Semantic Segmentation of Large-Scale Outdoor Point Clouds by Encoder–Decoder Shared MLPs with Multiple Losses

Semantic segmentation of large-scale outdoor 3D LiDAR point clouds becomes essential to understand the scene environment in various applications, such as geometry mapping, autonomous driving, and more. With an advantage of being a 3D metric space, 3D LiDAR point clouds, on the other hand, pose a cha...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Remote sensing (Basel, Switzerland) Ročník 13; číslo 16; s. 3121
Hlavní autori: Rim, Beanbonyka, Lee, Ahyoung, Hong, Min
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 06.08.2021
Predmet:
ISSN:2072-4292, 2072-4292
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Semantic segmentation of large-scale outdoor 3D LiDAR point clouds becomes essential to understand the scene environment in various applications, such as geometry mapping, autonomous driving, and more. With an advantage of being a 3D metric space, 3D LiDAR point clouds, on the other hand, pose a challenge for a deep learning approach, due to their unstructured, unorder, irregular, and large-scale characteristics. Therefore, this paper presents an encoder–decoder shared multi-layer perceptron (MLP) with multiple losses, to address an issue of this semantic segmentation. The challenge rises a trade-off between efficiency and effectiveness in performance. To balance this trade-off, we proposed common mechanisms, which is simple and yet effective, by defining a random point sampling layer, an attention-based pooling layer, and a summation of multiple losses integrated with the encoder–decoder shared MLPs method for the large-scale outdoor point clouds semantic segmentation. We conducted our experiments on the following two large-scale benchmark datasets: Toronto-3D and DALES dataset. Our experimental results achieved an overall accuracy (OA) and a mean intersection over union (mIoU) of both the Toronto-3D dataset, with 83.60% and 71.03%, and the DALES dataset, with 76.43% and 59.52%, respectively. Additionally, our proposed method performed a few numbers of parameters of the model, and faster than PointNet++ by about three times during inferencing.
AbstractList Semantic segmentation of large-scale outdoor 3D LiDAR point clouds becomes essential to understand the scene environment in various applications, such as geometry mapping, autonomous driving, and more. With an advantage of being a 3D metric space, 3D LiDAR point clouds, on the other hand, pose a challenge for a deep learning approach, due to their unstructured, unorder, irregular, and large-scale characteristics. Therefore, this paper presents an encoder–decoder shared multi-layer perceptron (MLP) with multiple losses, to address an issue of this semantic segmentation. The challenge rises a trade-off between efficiency and effectiveness in performance. To balance this trade-off, we proposed common mechanisms, which is simple and yet effective, by defining a random point sampling layer, an attention-based pooling layer, and a summation of multiple losses integrated with the encoder–decoder shared MLPs method for the large-scale outdoor point clouds semantic segmentation. We conducted our experiments on the following two large-scale benchmark datasets: Toronto-3D and DALES dataset. Our experimental results achieved an overall accuracy (OA) and a mean intersection over union (mIoU) of both the Toronto-3D dataset, with 83.60% and 71.03%, and the DALES dataset, with 76.43% and 59.52%, respectively. Additionally, our proposed method performed a few numbers of parameters of the model, and faster than PointNet++ by about three times during inferencing.
Author Hong, Min
Lee, Ahyoung
Rim, Beanbonyka
Author_xml – sequence: 1
  givenname: Beanbonyka
  orcidid: 0000-0003-1232-0610
  surname: Rim
  fullname: Rim, Beanbonyka
– sequence: 2
  givenname: Ahyoung
  orcidid: 0000-0001-7467-3038
  surname: Lee
  fullname: Lee, Ahyoung
– sequence: 3
  givenname: Min
  orcidid: 0000-0001-9963-5521
  surname: Hong
  fullname: Hong, Min
BookMark eNptUctqVEEUbCSCcczGL2hwI8LVft1-LGWMMTAhgdF1c6Yfkx7u3B67-yLZ-Q_-Yb7Ea0ZRgmdzDoeqgqp6jk7GPAaEXlLylnND3pVKOZWcMvoEnTKiWCeYYSf_3M_QWa07Mg_n1BBxivI67GFsyeF12O7D2KClPOIc8QrKNnRrB0PA11PzORd8k9PY8HLIk694c4fPR5d9KPfff3wIDxde30IJHl-tbir-ltotvpqGlg6zxirXGuoL9DTCUMPZ771AXz6ef15-6lbXF5fL96vOcSNaF7SJFFQE43rCiNQyKi1pBL0xfZRRUhrAR3CKOmWi6IlWQBgIor2h0vMFujzq-gw7eyhpD-XOZkj24ZHL1kKZbQ_Bmt5IbbRyjgtBAUB54Y3WNFBGgtrMWq-PWoeSv06hNrtP1YVhgDHkqVomuRSGKMFn6KtH0F2eyjg7tayXvTRGz9kvEDmiXJlDKSFal47BtwJpsJTYX4Xav4XOlDePKH88_Qf8E1aJogk
CitedBy_id crossref_primary_10_3390_rs15153787
crossref_primary_10_3390_app15179503
crossref_primary_10_1007_s12145_024_01543_9
crossref_primary_10_1016_j_jag_2024_103970
crossref_primary_10_1109_TGRS_2024_3384250
crossref_primary_10_3390_app13064053
crossref_primary_10_1016_j_jag_2024_103730
crossref_primary_10_1109_JSEN_2024_3465658
crossref_primary_10_1088_1755_1315_1337_1_012026
crossref_primary_10_3390_electronics11203310
crossref_primary_10_3390_rs15225342
crossref_primary_10_1109_ACCESS_2023_3293161
crossref_primary_10_1109_LGRS_2023_3303399
crossref_primary_10_1109_TGRS_2025_3589287
Cites_doi 10.1109/ICRA.2019.8794052
10.1109/ICCV.2019.00764
10.1109/CVPR.2019.00762
10.1007/978-3-030-11015-4_29
10.1109/CVPR.2018.00484
10.1109/CVPR.2018.00479
10.1109/ICRA40945.2020.9197499
10.1109/TPAMI.2020.3005434
10.1109/CVPRW50498.2020.00101
10.1109/CVPR.2019.00344
10.1007/s11263-019-01217-w
10.1109/CVPR.2019.00760
10.1109/ICCV.2019.00651
10.1109/CVPRW50498.2020.00109
10.1109/ICCV.2019.00859
10.1109/CVPR.2018.00274
10.1109/IGARSS.2019.8900102
10.1109/ICCV.2019.00169
10.1109/CVPR42600.2020.01112
10.3390/rs12111729
10.1007/978-3-030-11015-4_24
10.1109/ICCV.2019.01053
10.1016/j.cag.2020.02.005
10.1109/CVPR.2019.01054
10.1109/ICRA40945.2020.9197503
10.1109/CVPR.2019.00571
10.1109/ICCV.2019.00166
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs13163121
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Collection (ProQuest)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_95968987cc3441aaa7d4d9881e120e7b
10_3390_rs13163121
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-e89f1a7fa9c5020686f7861fa8b95f6f611eadfac71c79f45087a02a408d916d3
IEDL.DBID M7S
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000689750800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:28:01 EDT 2025
Fri Sep 05 09:59:52 EDT 2025
Fri Jul 25 09:32:57 EDT 2025
Tue Nov 18 22:30:40 EST 2025
Sat Nov 29 07:18:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-e89f1a7fa9c5020686f7861fa8b95f6f611eadfac71c79f45087a02a408d916d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1232-0610
0000-0001-7467-3038
0000-0001-9963-5521
OpenAccessLink https://www.proquest.com/docview/2565699800?pq-origsite=%requestingapplication%
PQID 2565699800
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_95968987cc3441aaa7d4d9881e120e7b
proquest_miscellaneous_2636490743
proquest_journals_2565699800
crossref_citationtrail_10_3390_rs13163121
crossref_primary_10_3390_rs13163121
PublicationCentury 2000
PublicationDate 20210806
PublicationDateYYYYMMDD 2021-08-06
PublicationDate_xml – month: 08
  year: 2021
  text: 20210806
  day: 06
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Gwak (ref_3) 2019; 13
Yin (ref_6) 2021; 15
ref_14
ref_36
ref_13
ref_35
ref_12
ref_34
ref_11
ref_33
Mu (ref_4) 2019; 13
ref_10
ref_32
Jung (ref_5) 2020; 14
ref_31
ref_30
Wang (ref_28) 2019; 38
ref_19
ref_18
ref_17
ref_16
ref_38
ref_15
ref_37
Li (ref_21) 2018; 31
Zhao (ref_7) 2020; 14
Boulch (ref_24) 2020; 88
ref_25
ref_23
ref_22
ref_20
ref_1
ref_2
ref_29
ref_27
ref_26
ref_9
ref_8
Yang (ref_39) 2020; 128
References_xml – ident: ref_33
  doi: 10.1109/ICRA.2019.8794052
– volume: 14
  start-page: 3955
  year: 2020
  ident: ref_5
  article-title: Intelligent hybrid fusion algorithm with vision patterns for generation of precise digital road maps in self-driving vehicles
  publication-title: KSII Trans. Internet Inf. Syst.
– ident: ref_36
  doi: 10.1109/ICCV.2019.00764
– volume: 13
  start-page: 1738
  year: 2019
  ident: ref_4
  article-title: A Review of Deep Learning research
  publication-title: KSII Trans. Internet Inf. Syst.
– ident: ref_30
  doi: 10.1109/CVPR.2019.00762
– volume: 14
  start-page: 4426
  year: 2020
  ident: ref_7
  article-title: DA-Res2Net: A novel Densely connected residual attention network for image semantic segmentation
  publication-title: KSII Trans. Internet Inf. Syst.
– ident: ref_13
  doi: 10.1007/978-3-030-11015-4_29
– ident: ref_11
– volume: 15
  start-page: 786
  year: 2021
  ident: ref_6
  article-title: Road damage detection and classification based on multi-level feature pyramids
  publication-title: KSII Trans. Internet Inf. Syst.
– volume: 38
  start-page: 1
  year: 2019
  ident: ref_28
  article-title: Dynamic graph CNN for learning on point clouds
  publication-title: ACM Trans. Graph.
– ident: ref_15
  doi: 10.1109/CVPR.2018.00484
– ident: ref_29
  doi: 10.1109/CVPR.2018.00479
– ident: ref_32
  doi: 10.1109/ICRA40945.2020.9197499
– ident: ref_2
  doi: 10.1109/TPAMI.2020.3005434
– ident: ref_18
– ident: ref_35
– ident: ref_38
  doi: 10.1109/CVPRW50498.2020.00101
– volume: 13
  start-page: 5299
  year: 2019
  ident: ref_3
  article-title: A review of intelligent self-driving vehicle software research
  publication-title: KSII Trans. Internet Inf. Syst.
– ident: ref_17
  doi: 10.1109/CVPR.2019.00344
– volume: 128
  start-page: 53
  year: 2020
  ident: ref_39
  article-title: Robust attentional aggregation of deep feature sets for multi-view 3D reconstruction
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01217-w
– ident: ref_8
– ident: ref_23
  doi: 10.1109/CVPR.2019.00760
– ident: ref_25
  doi: 10.1109/ICCV.2019.00651
– ident: ref_37
  doi: 10.1109/CVPRW50498.2020.00109
– ident: ref_9
  doi: 10.1109/ICCV.2019.00859
– ident: ref_22
  doi: 10.1109/CVPR.2018.00274
– ident: ref_10
– ident: ref_12
  doi: 10.1109/IGARSS.2019.8900102
– ident: ref_19
  doi: 10.1109/ICCV.2019.00169
– ident: ref_20
  doi: 10.1109/CVPR42600.2020.01112
– ident: ref_1
  doi: 10.3390/rs12111729
– ident: ref_14
  doi: 10.1007/978-3-030-11015-4_24
– volume: 31
  start-page: 820
  year: 2018
  ident: ref_21
  article-title: PointCNN: Convolution on x-transformed points
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_34
  doi: 10.1109/ICCV.2019.01053
– volume: 88
  start-page: 24
  year: 2020
  ident: ref_24
  article-title: ConvPoint: Continuous convolutions for point cloud processing
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2020.02.005
– ident: ref_31
  doi: 10.1109/CVPR.2019.01054
– ident: ref_26
  doi: 10.1109/ICRA40945.2020.9197503
– ident: ref_16
  doi: 10.1109/CVPR.2019.00571
– ident: ref_27
  doi: 10.1109/ICCV.2019.00166
SSID ssj0000331904
Score 2.3705544
Snippet Semantic segmentation of large-scale outdoor 3D LiDAR point clouds becomes essential to understand the scene environment in various applications, such as...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3121
SubjectTerms 3D LiDAR point clouds
Aggregates
Coders
data collection
Datasets
Deep learning
geometry
Image segmentation
Learning
Lidar
Methods
Metric space
Multilayers
Neighborhoods
Remote sensing
Semantic segmentation
Semantics
Three dimensional models
Tradeoffs
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhQQX1PIQW1pkBBcOUePY8eNYSisO27LSgtRb5PgBK7UxSrKVeuM_8A_7S5hJ0qUIJC7c8phE1ng8_sYef0PIGyHKGGvls1hylwntYqaNtpl1LjiN6Wt-qFoyV2dn-vzcLO6U-sKcsJEeeFTcgSmNhK-Vcxxmbmut8sIbrVlgRR5Ujd43V-ZOMDX4YA6mlYuRj5RDXH_QdowD9mAF-20GGoj6__DDw-Rysk0eTaiQHo6t2SH3QvOYPJgKlH-9fkLSMlyCDlaOLsOXy-m8UENTpHNM5c6WoOpAP657n1JLF2nV9PToIq19R-tretzgyfX25vuP92G4osjTHDw9nS86ikux9HRKLKTzhNvAT8nnk-NPRx-yqVZC5rgRfRa0icyqaI0rAQFKLaPSkkWra1NGGSVjYDPROsWcMlEALlM2L6zItQeE6PkzstWkJjwndKg6zkXhWAC4Ukb4oy9dkHDHfM31jLy91V_lJiJxrGdxUUFAgbquful6Rl5vZL-N9Bl_lXqH3bCRQMrr4QEYQjUZQvUvQ5iRvdtOrKZx2FUF4lWIKPN8Rl5tXsMIwm0R24S0BhnJpcA1Ar77P9rxgjwsMO8F00rkHtnq23XYJ_fdVb_q2peDmf4Et8rtTQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Semantic Segmentation of Large-Scale Outdoor Point Clouds by Encoder–Decoder Shared MLPs with Multiple Losses
URI https://www.proquest.com/docview/2565699800
https://www.proquest.com/docview/2636490743
https://doaj.org/article/95968987cc3441aaa7d4d9881e120e7b
Volume 13
WOSCitedRecordID wos000689750800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagRYJLeVZsKSsjuHCIGseOHydEy1Yg7S4RC1LhEjl-lJXauCS7SL0g_gP_kF-C7fVuhUBcuFhJPLKszNj-PB7PB8AzQkprG6YzW2KVEa5sxgWXmVTKKB7C13RkLRmz6ZSfnIgqOdz6FFa5nhPjRK2dCj7ygyIgD783yPMXF1-ywBoVTlcThcZ1sB2yJKAYujfb-Fhy7A0sJ6uspNjv7g-6HmGPQFCBfluHYrr-P2bjuMQc3_7fzt0BOwlcwpcra7gLrpn2HriZeM4_X94HbmbO_a-cKzgzp-fp2lELnYXjEBGezbzGDHy7XGjnOli5ebuAR2duqXvYXMJRGy7Adz-__3hl4hMM6Z6NhpNx1cPg0YWTFJ8Ixy6cJj8AH45H749eZ4lyIVNYkEVmuLBIMiuFKj2QpJxaximykjeitNRShLzpWakYUkxY4uEdk3khSc61B5oa74Kt1rXmIYCRvByTQiHjUU9pfYu6VIb6N6QbzAfg-VoBtUr5yAMtxlnt9yVBWfWVsgbg6Ub2YpWF469Sh0GPG4mQOTt-cN1pnQZiLUpBvTUypbBHglJKpokWnCODitywZgD21yqu03Du6yv9DsCTTbUfiOF0RbbGLb0MxZQEVwPe-3cTj8CtIgTGhLgTug-2Ft3SPAY31NfFvO-GYPtwNK3eDaNzYBjtOZTfRr6syk--vnozqT7-AjJoAn0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qU6Sy4Y2YUsAIWLCIGsdOYi8Qgj7UUTNDpClSWQWPH-1IbVySGdDs-Af-g4_iS7AzyVQIxK4LdnlcWYp9fHN8fX0PwAtKY2MmqQpMTGRAmTQB40wEQkotmU9fU41qSZaORuz4mOdr8KM7C-PTKjuf2DhqZaWPkW9Hnnm4tUEYvrn4HHjVKL-72kloLGFxqBdf3ZKtfj3YdeP7Mor29452DoJWVSCQhNNZoBk3WKRGcBk7rpSwxKQswUawCY9NYhKMXe8aIVMsU26oYzCpCCNBQ6Ycl1LEtXsN1qkHew_W88Ew_7iK6oTEQTqkyzqohPBwu6oxcZwHR_i3P18jEPCH_29-avu3_rfuuA03W_qM3i7xfgfWdHkXNlol99PFPbBjfe7AMpVorE_O24NVJbIGZT7nPRg7TGr0fj5T1lYot9NyhnbO7FzVaLJAe6U_4l_9_PZ9VzdXyBe01goNs7xGPmaNhm0GJsqs3y-_Dx-u5HsfQK-0pX4IqJFnJzSSWDteFxvXooqlTtwdVhPC-vCqG_BCthXXvfDHWeFWXh4cxSU4-vB8ZXuxrDPyV6t3HjcrC18bvHlgq5OidTUFj3ni5lsqJXFcVwiRKqo4Y1jjKNTppA9bHaSK1mHVxSWe-vBs9dq5Gr9_JEpt584mIQn1wRSy-e8mnsLGwdEwK7LB6PAR3Ih8GpDPskm2oDer5voxXJdfZtO6etLOHwSfrhqjvwAbslp4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQcCGN2KggBGwYBFNHCexvUAIOh1RNR1GGpCqboLjRxmpjUuSAc2Of-Bv-By-hOtMMhUCseuCXR5XluIcX19fH9-D0LM4TqwtmA5sQlUQc2UDLrgMpFJGcU9f061qScYmE35wIKYb6Ed_FsbTKnuf2Dpq7ZTPkQ8jH3nA2iAMh7ajRUxH41ennwOvIOV3Wns5jRVE9szyKyzf6pe7I_jXz6NovPN--23QKQwEioq4CQwXlkhmpVAJxE0pTy3jKbGSFyKxqU0JgZ62UjGimLAxRDNMhpGMQ64hrtIU2r2ALjJYY3o64TQ5XOd3QgrgDuNVRVRKRTisakIh-iER-W0ObKUC_pgJ2ultfP1_7pgb6FoXVOPXq1FwE22Y8ha60um7f1reRm5mTgBCc4Vn5uikO25VYmdx5pnwwQyQavC7RaOdq_DUzcsGbx-7ha5xscQ7pT_4X_389n1k2ivsy1wbjfezaY19Jhvvd7xMnDm_i34HfTiX772LNktXmnsIt6LtNI4UMRDtJRZa1IkyKdwRXVA-QC_6n5-rrg67lwM5zmE95oGSnwFlgJ6ubU9X1Uf-avXGY2ht4SuGtw9cdZR3DigXiUhhFDKlKETAUkqmYy04J4ZEoWHFAG318Mo7N1bnZ9gaoCfr1-CA_K6SLI1bgE1K09inWOj9fzfxGF0GYObZ7mTvAboaeW6Qp96kW2izqRbmIbqkvjTzunrUDiSMPp43QH8B9Yph2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+Segmentation+of+Large-Scale+Outdoor+Point+Clouds+by+Encoder%E2%80%93Decoder+Shared+MLPs+with+Multiple+Losses&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Rim%2C+Beanbonyka&rft.au=Lee%2C+Ahyoung&rft.au=Hong%2C+Min&rft.date=2021-08-06&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=16&rft.spage=3121&rft_id=info:doi/10.3390%2Frs13163121&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon