A genetic algorithm for multi-level, multi-machine lot sizing and scheduling
This contribution introduces a mixed-integer programming formulation for the multi-level, multi-machine proportional lot sizing and scheduling problem. It also presents a genetic algorithm to solve that problem. The efficiency of that algorithm is due to an encoding of solutions which uses a two-dim...
Uloženo v:
| Vydáno v: | Computers & operations research Ročník 26; číslo 8; s. 829 - 848 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.07.1999
Elsevier Science Pergamon Press Inc |
| Témata: | |
| ISSN: | 0305-0548, 1873-765X, 0305-0548 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This contribution introduces a mixed-integer programming formulation for the multi-level, multi-machine proportional lot sizing and scheduling problem. It also presents a genetic algorithm to solve that problem. The efficiency of that algorithm is due to an encoding of solutions which uses a two-dimensional matrix representation with non-binary entries rather than a simple bitstring. A computational study reveals that the proposed procedure works amazingly fast and competes with a tabu search approach that has recently been published.
Scope and purpose
The logic of Manufacturing Resource Planning (MRP II) is implemented in most production planning software packages. In the short-term scope, where lot sizing and scheduling has to be done, MRP II systems basically pass three phases: First, lot sizes are computed while disregarding capacity constraints. Multi-level product structures are taken into account in a level-by-level manner starting with end items. Second, lot sizes are adapted to meet capacity restrictions. This time, precedence relations among items are not taken into account. Finally, sequence decisions are made. Following this strategy is reported to result in high work-in-process and long lead times. To cure these shortcomings, an approach for simultaneous lot sizing and scheduling is required where multi-level product structures and several scarce capacities are taken into account. Unfortunately, such methods have not been presented yet. To close this gap is our aim. |
|---|---|
| AbstractList | This contribution introduces a mixed-integer programming formulation for the multi-level, multi-machine proportional lot sizing and scheduling problem. It also presents a genetic algorithm to solve that problem. The efficiency of that algorithm is due to an encoding of solutions which uses a two-dimensional matrix representation with non-binary entries rather than a simple bitstring. A computational study reveals that the proposed procedure works amazingly fast and competes with a tabu search approach that has recently been published.
Scope and purpose
The logic of Manufacturing Resource Planning (MRP II) is implemented in most production planning software packages. In the short-term scope, where lot sizing and scheduling has to be done, MRP II systems basically pass three phases: First, lot sizes are computed while disregarding capacity constraints. Multi-level product structures are taken into account in a level-by-level manner starting with end items. Second, lot sizes are adapted to meet capacity restrictions. This time, precedence relations among items are not taken into account. Finally, sequence decisions are made. Following this strategy is reported to result in high work-in-process and long lead times. To cure these shortcomings, an approach for simultaneous lot sizing and scheduling is required where multi-level product structures and several scarce capacities are taken into account. Unfortunately, such methods have not been presented yet. To close this gap is our aim. A mixed-integer programming formulation for the multi-level, multi-machine proportional lot sizing and scheduling problem is introduced. A genetic algorithm is also presented to solve that problem. The efficiency of that algorithm is due to an encoding of solutions which uses a two-dimensional matrix representation with non-binary entries rather than a simple bitstring. A computational study reveals that the proposed procedure works amazingly fast and competes with a tabu search approach that has recently been published. This contribution introduces a mixed-integer programming formulation for the multi-level, multi-machine proportional lot sizing and scheduling problem. It also presents a genetic algorithm to solve that problem. The efficiency of that algorithm is due to an encoding of solutions which uses a two-dimensional matrix representation with non-binary entries rather than a simple bitstring. A computational study reveals that the proposed procedure works amazingly fast and competes with a tabu search approach that has recently been published. |
| Author | Kimms, A. |
| Author_xml | – sequence: 1 givenname: A. surname: Kimms fullname: Kimms, A. email: kimms@bwl.uni-kiel.de organization: Lehrstuhl für Produktion und Logistik, Institut für Betriebswirtschaftslehre, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1860994$$DView record in Pascal Francis |
| BookMark | eNqFkd1rFDEUxYO04PbjTxAGEVHo2GQ2n_ggpdhWWPBBBd9C9s6d3ZRMUpNMQf96p92lD33p0-XA7xwu5xyRg5giEvKG0U-MMnn-gy6paKng-oPRHyml2rTyFVkwrZatkuL3AVk8Ia_JUSm3M0RVxxZkddFsMGL10LiwSdnX7dgMKTfjFKpvA95jONuL0cHWR2xCqk3x_3zcNC72TYEt9lOY5Qk5HFwoeLq_x-TX1deflzft6vv1t8uLVQtLw2uLnTBghBlUZ3rN1hwc65wCpxXXAGuBbBCaAXUguaIKejE4Ax0aUIbL9fKYvN_l3uX0Z8JS7egLYAguYpqK7aQRlHIzg2-fgbdpynH-zTIjdMckpzP0bg-5Ai4M2UXwxd5lP7r81zItqTF8xj7vMMiplIyDBV9d9SnW7HywjNqHNezjGvahamu0fVzDytktnrmf8l_wfdn5cO7z3mO2BTxGwN5nhGr75F9I-A__maNE |
| CODEN | CMORAP |
| CitedBy_id | crossref_primary_10_1016_j_ijpe_2011_01_012 crossref_primary_10_1016_S0898_1221_02_00146_3 crossref_primary_10_1016_j_ijpe_2006_08_026 crossref_primary_10_1080_10170660709509028 crossref_primary_10_1080_00207543_2016_1207820 crossref_primary_10_1016_j_cor_2009_09_020 crossref_primary_10_1080_09511920701233340 crossref_primary_10_1007_s43069_021_00080_1 crossref_primary_10_1080_0951192X_2014_880805 crossref_primary_10_1007_s42452_021_04669_3 crossref_primary_10_1016_j_ijpe_2023_108958 crossref_primary_10_1080_00207540600902262 crossref_primary_10_1080_10170660109509169 crossref_primary_10_1080_00207543_2019_1680892 crossref_primary_10_1109_MIS_2005_59 crossref_primary_10_1007_s00170_008_1481_x crossref_primary_10_1080_00207540600665893 crossref_primary_10_1016_j_compchemeng_2019_03_002 crossref_primary_10_1007_s10732_017_9338_9 crossref_primary_10_1080_02522667_2009_10699881 crossref_primary_10_1007_s12159_016_0145_8 crossref_primary_10_1007_s10845_008_0205_2 crossref_primary_10_1016_j_ejor_2010_09_022 crossref_primary_10_1016_j_rcim_2007_01_001 crossref_primary_10_1111_itor_12645 crossref_primary_10_1007_s00170_013_5252_y crossref_primary_10_1007_s00291_015_0429_4 crossref_primary_10_1016_j_ejor_2005_12_008 crossref_primary_10_1016_j_ejor_2004_01_054 crossref_primary_10_1080_00207540310001613656 crossref_primary_10_1016_j_ijpe_2011_04_016 crossref_primary_10_1007_s00170_016_9557_5 crossref_primary_10_1016_j_ejor_2012_10_011 crossref_primary_10_1016_j_ejor_2019_03_001 crossref_primary_10_1016_j_ejor_2015_01_034 crossref_primary_10_1016_S0305_0548_00_00103_9 crossref_primary_10_1007_s00170_003_2042_y |
| ContentType | Journal Article |
| Copyright | 1999 Elsevier Science Ltd 1999 INIST-CNRS Copyright Pergamon Press Inc. Jul 1999 |
| Copyright_xml | – notice: 1999 Elsevier Science Ltd – notice: 1999 INIST-CNRS – notice: Copyright Pergamon Press Inc. Jul 1999 |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/S0305-0548(98)00089-6 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business Applied Sciences |
| EISSN | 1873-765X 0305-0548 |
| EndPage | 848 |
| ExternalDocumentID | 43009035 1860994 10_1016_S0305_0548_98_00089_6 S0305054898000896 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 186 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABFRF ABJNI ABMAC ABMMH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD AEBSH AEFWE AEHXG AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ARUGR ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HAMUX HVGLF HZ~ H~9 IHE J1W KOM LY1 M41 MHUIS MO0 MS~ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSO SSV SSW SSZ T5K TAE TN5 U5U UAO UPT VH1 WUQ XFK XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c394t-e259c959f729d81b4ca12a7ca8748ccb5e1f581c0ac64707cd5fa9c2e9c7946b3 |
| ISICitedReferencesCount | 52 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000079830400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-0548 |
| IngestDate | Thu Oct 02 04:20:04 EDT 2025 Fri Jul 25 03:21:36 EDT 2025 Mon Jul 21 09:15:34 EDT 2025 Sat Nov 29 03:23:25 EST 2025 Tue Nov 18 22:19:05 EST 2025 Fri Feb 23 02:33:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Scheduling PLSP Multi-level lot sizing Genetic algorithms Manufacturing resource planning Mixed integer programming Lot sizing Genetic algorithm Multilevel system |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c394t-e259c959f729d81b4ca12a7ca8748ccb5e1f581c0ac64707cd5fa9c2e9c7946b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 195821640 |
| PQPubID | 45870 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_26950049 proquest_journals_195821640 pascalfrancis_primary_1860994 crossref_citationtrail_10_1016_S0305_0548_98_00089_6 crossref_primary_10_1016_S0305_0548_98_00089_6 elsevier_sciencedirect_doi_10_1016_S0305_0548_98_00089_6 |
| PublicationCentury | 1900 |
| PublicationDate | 1999-07-01 |
| PublicationDateYYYYMMDD | 1999-07-01 |
| PublicationDate_xml | – month: 07 year: 1999 text: 1999-07-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford – name: New York |
| PublicationTitle | Computers & operations research |
| PublicationYear | 1999 |
| Publisher | Elsevier Ltd Elsevier Science Pergamon Press Inc |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science – name: Pergamon Press Inc |
| SSID | ssj0000721 |
| Score | 1.8279382 |
| Snippet | This contribution introduces a mixed-integer programming formulation for the multi-level, multi-machine proportional lot sizing and scheduling problem. It also... A mixed-integer programming formulation for the multi-level, multi-machine proportional lot sizing and scheduling problem is introduced. A genetic algorithm is... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 829 |
| SubjectTerms | Algorithms Applied sciences Exact sciences and technology Genetic algorithms Integer programming Manufacturing resource planning Multi-level lot sizing Operational research and scientific management Operational research. Management science Operations research PLSP Scheduling Scheduling, sequencing Studies |
| Title | A genetic algorithm for multi-level, multi-machine lot sizing and scheduling |
| URI | https://dx.doi.org/10.1016/S0305-0548(98)00089-6 https://www.proquest.com/docview/195821640 https://www.proquest.com/docview/26950049 |
| Volume | 26 |
| WOSCitedRecordID | wos000079830400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-765X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000721 issn: 0305-0548 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKhxAI8VGGKGPgAwfQFtYkTmwfKzTEYJuQNqTerMR2YFKWVE03Tfz1PMd20jFQ4cDFamPZlvz75fk9530g9FrFMtU0LIKokDQgKlUBZ7k0TuMpkUUeMqraYhP0-JjNZvzLYHDoY2EuS1pV7OqKz_8r1PAMwDahs_8AdzcpPIDfADq0ADu0fwX81FRF1m0e1vJbDbb_9_PWl7B1HQxK4yRk9tX-PW99KfVOWS93mrMfPmIRTF44gkp_rPlMBq4CRNPypZ7rhfOjcxmDupvlzwdHRyf9RalyUXa8c0B1N10-2sUJmBWhFBtnv8Rmx_QS1Ma8O6awFXHI3G2GO1ntqBtC294fnHRTg2rNoTHlTBkPfpMo-5cDrHMrDFkKCi-5hTYimnA2RBvTg_3Zp_5kpm0cXrdQH9G116_-hrO3buU_6Sr351kDb1BhS5_cOMVb1eT0EXrgbAo8tVx4jAa6GqGHzr7AbnObEbrjoxyg12Ppu0fo3kpqyifocIodjXBHIww0wis02sXXSISBRNiSCAOJcE-iTfT1w_7p-4-Bq7wRyJiTZaDBKJY84QWYXgoMGyKzMMqozBglTMo80WGRsFBOMpkSOqFSJUXGZaS5NAUL8vgpGlZ1pZ8hDOawyW8U50nBCdeKa9B4cxJRpdNEZXqMiN9jIV1aelMdpRS9_yFAIww0gjPRQiPSMXrXDZvbvCzrBjAPoHDKpVUaBdBw3dDta4D3C1q-jdGWJ4BwgqARJolTBPJuMkavul4Q3eZ7XFbp-qIRUcoTY6E_XzP_Frrbv6Mv0HC5uNDb6La8XJ41i5eO5D8BkE6yZQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+genetic+algorithm+for+multi-level%2C+multi-machine+lot+sizing+and+scheduling&rft.jtitle=Computers+%26+operations+research&rft.au=KIMMS%2C+A&rft.date=1999-07-01&rft.pub=Elsevier+Science&rft.issn=0305-0548&rft.volume=26&rft.issue=8&rft.spage=829&rft.epage=848&rft_id=info:doi/10.1016%2FS0305-0548%2898%2900089-6&rft.externalDBID=n%2Fa&rft.externalDocID=1860994 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon |