcoC7aFN1AKlSmn84wTrxmdwJLECu_XJ9br8cFA9FNuzjylVa50YlTUZqKDj7zNkLfOPTgubqefWWgaFYKrqYPGJmggj2RCRhcb_JCFM1SXXRHiFTERKFFs5ly0vexXXJWM_g4u40-ms__P5R2AvYQu4V19HA7Bhq2OwE43xc-PgQkjNWcEDEyW8RbzwKH8ePMTLt7H0MNYWBNowJTQDqezMEXYQxjqUWBIcB9Vy8lyvn5kHJVD8BKegJfOw_P9Y5b6LGQaCbzIrNWKYssdcY46ppjTqrTaSV4WSkjKJPVWjSXYmFJpIZx2HBuKjZRUMibKJtiqJpU9AzAnfsjlqqSKYYmxUIU0SCAcoYyWLQBX4hv6cxyCE7KyfrXDtQBb4LTeguG05tuInTJLwsX53y9fgN06vB98JJeg4fw3bK_Atv5ajOaz63g-_LXX734D6b_IZw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+network+algorithm+for+online+glucose+prediction+from+continuous+glucose+monitoring&rft.jtitle=Diabetes+technology+%26+therapeutics&rft.au=P%C3%A9rez-Gand%C3%ADa%2C+C&rft.au=Facchinetti%2C+A&rft.au=Sparacino%2C+G&rft.au=Cobelli%2C+C&rft.date=2010-01-01&rft.eissn=1557-8593&rft.volume=12&rft.issue=1&rft.spage=81&rft_id=info:doi/10.1089%2Fdia.2009.0076&rft_id=info%3Apmid%2F20082589&rft_id=info%3Apmid%2F20082589&rft.externalDocID=20082589
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-8593&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-8593&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-8593&client=summon