Time Reversal Based Active Array Source Localization

Source localization especially direction-of-arrival (DOA) estimation using sensor arrays is of considerable interest in both classical array signal processing and radar applications. Most radar systems are designed under the line-of-sight (LOS) assumption with multipath echos treated as undesired cl...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on signal processing Ročník 59; číslo 6; s. 2655 - 2668
Hlavní autori: Foroozan, F, Asif, A
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.06.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1053-587X, 1941-0476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Source localization especially direction-of-arrival (DOA) estimation using sensor arrays is of considerable interest in both classical array signal processing and radar applications. Most radar systems are designed under the line-of-sight (LOS) assumption with multipath echos treated as undesired clutter noise. Strong multipath, therefore, has a negative impact on the resolution of the radar systems and their ability in accurately localizing the target. Rather than treating multipath as a detrimental effect, the paper introduces time reversal (TR) to exploit spatial/multipath diversity in improving the capability of the existing localization algorithms. In particular, we design TR based range and DOA estimators that adaptively adjust the probing radar waveforms to the multipath characteristics of the environment. The benefits of the spatial/multipath diversity in the proposed DOA and range estimators are quantified by deriving the respective Cramér-Rao bounds (CRB) and comparing them with the analytical expressions for their conventional counterparts. Numerical simulations also confirm the benefit of applying TR to source localization algorithms especially at low signal-to-noise ratios below -5 dB.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2011.2128317