Estimating the Near-Ground PM2.5 Concentration over China Based on the CapsNet Model during 2018–2020
Fine particulate matter (PM2.5) threatens human health and the natural environment. Estimating the near-ground PM2.5 concentrations accurately is of great significance in air quality research. Statistical and deep-learning models are widely used for estimating PM2.5 concentration based on remotely s...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 14; číslo 3; s. 623 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.02.2022
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Fine particulate matter (PM2.5) threatens human health and the natural environment. Estimating the near-ground PM2.5 concentrations accurately is of great significance in air quality research. Statistical and deep-learning models are widely used for estimating PM2.5 concentration based on remotely sensed aerosol optical depth (AOD) products. Deep-learning models can effectively express the nonlinear relationship between AOD, parameters, and PM2.5. This study proposed a capsule network model (CapsNet) to address the spatial differences in PM2.5 concentration distribution by introducing a capsule structure and dynamic routing algorithm for the first time, which integrates AOD, surface PM2.5 measurements, and auxiliary variables (e.g., normalized difference vegetation index (NDVI) and meteorological parameters). Moreover, we examined the longitude and latitude of pixels as input parameters to reflect spatial location information, and the results showed that the introduction of longitude (LON) and latitude (LAT) parameters improved the model fitting accuracy. The coefficient of determination (R2) increased by 0.05 ± 0.01, and the root mean square error (RMSE), mean relative error (MRE), and mean absolute error (MAE) decreased by 3.30 ± 1.0 μg/m3, 8 ± 3%, and 1.40 ± 0.2 μg/m3, respectively. To verify the accuracy of our proposed CapsNet, the deep neural network (DNN) model was executed. The results indicated that the R2 values of the validation dataset using CapsNet improved by 4 ± 2%, and RMSE, MRE, and MAE decreased by 1.50 ± 0.4 μg/m3, ~5%, and 0.60 ± 0.2 μg/m3, respectively. Finally, the effects of seasons and spatial region on the fitting accuracy were examined separately from 2018 to 2020. With respect to seasons, the model performed more robustly in the cold season. In terms of spatial region, the R2 values exceeded 0.9 in the central-eastern region, while the accuracy was lower in the western and coastal regions. This study proposed the CapsNet model to estimate PM2.5 concentrations for the first time and achieved good accuracy, which could be used for the estimation of other air contaminants. |
|---|---|
| AbstractList | Fine particulate matter (PM2.5) threatens human health and the natural environment. Estimating the near-ground PM2.5 concentrations accurately is of great significance in air quality research. Statistical and deep-learning models are widely used for estimating PM2.5 concentration based on remotely sensed aerosol optical depth (AOD) products. Deep-learning models can effectively express the nonlinear relationship between AOD, parameters, and PM2.5. This study proposed a capsule network model (CapsNet) to address the spatial differences in PM2.5 concentration distribution by introducing a capsule structure and dynamic routing algorithm for the first time, which integrates AOD, surface PM2.5 measurements, and auxiliary variables (e.g., normalized difference vegetation index (NDVI) and meteorological parameters). Moreover, we examined the longitude and latitude of pixels as input parameters to reflect spatial location information, and the results showed that the introduction of longitude (LON) and latitude (LAT) parameters improved the model fitting accuracy. The coefficient of determination (R2) increased by 0.05 ± 0.01, and the root mean square error (RMSE), mean relative error (MRE), and mean absolute error (MAE) decreased by 3.30 ± 1.0 μg/m3, 8 ± 3%, and 1.40 ± 0.2 μg/m3, respectively. To verify the accuracy of our proposed CapsNet, the deep neural network (DNN) model was executed. The results indicated that the R2 values of the validation dataset using CapsNet improved by 4 ± 2%, and RMSE, MRE, and MAE decreased by 1.50 ± 0.4 μg/m3, ~5%, and 0.60 ± 0.2 μg/m3, respectively. Finally, the effects of seasons and spatial region on the fitting accuracy were examined separately from 2018 to 2020. With respect to seasons, the model performed more robustly in the cold season. In terms of spatial region, the R2 values exceeded 0.9 in the central-eastern region, while the accuracy was lower in the western and coastal regions. This study proposed the CapsNet model to estimate PM2.5 concentrations for the first time and achieved good accuracy, which could be used for the estimation of other air contaminants. Fine particulate matter (PM₂.₅) threatens human health and the natural environment. Estimating the near-ground PM₂.₅ concentrations accurately is of great significance in air quality research. Statistical and deep-learning models are widely used for estimating PM₂.₅ concentration based on remotely sensed aerosol optical depth (AOD) products. Deep-learning models can effectively express the nonlinear relationship between AOD, parameters, and PM₂.₅. This study proposed a capsule network model (CapsNet) to address the spatial differences in PM₂.₅ concentration distribution by introducing a capsule structure and dynamic routing algorithm for the first time, which integrates AOD, surface PM₂.₅ measurements, and auxiliary variables (e.g., normalized difference vegetation index (NDVI) and meteorological parameters). Moreover, we examined the longitude and latitude of pixels as input parameters to reflect spatial location information, and the results showed that the introduction of longitude (LON) and latitude (LAT) parameters improved the model fitting accuracy. The coefficient of determination (R²) increased by 0.05 ± 0.01, and the root mean square error (RMSE), mean relative error (MRE), and mean absolute error (MAE) decreased by 3.30 ± 1.0 μg/m³, 8 ± 3%, and 1.40 ± 0.2 μg/m³, respectively. To verify the accuracy of our proposed CapsNet, the deep neural network (DNN) model was executed. The results indicated that the R² values of the validation dataset using CapsNet improved by 4 ± 2%, and RMSE, MRE, and MAE decreased by 1.50 ± 0.4 μg/m³, ~5%, and 0.60 ± 0.2 μg/m³, respectively. Finally, the effects of seasons and spatial region on the fitting accuracy were examined separately from 2018 to 2020. With respect to seasons, the model performed more robustly in the cold season. In terms of spatial region, the R² values exceeded 0.9 in the central-eastern region, while the accuracy was lower in the western and coastal regions. This study proposed the CapsNet model to estimate PM₂.₅ concentrations for the first time and achieved good accuracy, which could be used for the estimation of other air contaminants. |
| Author | Zeng, Qiaolin Zhu, Songyan Chen, Liangfu Fan, Meng Tian, Yu Xie, Tianshou |
| Author_xml | – sequence: 1 givenname: Qiaolin surname: Zeng fullname: Zeng, Qiaolin – sequence: 2 givenname: Tianshou surname: Xie fullname: Xie, Tianshou – sequence: 3 givenname: Songyan surname: Zhu fullname: Zhu, Songyan – sequence: 4 givenname: Meng surname: Fan fullname: Fan, Meng – sequence: 5 givenname: Liangfu surname: Chen fullname: Chen, Liangfu – sequence: 6 givenname: Yu surname: Tian fullname: Tian, Yu |
| BookMark | eNptkc9u1DAQhy1UpJallz6BJS4IKcV_Jk5yhKgtldrCAc6WY0-2WaX2YjtI3PoOfcM-Cd4uAlThi63RNz955ntFDnzwSMgJZ6dSdux9TByYZErIF-RIsEZUIDpx8M_7kByntGHlSMk7BkdkfZbydGfy5Nc03yK9QROrixgW7-iXa3Fa0z54iz7HwgRPww-MtL-dvKEfTUJHS23X15ttusFMr4PDmbol7gIF4-3j_YNggr0mL0czJzz-fa_It_Ozr_2n6urzxWX_4aqysoNcuaFhkg-uZo2ysgWQrlYjmEGgZXbgCN0wtEzWzI7YmXrk4FQnlbIN1nZQckUu97kumI3exjJb_KmDmfRTIcS1NjFPdkZdiw5abgYHDgBBtWBV42xtjeQK0Jast_usbQzfF0xZ303J4jwbj2FJWihoW8XLcgv65hm6CUv0ZdJCiaYtVsrKV-TdnrIxpBRx_PNBzvROof6rsMDsGWyn_CShuJjm_7X8AtgvnP8 |
| CitedBy_id | crossref_primary_10_1109_TGRS_2023_3248180 crossref_primary_10_1016_j_apr_2025_102577 crossref_primary_10_32604_cmc_2022_031109 crossref_primary_10_1007_s10668_024_04781_5 crossref_primary_10_1016_j_atmosenv_2023_120193 crossref_primary_10_1016_j_jag_2022_103008 crossref_primary_10_1007_s10846_023_01952_w crossref_primary_10_1109_JSTARS_2024_3503574 crossref_primary_10_1016_j_jenvman_2023_118030 crossref_primary_10_3390_app12147065 crossref_primary_10_3390_rs15020349 |
| Cites_doi | 10.1289/ehp.1409481 10.1016/j.asr.2017.08.008 10.1016/j.rse.2006.05.022 10.1016/j.rse.2017.06.001 10.1016/j.rse.2019.111584 10.1016/j.scitotenv.2014.11.024 10.1016/j.atmosenv.2019.06.004 10.1016/j.atmosenv.2005.08.036 10.3390/rs13132525 10.1289/ehp.0800123 10.1016/j.rse.2015.02.005 10.1016/j.scitotenv.2017.08.209 10.3390/rs9080858 10.1109/ICIP.2018.8451379 10.1016/j.rse.2019.111221 10.1016/j.atmosenv.2006.04.044 10.1109/TGRS.2020.3015157 10.1016/j.atmosenv.2013.06.031 10.1016/j.atmosenv.2009.08.026 10.1021/es049352m 10.1109/TGRS.2020.3016820 10.1289/ehp.1104049 10.1016/j.atmosenv.2015.11.013 10.1016/j.envres.2012.11.003 10.5194/acp-19-8243-2019 10.1021/acs.est.5b01413 10.1016/j.rse.2014.09.015 10.1029/2020GL091611 10.1016/j.scitotenv.2019.134021 10.5194/acp-11-7991-2011 10.3390/rs9090908 10.1109/LGRS.2019.2900270 10.1016/j.atmosenv.2020.117396 10.1016/j.rse.2009.08.009 10.1016/j.envpol.2020.116119 10.1016/j.scitotenv.2021.146288 10.5194/amt-6-2989-2013 10.1029/2018JD028759 10.1016/j.rse.2018.06.030 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU COVID DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs14030623 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database Coronavirus Research Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_529481abd4d44e4684c67dc5ca3164ec 10_3390_rs14030623 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K COVID DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c394t-db7031bd5076c38443d56f4ab2ec0cb1e49bb80350cfe9a5f14d69366c7e5cb63 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000754978600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 18:46:31 EDT 2025 Fri Sep 05 09:38:36 EDT 2025 Fri Jul 25 09:48:57 EDT 2025 Sat Nov 29 07:13:35 EST 2025 Tue Nov 18 21:36:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-db7031bd5076c38443d56f4ab2ec0cb1e49bb80350cfe9a5f14d69366c7e5cb63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/529481abd4d44e4684c67dc5ca3164ec |
| PQID | 2627830603 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_529481abd4d44e4684c67dc5ca3164ec proquest_miscellaneous_2648861072 proquest_journals_2627830603 crossref_primary_10_3390_rs14030623 crossref_citationtrail_10_3390_rs14030623 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Chu (ref_28) 2013; 79 Donkelaar (ref_21) 2006; 111 Sun (ref_30) 2019; 16 Wei (ref_3) 2019; 231 Liu (ref_14) 2007; 107 Ma (ref_10) 2016; 124 Lee (ref_12) 2011; 11 ref_36 Hu (ref_24) 2013; 121 ref_35 Crouse (ref_1) 2012; 120 Zhang (ref_11) 2015; 160 Sreekanth (ref_9) 2017; 60 Wang (ref_22) 2010; 114 Guo (ref_25) 2017; 198 Tao (ref_41) 2019; 213 ref_18 Li (ref_31) 2020; 237 Guo (ref_23) 2009; 43 ref_16 Liang (ref_5) 2020; 228 Liu (ref_20) 2004; 109 Liu (ref_44) 2021; 48 Mao (ref_19) 2021; 270 Zhi (ref_42) 2013; 36 Hutchison (ref_7) 2005; 39 Yao (ref_8) 2018; 618 Lyapustin (ref_40) 2011; 116 Zhang (ref_6) 2018; 216 Liu (ref_39) 2019; 19 Hong (ref_33) 2021; 59 Guo (ref_4) 2021; 778 Liu (ref_15) 2009; 117 Koelemeijer (ref_27) 2006; 40 ref_43 Xie (ref_38) 2015; 49 Shen (ref_32) 2018; 123 Lin (ref_29) 2015; 156 Hong (ref_34) 2021; 59 Chen (ref_2) 2019; 697 Wang (ref_17) 2016; 124 Liu (ref_26) 2005; 39 You (ref_13) 2015; 505 Levy (ref_37) 2013; 6 |
| References_xml | – volume: 124 start-page: 184 year: 2016 ident: ref_10 article-title: Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004–2013 publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1409481 – volume: 60 start-page: 2268 year: 2017 ident: ref_9 article-title: Satellite Remote Sensing of Fine Particulate air pollutants over Indian Mega Cities publication-title: Adv. Space Res. doi: 10.1016/j.asr.2017.08.008 – volume: 107 start-page: 33 year: 2007 ident: ref_14 article-title: Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: A comparison between MISR and MODIS publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.05.022 – volume: 198 start-page: 140 year: 2017 ident: ref_25 article-title: Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.001 – volume: 237 start-page: 111584 year: 2020 ident: ref_31 article-title: Spatiotemporal Imputation of MAIAC AOD Using Deep Learning with Downscaling publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111584 – volume: 116 start-page: 1 year: 2011 ident: ref_40 article-title: Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm publication-title: J. Geophys. Res. Atmos. – volume: 505 start-page: 1156 year: 2015 ident: ref_13 article-title: Estimating PM2.5 in Xi’an, China using aerosol optical depth: A comparison between the MODIS and MISR retrieval models publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.11.024 – volume: 213 start-page: 159 year: 2019 ident: ref_41 article-title: Performance of MODIS high-resolution MAIAC aerosol algorithm in China: Characterization and limitation publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.06.004 – volume: 39 start-page: 7190 year: 2005 ident: ref_7 article-title: Correlating MODIS aerosol optical thickness data with ground-based PM2.5 observations across Texas for use in a real-time air quality prediction system publication-title: Atoms. Environ. doi: 10.1016/j.atmosenv.2005.08.036 – ident: ref_43 doi: 10.3390/rs13132525 – volume: 117 start-page: 886 year: 2009 ident: ref_15 article-title: Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information publication-title: Environ. Health Perspect. doi: 10.1289/ehp.0800123 – volume: 160 start-page: 252 year: 2015 ident: ref_11 article-title: Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.02.005 – volume: 618 start-page: 819 year: 2018 ident: ref_8 article-title: A multidimensional comparison between MODIS and VIIRS AOD in estimating ground-level PM2.5 concentrations over a heavily polluted region in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.209 – ident: ref_35 – volume: 36 start-page: 77 year: 2013 ident: ref_42 article-title: Comparative analysis of free atmospheric temperature between three reanalysis datasets and radiosonde dataset in China: Annual mean characteristic publication-title: Trans. Atmos. Sci. – ident: ref_18 doi: 10.3390/rs9080858 – ident: ref_36 doi: 10.1109/ICIP.2018.8451379 – volume: 231 start-page: 111221 year: 2019 ident: ref_3 article-title: Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111221 – volume: 111 start-page: 5049 year: 2006 ident: ref_21 article-title: Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing publication-title: J. Geophys. Res. Atmos. – volume: 40 start-page: 5304 year: 2006 ident: ref_27 article-title: Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe publication-title: Atoms. Environ. doi: 10.1016/j.atmosenv.2006.04.044 – volume: 59 start-page: 5966 year: 2021 ident: ref_33 article-title: Graph Convolutional Networks for Hyperspectral Image Classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3015157 – volume: 79 start-page: 172 year: 2013 ident: ref_28 article-title: Interpreting aerosol lidar profiles to better estimate surface PM2.5 for columnar AOD measurements publication-title: Atoms. Environ. doi: 10.1016/j.atmosenv.2013.06.031 – volume: 43 start-page: 5876 year: 2009 ident: ref_23 article-title: Correlation between concentrations and aerosol optical depth in eastern China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.08.026 – volume: 39 start-page: 3269 year: 2005 ident: ref_26 article-title: Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing publication-title: Environ. Sci. Technol. doi: 10.1021/es049352m – volume: 59 start-page: 4340 year: 2021 ident: ref_34 article-title: More Diverse Means Better: Multimodal Deep Learning Meeets Remote-Sensing Imagery Classificaion publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3016820 – volume: 120 start-page: 708 year: 2012 ident: ref_1 article-title: Risk of Nonaccidental and Cardiovascular Mortality in Relation to Long-term Exposure to Low Concentrations of Fine Particulate Matter: A Canadian National-Level Cohort Study publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1104049 – volume: 124 start-page: 55 year: 2016 ident: ref_17 article-title: Potential application of VIIRS Day/Night Band for monitoring nighttime surface PM2.5 air quality from space publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.11.013 – volume: 121 start-page: 1 year: 2013 ident: ref_24 article-title: Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression publication-title: Environ. Res. doi: 10.1016/j.envres.2012.11.003 – volume: 19 start-page: 8243 year: 2019 ident: ref_39 article-title: Evaluation and comparison of multiangle implementation of the atmospheric correction algorithm, Dark Target, and Deep Blue aerosol products over China publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-19-8243-2019 – volume: 49 start-page: 12280 year: 2015 ident: ref_38 article-title: Daily estimation of ground-level PM2.5 concentrations over Beijing using 3 km resolution MODIS AOD publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b01413 – volume: 109 start-page: D22206 year: 2004 ident: ref_20 article-title: Mapping annual mean ground-level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States publication-title: J. Geophys. Res. Atmos. – volume: 156 start-page: 117 year: 2015 ident: ref_29 article-title: Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.09.015 – volume: 48 start-page: 2020GL091611 year: 2021 ident: ref_44 article-title: Chemistry of atmospheric fine particles during the COVID-19 pandemic in a megacity of Eastern China publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL091611 – volume: 697 start-page: 134021 year: 2019 ident: ref_2 article-title: Stacking machine learning model for estimating hourly PM2.5 in China based on Himawari 8 aerosol optical depth data publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134021 – volume: 11 start-page: 9769 year: 2011 ident: ref_12 article-title: A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-7991-2011 – ident: ref_16 doi: 10.3390/rs9090908 – volume: 16 start-page: 1343 year: 2019 ident: ref_30 article-title: Deep learning architecture for estimating hourly ground-level PM2.5 using satellite remote sensing publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2900270 – volume: 228 start-page: 117396 year: 2020 ident: ref_5 article-title: Air quality and health impacts from using ethanol blended gasoline fuels in China publication-title: Atoms. Environ. doi: 10.1016/j.atmosenv.2020.117396 – volume: 114 start-page: 50 year: 2010 ident: ref_22 article-title: Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.08.009 – volume: 270 start-page: 116119 year: 2021 ident: ref_19 article-title: Estimation hourly full-coverage PM2.5 over China base on TOA reflectance data from the Fengyun-4A satellite publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.116119 – volume: 778 start-page: 146228 year: 2021 ident: ref_4 article-title: Estimating PM2.5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal scales across China in 2017 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146288 – volume: 6 start-page: 2989 year: 2013 ident: ref_37 article-title: The Collection 6 MODIS aerosol products over land and ocean publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-6-2989-2013 – volume: 123 start-page: 13875 year: 2018 ident: ref_32 article-title: Estimating Regional Ground-Level PM2.5 Directly from Satellite Top-Of-Atmosphere Reflectance Using Deep Belief Networks publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2018JD028759 – volume: 216 start-page: 91 year: 2018 ident: ref_6 article-title: Estimation of ultrahigh resolution PM2.5 concentrations in urban areas using 160m Gaofen-1 AOD retrievals publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.030 |
| SSID | ssj0000331904 |
| Score | 2.356295 |
| Snippet | Fine particulate matter (PM2.5) threatens human health and the natural environment. Estimating the near-ground PM2.5 concentrations accurately is of great... Fine particulate matter (PM₂.₅) threatens human health and the natural environment. Estimating the near-ground PM₂.₅ concentrations accurately is of great... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 623 |
| SubjectTerms | Accuracy aerosol optical depth Aerosols air pollutants Air pollution Air quality Algorithms Artificial neural networks Atmospheric models CapsNet China Coastal zone Cognition & reasoning Cold season Contaminants data collection Deep learning Depth indicators DNN dynamic routing algorithm Estimation human health Latitude Longitude Machine learning Mathematical models Meteorological parameters Model accuracy Natural environment Neural networks Neurons Normalized difference vegetative index Optical analysis Optical thickness Particulate matter particulates PM2.5 concentration Remote sensing Root-mean-square errors Seasons Statistical analysis |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFB1BiwSb8hYpBQ2CDYuh43nZXiESpWIBVoRA6s6aZ4pUOSFOkdjxD_3Dfgn3OpNUCMSG7fh6ZPk-53HPIeSVsoInETQLvExMJW2ZLbRnkMqUS0VR-jQ0Cn8om6Y6Pa1necOtz9cqtzFxCNRh4XGP_FgY5ITghsu3y28MWaPwdDVTaNwk-4hUBna-P542s0-7XRYuwcS42uCSSljfH696RKjjRsjfMtEA2P9HPB6SzMnd__28e-Qgl5f03cYe7pMbsXtAbmem87MfD8l8Cj6NVWo3p1D70QYsneEGVBfo7KN4o-kEGxm7jKZL8YYnHUi26RgSXqAwhu9N7LJv4poil9o53TQ7Ukjz1dXPSwHF4SPy5WT6efKeZbIF5mWt1iw4RLJ3AepD42WllAzaJGWdiJ57V0RVO1fhOSRor7Y6FSqYWhrjy6i9M_Ix2esWXXxCqE06yhRDEBYm4Al0bmM9gCgJq0MakdfbH9_6jESOhBjnLaxIUEnttZJG5OVOdrnB3_ir1Bj1t5NAzOxhYLGat9kFWy0Qmca6oIJSUZlKeVMGr72VsGaMfkSOtqptsyP37bVeR-TF7jG4IJ6r2C4uLlAGoiCUoaU4_PcUT8kdgd0Tw6XvI7K3Xl3EZ-SW_77-2q-eZ9v9BZ1S-RQ priority: 102 providerName: ProQuest |
| Title | Estimating the Near-Ground PM2.5 Concentration over China Based on the CapsNet Model during 2018–2020 |
| URI | https://www.proquest.com/docview/2627830603 https://www.proquest.com/docview/2648861072 https://doaj.org/article/529481abd4d44e4684c67dc5ca3164ec |
| Volume | 14 |
| WOSCitedRecordID | wos000754978600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqthJcEBQQC-3KFVw4hDp-JTl2V1uB1EYRD6lwifwsSFVa7W6RuCD-Q_9hf0lnnHQpAolLLz7Yk8Qaj2fG8cw3hLyShrPIvco8K2ImozKZyZXLwJRJG_O8cDElCh8WdV0eH1fNrVJfGBPWwwP3jNtTHPFEjPXSSxmkLqXThXfKGQGefnCofVlR3TpMJR0sQLSY7PFIBZzr9-YLRKZjmos_LFAC6v9LDyfjcvCQPBi8Qrrfz-YRWQvdFrk3FCj_-uMxOZnBVkTnsjuh4LLRGgQ0w_9GnafNEX-j6BTzD7sBBJdiYCZNtbHpBOyUp9CHz03N-aIOS4ol0E5pn6NIwTqXV78uOfh0T8ing9nH6dtsqJGQOVHJZeYtAtBbD26ddqKUUnilozSWB8eczYOsrC3x-hCYXhkVc-l1JbR2RVDOavGUrHdnXXhGqIkqiBi85wZewCIslQlVwj7iRvk4Iq9v-Na6AUAc61ictnCQQB63v3k8Ii9XtOc9bMY_qSbI_hUFQl2nDhCAdhCA9n8CMCLbN4vXDvtv0XKNFUSYZvCN3dUw7By8DjFdOLtAGlBe4D0W_PldzOMFuc8xNSJFdG-T9eX8IuyQTfd9-W0xH5ONyaxu3o-TmI4xwvQDtj9n0DbqC4w3746az9cHe_BX |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKlceCMCBRYBBw6mzr4cHxAiIVWrplaEitSbu95HQKqckKSg3vgP_A9-FL-EGT9SIRC3Hrja49Xa-3lm9jHfB_BcGh4H7lTk4iREMigTmZ6yEYYyWYReL7GhKhQeJ1nWPz5OJxvwo62FoWOVrU-sHLWbWVoj3-GaNCFiHYs3888RqUbR7moroVHD4sCff8Up2_L1_jsc3xec746OhntRoyoQWZHKVeQKomwvHCZC2oq-lMIpHaQpuLexLXpepkXRpw037GZqVOhJp1OhtU28soUW2O4V2JRCatWBzcEom7xfr-rEAiEdy5oHVYg03lksiREv1lz8FvkqgYA__H8V1HZv_G-f4yZcb9Jn9rbG-y3Y8OVt2GqU3D-e34HpCH0WZeHllGFuyzLsY0QLbKVjk0P-SrEhFWqWDVswoxOsrBIRZwMM6I7hNXpuaObLzK8YacWdsrqYk2Ea0__57TvH5PcufLiU97wHnXJW-vvATFBeBO8cN9hAHBDTxqcVSRQ3yoUuvGwHOrcN0zoJfpzmOOMiUOQXoOjCs7XtvOYX-avVgPCytiBO8OrCbDHNGxeTK07MO6Zw0knppe5LqxNnlTUC58TedmG7hVLeOKplfoGjLjxd30YXQ_tGpvSzM7JBL49pdsIf_LuJJ7C1d3Q4zsf72cFDuMapUqQ64L4NndXizD-Cq_bL6tNy8bj5bxicXDY2fwE-F1bW |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoALb0SgwCLgwMHE2ZftA0I0bUTVYuUAUsXFrPcRkConxCmoN_4D_4afwy9hxo9UCMStB67r9Wptf56Z3Z35PoAn0vA4cKciFychkkGZyIyUjdCVyTKMRokNTaHwQZLn6eFhNt2AH30tDKVV9jaxMdRubmmPfMg1aULEOhbD0KVFTHcmLxefI1KQopPWXk6jhci-P_mKy7f6xd4OfuunnE92345fR53CQGRFJleRK4m-vXQYFGkrUimFUzpIU3JvY1uOvMzKMqXDN5xyZlQYSaczobVNvLKlFjjuOTifSJ1SOtlUvV_v78QCwR3LlhFViCweLmvixos1F7_5wEYq4A9P0Li3ydX_-cVcgytdUM1etX_Bddjw1Q241Om7fzy5CbNdtGQUm1czhhEvy3GOEW27VY5N3_Dnio2pfLPqOIQZ5bWyRlqcbaObdwzb6L6xWdS5XzFSkDtibYknw-Am_fntO8eQ-Ba8O5PnvA2b1bzyd4CZoLwI3jlucIA4INKNzxrqKG6UCwN41n_0wnb86yQDclTgOowAUpwCZACP130XLevIX3ttE3bWPYgpvGmYL2dFZ3gKxYmPx5ROOik9AlVanTirrBG4UvZ2AFs9rIrOfNXFKaYG8Gh9GQ0PnSaZys-PqQ_afgy-E37330M8hIsIyOJgL9-_B5c5lY80We9bsLlaHvv7cMF-WX2qlw-aH4jBh7MG5i8_k15r |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+Near-Ground+PM2.5+Concentration+over+China+Based+on+the+CapsNet+Model+during+2018%E2%80%932020&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Qiaolin+Zeng&rft.au=Tianshou+Xie&rft.au=Songyan+Zhu&rft.au=Meng+Fan&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=3&rft.spage=623&rft_id=info:doi/10.3390%2Frs14030623&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_529481abd4d44e4684c67dc5ca3164ec |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |