Semantic Segmentation of Large-Scale Outdoor Point Clouds by Encoder–Decoder Shared MLPs with Multiple Losses
Semantic segmentation of large-scale outdoor 3D LiDAR point clouds becomes essential to understand the scene environment in various applications, such as geometry mapping, autonomous driving, and more. With an advantage of being a 3D metric space, 3D LiDAR point clouds, on the other hand, pose a cha...
Saved in:
| Published in: | Remote sensing (Basel, Switzerland) Vol. 13; no. 16; p. 3121 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
06.08.2021
|
| Subjects: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Semantic segmentation of large-scale outdoor 3D LiDAR point clouds becomes essential to understand the scene environment in various applications, such as geometry mapping, autonomous driving, and more. With an advantage of being a 3D metric space, 3D LiDAR point clouds, on the other hand, pose a challenge for a deep learning approach, due to their unstructured, unorder, irregular, and large-scale characteristics. Therefore, this paper presents an encoder–decoder shared multi-layer perceptron (MLP) with multiple losses, to address an issue of this semantic segmentation. The challenge rises a trade-off between efficiency and effectiveness in performance. To balance this trade-off, we proposed common mechanisms, which is simple and yet effective, by defining a random point sampling layer, an attention-based pooling layer, and a summation of multiple losses integrated with the encoder–decoder shared MLPs method for the large-scale outdoor point clouds semantic segmentation. We conducted our experiments on the following two large-scale benchmark datasets: Toronto-3D and DALES dataset. Our experimental results achieved an overall accuracy (OA) and a mean intersection over union (mIoU) of both the Toronto-3D dataset, with 83.60% and 71.03%, and the DALES dataset, with 76.43% and 59.52%, respectively. Additionally, our proposed method performed a few numbers of parameters of the model, and faster than PointNet++ by about three times during inferencing. |
|---|---|
| AbstractList | Semantic segmentation of large-scale outdoor 3D LiDAR point clouds becomes essential to understand the scene environment in various applications, such as geometry mapping, autonomous driving, and more. With an advantage of being a 3D metric space, 3D LiDAR point clouds, on the other hand, pose a challenge for a deep learning approach, due to their unstructured, unorder, irregular, and large-scale characteristics. Therefore, this paper presents an encoder–decoder shared multi-layer perceptron (MLP) with multiple losses, to address an issue of this semantic segmentation. The challenge rises a trade-off between efficiency and effectiveness in performance. To balance this trade-off, we proposed common mechanisms, which is simple and yet effective, by defining a random point sampling layer, an attention-based pooling layer, and a summation of multiple losses integrated with the encoder–decoder shared MLPs method for the large-scale outdoor point clouds semantic segmentation. We conducted our experiments on the following two large-scale benchmark datasets: Toronto-3D and DALES dataset. Our experimental results achieved an overall accuracy (OA) and a mean intersection over union (mIoU) of both the Toronto-3D dataset, with 83.60% and 71.03%, and the DALES dataset, with 76.43% and 59.52%, respectively. Additionally, our proposed method performed a few numbers of parameters of the model, and faster than PointNet++ by about three times during inferencing. |
| Author | Hong, Min Lee, Ahyoung Rim, Beanbonyka |
| Author_xml | – sequence: 1 givenname: Beanbonyka orcidid: 0000-0003-1232-0610 surname: Rim fullname: Rim, Beanbonyka – sequence: 2 givenname: Ahyoung orcidid: 0000-0001-7467-3038 surname: Lee fullname: Lee, Ahyoung – sequence: 3 givenname: Min orcidid: 0000-0001-9963-5521 surname: Hong fullname: Hong, Min |
| BookMark | eNptUctqVEEUbCSCcczGL2hwI8LVft1-LGWMMTAhgdF1c6Yfkx7u3B67-yLZ-Q_-Yb7Ea0ZRgmdzDoeqgqp6jk7GPAaEXlLylnND3pVKOZWcMvoEnTKiWCeYYSf_3M_QWa07Mg_n1BBxivI67GFsyeF12O7D2KClPOIc8QrKNnRrB0PA11PzORd8k9PY8HLIk694c4fPR5d9KPfff3wIDxde30IJHl-tbir-ltotvpqGlg6zxirXGuoL9DTCUMPZ771AXz6ef15-6lbXF5fL96vOcSNaF7SJFFQE43rCiNQyKi1pBL0xfZRRUhrAR3CKOmWi6IlWQBgIor2h0vMFujzq-gw7eyhpD-XOZkj24ZHL1kKZbQ_Bmt5IbbRyjgtBAUB54Y3WNFBGgtrMWq-PWoeSv06hNrtP1YVhgDHkqVomuRSGKMFn6KtH0F2eyjg7tayXvTRGz9kvEDmiXJlDKSFal47BtwJpsJTYX4Xav4XOlDePKH88_Qf8E1aJogk |
| CitedBy_id | crossref_primary_10_3390_rs15153787 crossref_primary_10_3390_app15179503 crossref_primary_10_1007_s12145_024_01543_9 crossref_primary_10_1016_j_jag_2024_103970 crossref_primary_10_1109_TGRS_2024_3384250 crossref_primary_10_3390_app13064053 crossref_primary_10_1016_j_jag_2024_103730 crossref_primary_10_1109_JSEN_2024_3465658 crossref_primary_10_1088_1755_1315_1337_1_012026 crossref_primary_10_3390_electronics11203310 crossref_primary_10_3390_rs15225342 crossref_primary_10_1109_ACCESS_2023_3293161 crossref_primary_10_1109_LGRS_2023_3303399 crossref_primary_10_1109_TGRS_2025_3589287 |
| Cites_doi | 10.1109/ICRA.2019.8794052 10.1109/ICCV.2019.00764 10.1109/CVPR.2019.00762 10.1007/978-3-030-11015-4_29 10.1109/CVPR.2018.00484 10.1109/CVPR.2018.00479 10.1109/ICRA40945.2020.9197499 10.1109/TPAMI.2020.3005434 10.1109/CVPRW50498.2020.00101 10.1109/CVPR.2019.00344 10.1007/s11263-019-01217-w 10.1109/CVPR.2019.00760 10.1109/ICCV.2019.00651 10.1109/CVPRW50498.2020.00109 10.1109/ICCV.2019.00859 10.1109/CVPR.2018.00274 10.1109/IGARSS.2019.8900102 10.1109/ICCV.2019.00169 10.1109/CVPR42600.2020.01112 10.3390/rs12111729 10.1007/978-3-030-11015-4_24 10.1109/ICCV.2019.01053 10.1016/j.cag.2020.02.005 10.1109/CVPR.2019.01054 10.1109/ICRA40945.2020.9197503 10.1109/CVPR.2019.00571 10.1109/ICCV.2019.00166 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs13163121 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_95968987cc3441aaa7d4d9881e120e7b 10_3390_rs13163121 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c394t-e89f1a7fa9c5020686f7861fa8b95f6f611eadfac71c79f45087a02a408d916d3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000689750800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:28:01 EDT 2025 Fri Sep 05 09:59:52 EDT 2025 Fri Jul 25 09:32:57 EDT 2025 Tue Nov 18 22:30:40 EST 2025 Sat Nov 29 07:18:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-e89f1a7fa9c5020686f7861fa8b95f6f611eadfac71c79f45087a02a408d916d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1232-0610 0000-0001-7467-3038 0000-0001-9963-5521 |
| OpenAccessLink | https://www.proquest.com/docview/2565699800?pq-origsite=%requestingapplication% |
| PQID | 2565699800 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_95968987cc3441aaa7d4d9881e120e7b proquest_miscellaneous_2636490743 proquest_journals_2565699800 crossref_citationtrail_10_3390_rs13163121 crossref_primary_10_3390_rs13163121 |
| PublicationCentury | 2000 |
| PublicationDate | 20210806 |
| PublicationDateYYYYMMDD | 2021-08-06 |
| PublicationDate_xml | – month: 08 year: 2021 text: 20210806 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Gwak (ref_3) 2019; 13 Yin (ref_6) 2021; 15 ref_14 ref_36 ref_13 ref_35 ref_12 ref_34 ref_11 ref_33 Mu (ref_4) 2019; 13 ref_10 ref_32 Jung (ref_5) 2020; 14 ref_31 ref_30 Wang (ref_28) 2019; 38 ref_19 ref_18 ref_17 ref_16 ref_38 ref_15 ref_37 Li (ref_21) 2018; 31 Zhao (ref_7) 2020; 14 Boulch (ref_24) 2020; 88 ref_25 ref_23 ref_22 ref_20 ref_1 ref_2 ref_29 ref_27 ref_26 ref_9 ref_8 Yang (ref_39) 2020; 128 |
| References_xml | – ident: ref_33 doi: 10.1109/ICRA.2019.8794052 – volume: 14 start-page: 3955 year: 2020 ident: ref_5 article-title: Intelligent hybrid fusion algorithm with vision patterns for generation of precise digital road maps in self-driving vehicles publication-title: KSII Trans. Internet Inf. Syst. – ident: ref_36 doi: 10.1109/ICCV.2019.00764 – volume: 13 start-page: 1738 year: 2019 ident: ref_4 article-title: A Review of Deep Learning research publication-title: KSII Trans. Internet Inf. Syst. – ident: ref_30 doi: 10.1109/CVPR.2019.00762 – volume: 14 start-page: 4426 year: 2020 ident: ref_7 article-title: DA-Res2Net: A novel Densely connected residual attention network for image semantic segmentation publication-title: KSII Trans. Internet Inf. Syst. – ident: ref_13 doi: 10.1007/978-3-030-11015-4_29 – ident: ref_11 – volume: 15 start-page: 786 year: 2021 ident: ref_6 article-title: Road damage detection and classification based on multi-level feature pyramids publication-title: KSII Trans. Internet Inf. Syst. – volume: 38 start-page: 1 year: 2019 ident: ref_28 article-title: Dynamic graph CNN for learning on point clouds publication-title: ACM Trans. Graph. – ident: ref_15 doi: 10.1109/CVPR.2018.00484 – ident: ref_29 doi: 10.1109/CVPR.2018.00479 – ident: ref_32 doi: 10.1109/ICRA40945.2020.9197499 – ident: ref_2 doi: 10.1109/TPAMI.2020.3005434 – ident: ref_18 – ident: ref_35 – ident: ref_38 doi: 10.1109/CVPRW50498.2020.00101 – volume: 13 start-page: 5299 year: 2019 ident: ref_3 article-title: A review of intelligent self-driving vehicle software research publication-title: KSII Trans. Internet Inf. Syst. – ident: ref_17 doi: 10.1109/CVPR.2019.00344 – volume: 128 start-page: 53 year: 2020 ident: ref_39 article-title: Robust attentional aggregation of deep feature sets for multi-view 3D reconstruction publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01217-w – ident: ref_8 – ident: ref_23 doi: 10.1109/CVPR.2019.00760 – ident: ref_25 doi: 10.1109/ICCV.2019.00651 – ident: ref_37 doi: 10.1109/CVPRW50498.2020.00109 – ident: ref_9 doi: 10.1109/ICCV.2019.00859 – ident: ref_22 doi: 10.1109/CVPR.2018.00274 – ident: ref_10 – ident: ref_12 doi: 10.1109/IGARSS.2019.8900102 – ident: ref_19 doi: 10.1109/ICCV.2019.00169 – ident: ref_20 doi: 10.1109/CVPR42600.2020.01112 – ident: ref_1 doi: 10.3390/rs12111729 – ident: ref_14 doi: 10.1007/978-3-030-11015-4_24 – volume: 31 start-page: 820 year: 2018 ident: ref_21 article-title: PointCNN: Convolution on x-transformed points publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_34 doi: 10.1109/ICCV.2019.01053 – volume: 88 start-page: 24 year: 2020 ident: ref_24 article-title: ConvPoint: Continuous convolutions for point cloud processing publication-title: Comput. Graph. doi: 10.1016/j.cag.2020.02.005 – ident: ref_31 doi: 10.1109/CVPR.2019.01054 – ident: ref_26 doi: 10.1109/ICRA40945.2020.9197503 – ident: ref_16 doi: 10.1109/CVPR.2019.00571 – ident: ref_27 doi: 10.1109/ICCV.2019.00166 |
| SSID | ssj0000331904 |
| Score | 2.3704658 |
| Snippet | Semantic segmentation of large-scale outdoor 3D LiDAR point clouds becomes essential to understand the scene environment in various applications, such as... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3121 |
| SubjectTerms | 3D LiDAR point clouds Aggregates Coders data collection Datasets Deep learning geometry Image segmentation Learning Lidar Methods Metric space Multilayers Neighborhoods Remote sensing Semantic segmentation Semantics Three dimensional models Tradeoffs |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhQQX1PIQW1pkBBcOUe3Y8eNYSisO27LSgtRb5Ces1MYoyVbqjf_AP-wvYZykSxFIXLhFzhys8efxjD3zDUJvTOTMukoWhhtecB1YoUlpCwCPssSC0QxkaDYhz87U-ble3Gn1lXPCRnrgUXEHutJCQWDsHIOT2xgjPfdaKRpoSYK02foSqe8EU4MNZgAtwkc-UgZx_UHbUQa-By3pbyfQQNT_hx0eDpeTbfRo8grx4TibHXQvNI_Rg6lB-dfrJygtwyXoYOXwMny5nOqFGpwinudU7mIJqg7447r3KbV4kVZNj48u0tp32F7j4yZXrrc333-8D8MXzjzNwePT-aLD-SoWn06JhXie8jPwU_T55PjT0Ydi6pVQOKZ5XwSlIzUyGu0q8ACFElEqQaNRVldRREEpYCYaJ6mTOnLwy6QhpeFEefAQPXuGtprUhOcIe2q4NUQTzzWPlivnI8_1qQGCrSrwGXp7q7_aTUTiuZ_FRQ0BRdZ1_UvXM_R6I_ttpM_4q9S7vAwbiUx5PQwAEOoJCPW_gDBDe7eLWE_7sKvL7K9CREnIDL3a_IYdlJ9FTBPSGmQEEzzfEbDd_zGPF-hhmfNeclqJ2ENbfbsO--i-u-pXXftygOlPTPTsrQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Semantic Segmentation of Large-Scale Outdoor Point Clouds by Encoder–Decoder Shared MLPs with Multiple Losses |
| URI | https://www.proquest.com/docview/2565699800 https://www.proquest.com/docview/2636490743 https://doaj.org/article/95968987cc3441aaa7d4d9881e120e7b |
| Volume | 13 |
| WOSCitedRecordID | wos000689750800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagRYJLeVZsKSsjuHCIasdOYp8QLVuBtLtELEiFS-T4UVZq45LsIvWC-A_8Q34Jnqx3KwTiwsWK4lFkZcbjefkbhJ4px1mtsyJRXPGES8sSSdI6CcIjalIHpWlJ32yimE7FyYksY8Cti2WVa53YK2rjNcTID1KwPIJvQMiLiy8JdI2C7GpsoXEdbQNKAu1L92abGAthQcAIX6GSsuDdH7QdZcECoSn97Rzq4fr_0Mb9EXN8-38XdwftROMSv1xJw110zTb30M3Y5_zz5X3kZ_Y8_Mq5xjN7eh6vHTXYOzyGivBkFjhm8dvlwnjf4tLPmwU-OvNL0-H6Eo8auADf_vz-45XtnzDAPVuDJ-OywxDRxZNYn4jHHrLJD9CH49H7o9dJbLmQaCb5IrFCOqoKp6TOgiGZi9wVIqdOiVpmLnc5pUH0nNIF1YV0PJh3hSKp4kSYYGgatou2Gt_YhwgbqnitiCSGS-5qLrRxHK652uCzZZYP0PM1Ayod8cihLcZZFfwSYFZ1xawBerqhvVihcPyV6hD4uKEA5Oz-hW9Pq7gRK5nJXEhRaM2CJaiUKgw3UoRl0ZTYoh6g_TWLq7idu-qKvwP0ZDMdNiJkV1Rj_TLQ5CznEGpge__-xCN0K4XCGKg7yffR1qJd2sfohv66mHftEG0fjqblu2EfHBj28gzjt1EYy-xTmC_fTMqPvwCGEAHd |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qU6Sy4Y2YUsAIWLCI6sROYi8Qgj7UUWeGkaZIZRUcP9qR2rgkGdDs-Af-g4_iS7AzyVQIxK4LdlFyZSX2yfW51_cB8EIYSnIZp4GgggaUaxJwHOWBAw_Lce6UpsZNs4l0PGbHx3yyBj-6XBgfVtnpxEZRKyu9j3w78szD2QYYv7n4HPiuUf50tWuhsYTFoV58dSZb9Xqw69b3ZRTt7x3tHARtV4FAEk7rQDNuQpEawWXsuFLCEpOyJDSC5Tw2iUnC0M2uETINZcoNdQwmFTgSFDPluJQibtxrsE492HuwPhmMJh9XXh1MHKQxXdZBJYTj7bIKieM8YRT-tvM1DQL-0P_NprZ_63-bjttws6XP6O0S73dgTRd3YaPt5H66uAd2qs8dWGYSTfXJeZtYVSBr0NDHvAdTh0mN3s9rZW2JJnZW1GjnzM5VhfIF2it8in_589v3Xd1cIV_QWis0Gk4q5H3WaNRGYKKh9efl9-HDlXzvA-gVttAPAalQ0FxgjhXl1OSUSWWoT-TVziqNNe3Dq27BM9lWXPeNP84yZ3l5cGSX4OjD85XsxbLOyF-l3nncrCR8bfDmhi1PslbVZDzmCeMslZI4riuESBVVnLnXCiOs07wPWx2kslZhVdklnvrwbPXYqRp_fiQKbedOJiEJ9c4UsvnvIZ7CxsHRaJgNB-PDR3Aj8mFAPsom2YJeXc71Y7guv9SzqnzS_j8IPl01Rn8BZaFZ2A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKQcCFf8RCASPgwCFaJ3Zi-4AQdLui6nZZaUGqegmOf8pKbVySLGhvvANvw-PwJIyz2a0QiFsP3KJkFCX25_E34_lB6JlyjBY65ZFiikVMWhpJkhQRgEcUpAClaUnbbIKPx-LgQE420I9VLkwIq1zpxFZRG6-Dj7yfBOYBtgEhfdeFRUwGw1enn6PQQSqctK7aaSwhsmcXX8F8q1_uDmCunyfJcOf99tuo6zAQaSpZE1khXay4U1KnwJsykTkustgpUcjUZS6LYxhppzSPNZeOAZvhiiSKEWGAVxkK772ALnKwMUM44SQ9XPt3CAVwE7asiEqpJP2qjimwnziJf9sD21YBf-wE7fY2vP4_D8wNdK0j1fj1chXcRBu2vIWudP3dPy1uIz-1JwChmcZTe3TSpVuV2Ds8CpHw0RSQavG7eWO8r_DEz8oGbx_7ualxscA7ZUj8r35--z6w7RUOZa6twfujSY2DJxvvd3GZeOTDKfod9OFc_vcu2ix9ae8hbGLFCkUkMUwyVzChjWMhvdeCrZpa1kMvVpOf664Oe2gHcpyDPRaAkp8BpYeermVPl9VH_ir1JmBoLREqhrc3fHWUdwool6nMhBRcawoMWCnFDTNSwGfFCbG86KGtFbzyTo3V-Rm2eujJ-jEooHCqpErr5yCT0YwFFwu9_-9XPEaXAZj5aHe89wBdTUJsUAi9ybbQZlPN7UN0SX9pZnX1qF1IGH08b4D-AixaYTs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+Segmentation+of+Large-Scale+Outdoor+Point+Clouds+by+Encoder%E2%80%93Decoder+Shared+MLPs+with+Multiple+Losses&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Rim%2C+Beanbonyka&rft.au=Lee%2C+Ahyoung&rft.au=Hong%2C+Min&rft.date=2021-08-06&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=16&rft_id=info:doi/10.3390%2Frs13163121&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |