A genetic algorithm for multi-level, multi-machine lot sizing and scheduling

This contribution introduces a mixed-integer programming formulation for the multi-level, multi-machine proportional lot sizing and scheduling problem. It also presents a genetic algorithm to solve that problem. The efficiency of that algorithm is due to an encoding of solutions which uses a two-dim...

Full description

Saved in:
Bibliographic Details
Published in:Computers & operations research Vol. 26; no. 8; pp. 829 - 848
Main Author: Kimms, A.
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.07.1999
Elsevier Science
Pergamon Press Inc
Subjects:
ISSN:0305-0548, 1873-765X, 0305-0548
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This contribution introduces a mixed-integer programming formulation for the multi-level, multi-machine proportional lot sizing and scheduling problem. It also presents a genetic algorithm to solve that problem. The efficiency of that algorithm is due to an encoding of solutions which uses a two-dimensional matrix representation with non-binary entries rather than a simple bitstring. A computational study reveals that the proposed procedure works amazingly fast and competes with a tabu search approach that has recently been published. Scope and purpose The logic of Manufacturing Resource Planning (MRP II) is implemented in most production planning software packages. In the short-term scope, where lot sizing and scheduling has to be done, MRP II systems basically pass three phases: First, lot sizes are computed while disregarding capacity constraints. Multi-level product structures are taken into account in a level-by-level manner starting with end items. Second, lot sizes are adapted to meet capacity restrictions. This time, precedence relations among items are not taken into account. Finally, sequence decisions are made. Following this strategy is reported to result in high work-in-process and long lead times. To cure these shortcomings, an approach for simultaneous lot sizing and scheduling is required where multi-level product structures and several scarce capacities are taken into account. Unfortunately, such methods have not been presented yet. To close this gap is our aim.
AbstractList This contribution introduces a mixed-integer programming formulation for the multi-level, multi-machine proportional lot sizing and scheduling problem. It also presents a genetic algorithm to solve that problem. The efficiency of that algorithm is due to an encoding of solutions which uses a two-dimensional matrix representation with non-binary entries rather than a simple bitstring. A computational study reveals that the proposed procedure works amazingly fast and competes with a tabu search approach that has recently been published. Scope and purpose The logic of Manufacturing Resource Planning (MRP II) is implemented in most production planning software packages. In the short-term scope, where lot sizing and scheduling has to be done, MRP II systems basically pass three phases: First, lot sizes are computed while disregarding capacity constraints. Multi-level product structures are taken into account in a level-by-level manner starting with end items. Second, lot sizes are adapted to meet capacity restrictions. This time, precedence relations among items are not taken into account. Finally, sequence decisions are made. Following this strategy is reported to result in high work-in-process and long lead times. To cure these shortcomings, an approach for simultaneous lot sizing and scheduling is required where multi-level product structures and several scarce capacities are taken into account. Unfortunately, such methods have not been presented yet. To close this gap is our aim.
A mixed-integer programming formulation for the multi-level, multi-machine proportional lot sizing and scheduling problem is introduced. A genetic algorithm is also presented to solve that problem. The efficiency of that algorithm is due to an encoding of solutions which uses a two-dimensional matrix representation with non-binary entries rather than a simple bitstring. A computational study reveals that the proposed procedure works amazingly fast and competes with a tabu search approach that has recently been published.
This contribution introduces a mixed-integer programming formulation for the multi-level, multi-machine proportional lot sizing and scheduling problem. It also presents a genetic algorithm to solve that problem. The efficiency of that algorithm is due to an encoding of solutions which uses a two-dimensional matrix representation with non-binary entries rather than a simple bitstring. A computational study reveals that the proposed procedure works amazingly fast and competes with a tabu search approach that has recently been published.
Author Kimms, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Kimms
  fullname: Kimms, A.
  email: kimms@bwl.uni-kiel.de
  organization: Lehrstuhl für Produktion und Logistik, Institut für Betriebswirtschaftslehre, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1860994$$DView record in Pascal Francis
BookMark eNqFkd1rFDEUxYO04PbjTxAGEVHo2GQ2n_ggpdhWWPBBBd9C9s6d3ZRMUpNMQf96p92lD33p0-XA7xwu5xyRg5giEvKG0U-MMnn-gy6paKng-oPRHyml2rTyFVkwrZatkuL3AVk8Ia_JUSm3M0RVxxZkddFsMGL10LiwSdnX7dgMKTfjFKpvA95jONuL0cHWR2xCqk3x_3zcNC72TYEt9lOY5Qk5HFwoeLq_x-TX1deflzft6vv1t8uLVQtLw2uLnTBghBlUZ3rN1hwc65wCpxXXAGuBbBCaAXUguaIKejE4Ax0aUIbL9fKYvN_l3uX0Z8JS7egLYAguYpqK7aQRlHIzg2-fgbdpynH-zTIjdMckpzP0bg-5Ai4M2UXwxd5lP7r81zItqTF8xj7vMMiplIyDBV9d9SnW7HywjNqHNezjGvahamu0fVzDytktnrmf8l_wfdn5cO7z3mO2BTxGwN5nhGr75F9I-A__maNE
CODEN CMORAP
CitedBy_id crossref_primary_10_1016_j_ijpe_2011_01_012
crossref_primary_10_1016_S0898_1221_02_00146_3
crossref_primary_10_1016_j_ijpe_2006_08_026
crossref_primary_10_1080_10170660709509028
crossref_primary_10_1080_00207543_2016_1207820
crossref_primary_10_1016_j_cor_2009_09_020
crossref_primary_10_1080_09511920701233340
crossref_primary_10_1007_s43069_021_00080_1
crossref_primary_10_1080_0951192X_2014_880805
crossref_primary_10_1007_s42452_021_04669_3
crossref_primary_10_1016_j_ijpe_2023_108958
crossref_primary_10_1080_00207540600902262
crossref_primary_10_1080_10170660109509169
crossref_primary_10_1080_00207543_2019_1680892
crossref_primary_10_1109_MIS_2005_59
crossref_primary_10_1007_s00170_008_1481_x
crossref_primary_10_1080_00207540600665893
crossref_primary_10_1016_j_compchemeng_2019_03_002
crossref_primary_10_1007_s10732_017_9338_9
crossref_primary_10_1080_02522667_2009_10699881
crossref_primary_10_1007_s12159_016_0145_8
crossref_primary_10_1007_s10845_008_0205_2
crossref_primary_10_1016_j_ejor_2010_09_022
crossref_primary_10_1016_j_rcim_2007_01_001
crossref_primary_10_1111_itor_12645
crossref_primary_10_1007_s00170_013_5252_y
crossref_primary_10_1007_s00291_015_0429_4
crossref_primary_10_1016_j_ejor_2005_12_008
crossref_primary_10_1016_j_ejor_2004_01_054
crossref_primary_10_1080_00207540310001613656
crossref_primary_10_1016_j_ijpe_2011_04_016
crossref_primary_10_1007_s00170_016_9557_5
crossref_primary_10_1016_j_ejor_2012_10_011
crossref_primary_10_1016_j_ejor_2019_03_001
crossref_primary_10_1016_j_ejor_2015_01_034
crossref_primary_10_1016_S0305_0548_00_00103_9
crossref_primary_10_1007_s00170_003_2042_y
ContentType Journal Article
Copyright 1999 Elsevier Science Ltd
1999 INIST-CNRS
Copyright Pergamon Press Inc. Jul 1999
Copyright_xml – notice: 1999 Elsevier Science Ltd
– notice: 1999 INIST-CNRS
– notice: Copyright Pergamon Press Inc. Jul 1999
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/S0305-0548(98)00089-6
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Applied Sciences
EISSN 1873-765X
0305-0548
EndPage 848
ExternalDocumentID 43009035
1860994
10_1016_S0305_0548_98_00089_6
S0305054898000896
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEFWE
AEHXG
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c394t-e259c959f729d81b4ca12a7ca8748ccb5e1f581c0ac64707cd5fa9c2e9c7946b3
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000079830400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0548
IngestDate Thu Oct 02 04:20:04 EDT 2025
Fri Jul 25 03:21:36 EDT 2025
Mon Jul 21 09:15:34 EDT 2025
Sat Nov 29 03:23:25 EST 2025
Tue Nov 18 22:19:05 EST 2025
Fri Feb 23 02:33:35 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Scheduling
PLSP
Multi-level lot sizing
Genetic algorithms
Manufacturing resource planning
Mixed integer programming
Lot sizing
Genetic algorithm
Multilevel system
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-e259c959f729d81b4ca12a7ca8748ccb5e1f581c0ac64707cd5fa9c2e9c7946b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 195821640
PQPubID 45870
PageCount 20
ParticipantIDs proquest_miscellaneous_26950049
proquest_journals_195821640
pascalfrancis_primary_1860994
crossref_citationtrail_10_1016_S0305_0548_98_00089_6
crossref_primary_10_1016_S0305_0548_98_00089_6
elsevier_sciencedirect_doi_10_1016_S0305_0548_98_00089_6
PublicationCentury 1900
PublicationDate 1999-07-01
PublicationDateYYYYMMDD 1999-07-01
PublicationDate_xml – month: 07
  year: 1999
  text: 1999-07-01
  day: 01
PublicationDecade 1990
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: New York
PublicationTitle Computers & operations research
PublicationYear 1999
Publisher Elsevier Ltd
Elsevier Science
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
– name: Pergamon Press Inc
SSID ssj0000721
Score 1.8279382
Snippet This contribution introduces a mixed-integer programming formulation for the multi-level, multi-machine proportional lot sizing and scheduling problem. It also...
A mixed-integer programming formulation for the multi-level, multi-machine proportional lot sizing and scheduling problem is introduced. A genetic algorithm is...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 829
SubjectTerms Algorithms
Applied sciences
Exact sciences and technology
Genetic algorithms
Integer programming
Manufacturing resource planning
Multi-level lot sizing
Operational research and scientific management
Operational research. Management science
Operations research
PLSP
Scheduling
Scheduling, sequencing
Studies
Title A genetic algorithm for multi-level, multi-machine lot sizing and scheduling
URI https://dx.doi.org/10.1016/S0305-0548(98)00089-6
https://www.proquest.com/docview/195821640
https://www.proquest.com/docview/26950049
Volume 26
WOSCitedRecordID wos000079830400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-765X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8qHUIgxEcBUcbABw6gLZCkcWIfKzTEoJuQNqTerMRxYFKWVE03Tfz1PMd20jFQ4cDFamPZlvz75T0_530AvOJZXuSFr7wIdZMX5doJIOS-V-Sc5qgPfanaPLOz5OiIzef8y2Awc7EwF2VSVezyki_-K9T4DMHWobP_AHc3KT7A3wg6tgg7tn8F_FRXRVZtHtbyW422__ez1pewdR30Su0kpPfV_D1rfSnVblmvdpvTHy5iEU1eVEGlU2suk4GtANG0fKkXamn96GzGoO5m-fPB4eFxf1Ga2yg73jmg2psuF-1iBcyaUJpoZz9qsmM6CWpi3i1T2Jo4ZPY2w2pWM-qa0Db3B8fd1Hi05tjocqaMe79JlP2LAuvcCgMW44E3ugFbYUI5G8LW9GB__qnXzEkbh9ct1Ed0vetXf83ZG7vyn84qdxdpg29QYUqfXNPi7dHk5AHcszYFmRouPISBqkZw39oXxG5uM4JbLsoBex2WrnsEd9ZSUz6C2ZRYGpGORgRpRNZotEeukIggiYghEUESkZ5Ej-Hrh_2T9x89W3nDkxMerTyFRrHklBdoeuVo2EQyDcI0kSlLIiZlRlVQUBZIP5VxlPiJzGmRchkqLnXBgmzyBIZVXamnQAo_yCY6oIznWZRlLEMVm8qCyzijoaLBGCK3x0LatPS6Okopev9DhEZoaARnooVGxGN42w1bmLwsmwYwB6Cwh0tzaBRIw01Dd64A3i9o-DaGbUcAYQVBI3QSpzCII38ML7teFN36e1xaqfq8EWHMqbbQn22Yfxtu9-_ocxiuludqB27Ki9Vps3xhSf4Tgp-yow
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+genetic+algorithm+for+multi-level%2C+multi-machine+lot+sizing+and+scheduling&rft.jtitle=Computers+%26+operations+research&rft.au=KIMMS%2C+A&rft.date=1999-07-01&rft.pub=Elsevier+Science&rft.issn=0305-0548&rft.volume=26&rft.issue=8&rft.spage=829&rft.epage=848&rft_id=info:doi/10.1016%2FS0305-0548%2898%2900089-6&rft.externalDBID=n%2Fa&rft.externalDocID=1860994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon