Time series classification via topological data analysis

In this paper, we develop topological data analysis methods for classification tasks on univariate time series. As an application, we perform binary and ternary classification tasks on two public datasets that consist of physiological signals collected under stress and non-stress conditions. We acco...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 183; s. 115326
Hlavní autoři: Karan, Alperen, Kaygun, Atabey
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 30.11.2021
Elsevier BV
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we develop topological data analysis methods for classification tasks on univariate time series. As an application, we perform binary and ternary classification tasks on two public datasets that consist of physiological signals collected under stress and non-stress conditions. We accomplish our goal by using persistent homology to engineer stable topological features after we use a time delay embedding of the signals and perform a subwindowing instead of using windows of fixed length. The combination of methods we use can be applied to any univariate time series and allows us to reduce noise and use long window sizes without incurring an extra computational cost. We then use machine learning models on the features we algorithmically engineered to obtain higher accuracies with fewer features.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2021.115326