Estimating the Near-Ground PM2.5 Concentration over China Based on the CapsNet Model during 2018–2020

Fine particulate matter (PM2.5) threatens human health and the natural environment. Estimating the near-ground PM2.5 concentrations accurately is of great significance in air quality research. Statistical and deep-learning models are widely used for estimating PM2.5 concentration based on remotely s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 14; číslo 3; s. 623
Hlavní autoři: Zeng, Qiaolin, Xie, Tianshou, Zhu, Songyan, Fan, Meng, Chen, Liangfu, Tian, Yu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.02.2022
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Fine particulate matter (PM2.5) threatens human health and the natural environment. Estimating the near-ground PM2.5 concentrations accurately is of great significance in air quality research. Statistical and deep-learning models are widely used for estimating PM2.5 concentration based on remotely sensed aerosol optical depth (AOD) products. Deep-learning models can effectively express the nonlinear relationship between AOD, parameters, and PM2.5. This study proposed a capsule network model (CapsNet) to address the spatial differences in PM2.5 concentration distribution by introducing a capsule structure and dynamic routing algorithm for the first time, which integrates AOD, surface PM2.5 measurements, and auxiliary variables (e.g., normalized difference vegetation index (NDVI) and meteorological parameters). Moreover, we examined the longitude and latitude of pixels as input parameters to reflect spatial location information, and the results showed that the introduction of longitude (LON) and latitude (LAT) parameters improved the model fitting accuracy. The coefficient of determination (R2) increased by 0.05 ± 0.01, and the root mean square error (RMSE), mean relative error (MRE), and mean absolute error (MAE) decreased by 3.30 ± 1.0 μg/m3, 8 ± 3%, and 1.40 ± 0.2 μg/m3, respectively. To verify the accuracy of our proposed CapsNet, the deep neural network (DNN) model was executed. The results indicated that the R2 values of the validation dataset using CapsNet improved by 4 ± 2%, and RMSE, MRE, and MAE decreased by 1.50 ± 0.4 μg/m3, ~5%, and 0.60 ± 0.2 μg/m3, respectively. Finally, the effects of seasons and spatial region on the fitting accuracy were examined separately from 2018 to 2020. With respect to seasons, the model performed more robustly in the cold season. In terms of spatial region, the R2 values exceeded 0.9 in the central-eastern region, while the accuracy was lower in the western and coastal regions. This study proposed the CapsNet model to estimate PM2.5 concentrations for the first time and achieved good accuracy, which could be used for the estimation of other air contaminants.
AbstractList Fine particulate matter (PM2.5) threatens human health and the natural environment. Estimating the near-ground PM2.5 concentrations accurately is of great significance in air quality research. Statistical and deep-learning models are widely used for estimating PM2.5 concentration based on remotely sensed aerosol optical depth (AOD) products. Deep-learning models can effectively express the nonlinear relationship between AOD, parameters, and PM2.5. This study proposed a capsule network model (CapsNet) to address the spatial differences in PM2.5 concentration distribution by introducing a capsule structure and dynamic routing algorithm for the first time, which integrates AOD, surface PM2.5 measurements, and auxiliary variables (e.g., normalized difference vegetation index (NDVI) and meteorological parameters). Moreover, we examined the longitude and latitude of pixels as input parameters to reflect spatial location information, and the results showed that the introduction of longitude (LON) and latitude (LAT) parameters improved the model fitting accuracy. The coefficient of determination (R2) increased by 0.05 ± 0.01, and the root mean square error (RMSE), mean relative error (MRE), and mean absolute error (MAE) decreased by 3.30 ± 1.0 μg/m3, 8 ± 3%, and 1.40 ± 0.2 μg/m3, respectively. To verify the accuracy of our proposed CapsNet, the deep neural network (DNN) model was executed. The results indicated that the R2 values of the validation dataset using CapsNet improved by 4 ± 2%, and RMSE, MRE, and MAE decreased by 1.50 ± 0.4 μg/m3, ~5%, and 0.60 ± 0.2 μg/m3, respectively. Finally, the effects of seasons and spatial region on the fitting accuracy were examined separately from 2018 to 2020. With respect to seasons, the model performed more robustly in the cold season. In terms of spatial region, the R2 values exceeded 0.9 in the central-eastern region, while the accuracy was lower in the western and coastal regions. This study proposed the CapsNet model to estimate PM2.5 concentrations for the first time and achieved good accuracy, which could be used for the estimation of other air contaminants.
Fine particulate matter (PM₂.₅) threatens human health and the natural environment. Estimating the near-ground PM₂.₅ concentrations accurately is of great significance in air quality research. Statistical and deep-learning models are widely used for estimating PM₂.₅ concentration based on remotely sensed aerosol optical depth (AOD) products. Deep-learning models can effectively express the nonlinear relationship between AOD, parameters, and PM₂.₅. This study proposed a capsule network model (CapsNet) to address the spatial differences in PM₂.₅ concentration distribution by introducing a capsule structure and dynamic routing algorithm for the first time, which integrates AOD, surface PM₂.₅ measurements, and auxiliary variables (e.g., normalized difference vegetation index (NDVI) and meteorological parameters). Moreover, we examined the longitude and latitude of pixels as input parameters to reflect spatial location information, and the results showed that the introduction of longitude (LON) and latitude (LAT) parameters improved the model fitting accuracy. The coefficient of determination (R²) increased by 0.05 ± 0.01, and the root mean square error (RMSE), mean relative error (MRE), and mean absolute error (MAE) decreased by 3.30 ± 1.0 μg/m³, 8 ± 3%, and 1.40 ± 0.2 μg/m³, respectively. To verify the accuracy of our proposed CapsNet, the deep neural network (DNN) model was executed. The results indicated that the R² values of the validation dataset using CapsNet improved by 4 ± 2%, and RMSE, MRE, and MAE decreased by 1.50 ± 0.4 μg/m³, ~5%, and 0.60 ± 0.2 μg/m³, respectively. Finally, the effects of seasons and spatial region on the fitting accuracy were examined separately from 2018 to 2020. With respect to seasons, the model performed more robustly in the cold season. In terms of spatial region, the R² values exceeded 0.9 in the central-eastern region, while the accuracy was lower in the western and coastal regions. This study proposed the CapsNet model to estimate PM₂.₅ concentrations for the first time and achieved good accuracy, which could be used for the estimation of other air contaminants.
Author Zeng, Qiaolin
Zhu, Songyan
Chen, Liangfu
Fan, Meng
Tian, Yu
Xie, Tianshou
Author_xml – sequence: 1
  givenname: Qiaolin
  surname: Zeng
  fullname: Zeng, Qiaolin
– sequence: 2
  givenname: Tianshou
  surname: Xie
  fullname: Xie, Tianshou
– sequence: 3
  givenname: Songyan
  surname: Zhu
  fullname: Zhu, Songyan
– sequence: 4
  givenname: Meng
  surname: Fan
  fullname: Fan, Meng
– sequence: 5
  givenname: Liangfu
  surname: Chen
  fullname: Chen, Liangfu
– sequence: 6
  givenname: Yu
  surname: Tian
  fullname: Tian, Yu
BookMark eNptkc9u1DAQhy1UpJallz6BJS4IKcV_Jk5yhKgtldrCAc6WY0-2WaX2YjtI3PoOfcM-Cd4uAlThi63RNz955ntFDnzwSMgJZ6dSdux9TByYZErIF-RIsEZUIDpx8M_7kByntGHlSMk7BkdkfZbydGfy5Nc03yK9QROrixgW7-iXa3Fa0z54iz7HwgRPww-MtL-dvKEfTUJHS23X15ttusFMr4PDmbol7gIF4-3j_YNggr0mL0czJzz-fa_It_Ozr_2n6urzxWX_4aqysoNcuaFhkg-uZo2ysgWQrlYjmEGgZXbgCN0wtEzWzI7YmXrk4FQnlbIN1nZQckUu97kumI3exjJb_KmDmfRTIcS1NjFPdkZdiw5abgYHDgBBtWBV42xtjeQK0Jast_usbQzfF0xZ303J4jwbj2FJWihoW8XLcgv65hm6CUv0ZdJCiaYtVsrKV-TdnrIxpBRx_PNBzvROof6rsMDsGWyn_CShuJjm_7X8AtgvnP8
CitedBy_id crossref_primary_10_1109_TGRS_2023_3248180
crossref_primary_10_1016_j_apr_2025_102577
crossref_primary_10_32604_cmc_2022_031109
crossref_primary_10_1007_s10668_024_04781_5
crossref_primary_10_1016_j_atmosenv_2023_120193
crossref_primary_10_1016_j_jag_2022_103008
crossref_primary_10_1007_s10846_023_01952_w
crossref_primary_10_1109_JSTARS_2024_3503574
crossref_primary_10_1016_j_jenvman_2023_118030
crossref_primary_10_3390_app12147065
crossref_primary_10_3390_rs15020349
Cites_doi 10.1289/ehp.1409481
10.1016/j.asr.2017.08.008
10.1016/j.rse.2006.05.022
10.1016/j.rse.2017.06.001
10.1016/j.rse.2019.111584
10.1016/j.scitotenv.2014.11.024
10.1016/j.atmosenv.2019.06.004
10.1016/j.atmosenv.2005.08.036
10.3390/rs13132525
10.1289/ehp.0800123
10.1016/j.rse.2015.02.005
10.1016/j.scitotenv.2017.08.209
10.3390/rs9080858
10.1109/ICIP.2018.8451379
10.1016/j.rse.2019.111221
10.1016/j.atmosenv.2006.04.044
10.1109/TGRS.2020.3015157
10.1016/j.atmosenv.2013.06.031
10.1016/j.atmosenv.2009.08.026
10.1021/es049352m
10.1109/TGRS.2020.3016820
10.1289/ehp.1104049
10.1016/j.atmosenv.2015.11.013
10.1016/j.envres.2012.11.003
10.5194/acp-19-8243-2019
10.1021/acs.est.5b01413
10.1016/j.rse.2014.09.015
10.1029/2020GL091611
10.1016/j.scitotenv.2019.134021
10.5194/acp-11-7991-2011
10.3390/rs9090908
10.1109/LGRS.2019.2900270
10.1016/j.atmosenv.2020.117396
10.1016/j.rse.2009.08.009
10.1016/j.envpol.2020.116119
10.1016/j.scitotenv.2021.146288
10.5194/amt-6-2989-2013
10.1029/2018JD028759
10.1016/j.rse.2018.06.030
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
COVID
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14030623
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
Coronavirus Research Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_529481abd4d44e4684c67dc5ca3164ec
10_3390_rs14030623
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
COVID
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-db7031bd5076c38443d56f4ab2ec0cb1e49bb80350cfe9a5f14d69366c7e5cb63
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000754978600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Tue Oct 14 18:46:31 EDT 2025
Fri Sep 05 09:38:36 EDT 2025
Fri Jul 25 09:48:57 EDT 2025
Sat Nov 29 07:13:35 EST 2025
Tue Nov 18 21:36:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-db7031bd5076c38443d56f4ab2ec0cb1e49bb80350cfe9a5f14d69366c7e5cb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/529481abd4d44e4684c67dc5ca3164ec
PQID 2627830603
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_529481abd4d44e4684c67dc5ca3164ec
proquest_miscellaneous_2648861072
proquest_journals_2627830603
crossref_primary_10_3390_rs14030623
crossref_citationtrail_10_3390_rs14030623
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chu (ref_28) 2013; 79
Donkelaar (ref_21) 2006; 111
Sun (ref_30) 2019; 16
Wei (ref_3) 2019; 231
Liu (ref_14) 2007; 107
Ma (ref_10) 2016; 124
Lee (ref_12) 2011; 11
ref_36
Hu (ref_24) 2013; 121
ref_35
Crouse (ref_1) 2012; 120
Zhang (ref_11) 2015; 160
Sreekanth (ref_9) 2017; 60
Wang (ref_22) 2010; 114
Guo (ref_25) 2017; 198
Tao (ref_41) 2019; 213
ref_18
Li (ref_31) 2020; 237
Guo (ref_23) 2009; 43
ref_16
Liang (ref_5) 2020; 228
Liu (ref_20) 2004; 109
Liu (ref_44) 2021; 48
Mao (ref_19) 2021; 270
Zhi (ref_42) 2013; 36
Hutchison (ref_7) 2005; 39
Yao (ref_8) 2018; 618
Lyapustin (ref_40) 2011; 116
Zhang (ref_6) 2018; 216
Liu (ref_39) 2019; 19
Hong (ref_33) 2021; 59
Guo (ref_4) 2021; 778
Liu (ref_15) 2009; 117
Koelemeijer (ref_27) 2006; 40
ref_43
Xie (ref_38) 2015; 49
Shen (ref_32) 2018; 123
Lin (ref_29) 2015; 156
Hong (ref_34) 2021; 59
Chen (ref_2) 2019; 697
Wang (ref_17) 2016; 124
Liu (ref_26) 2005; 39
You (ref_13) 2015; 505
Levy (ref_37) 2013; 6
References_xml – volume: 124
  start-page: 184
  year: 2016
  ident: ref_10
  article-title: Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004–2013
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1409481
– volume: 60
  start-page: 2268
  year: 2017
  ident: ref_9
  article-title: Satellite Remote Sensing of Fine Particulate air pollutants over Indian Mega Cities
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2017.08.008
– volume: 107
  start-page: 33
  year: 2007
  ident: ref_14
  article-title: Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: A comparison between MISR and MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.05.022
– volume: 198
  start-page: 140
  year: 2017
  ident: ref_25
  article-title: Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.001
– volume: 237
  start-page: 111584
  year: 2020
  ident: ref_31
  article-title: Spatiotemporal Imputation of MAIAC AOD Using Deep Learning with Downscaling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111584
– volume: 116
  start-page: 1
  year: 2011
  ident: ref_40
  article-title: Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm
  publication-title: J. Geophys. Res. Atmos.
– volume: 505
  start-page: 1156
  year: 2015
  ident: ref_13
  article-title: Estimating PM2.5 in Xi’an, China using aerosol optical depth: A comparison between the MODIS and MISR retrieval models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.11.024
– volume: 213
  start-page: 159
  year: 2019
  ident: ref_41
  article-title: Performance of MODIS high-resolution MAIAC aerosol algorithm in China: Characterization and limitation
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2019.06.004
– volume: 39
  start-page: 7190
  year: 2005
  ident: ref_7
  article-title: Correlating MODIS aerosol optical thickness data with ground-based PM2.5 observations across Texas for use in a real-time air quality prediction system
  publication-title: Atoms. Environ.
  doi: 10.1016/j.atmosenv.2005.08.036
– ident: ref_43
  doi: 10.3390/rs13132525
– volume: 117
  start-page: 886
  year: 2009
  ident: ref_15
  article-title: Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.0800123
– volume: 160
  start-page: 252
  year: 2015
  ident: ref_11
  article-title: Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.02.005
– volume: 618
  start-page: 819
  year: 2018
  ident: ref_8
  article-title: A multidimensional comparison between MODIS and VIIRS AOD in estimating ground-level PM2.5 concentrations over a heavily polluted region in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.08.209
– ident: ref_35
– volume: 36
  start-page: 77
  year: 2013
  ident: ref_42
  article-title: Comparative analysis of free atmospheric temperature between three reanalysis datasets and radiosonde dataset in China: Annual mean characteristic
  publication-title: Trans. Atmos. Sci.
– ident: ref_18
  doi: 10.3390/rs9080858
– ident: ref_36
  doi: 10.1109/ICIP.2018.8451379
– volume: 231
  start-page: 111221
  year: 2019
  ident: ref_3
  article-title: Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111221
– volume: 111
  start-page: 5049
  year: 2006
  ident: ref_21
  article-title: Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing
  publication-title: J. Geophys. Res. Atmos.
– volume: 40
  start-page: 5304
  year: 2006
  ident: ref_27
  article-title: Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe
  publication-title: Atoms. Environ.
  doi: 10.1016/j.atmosenv.2006.04.044
– volume: 59
  start-page: 5966
  year: 2021
  ident: ref_33
  article-title: Graph Convolutional Networks for Hyperspectral Image Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3015157
– volume: 79
  start-page: 172
  year: 2013
  ident: ref_28
  article-title: Interpreting aerosol lidar profiles to better estimate surface PM2.5 for columnar AOD measurements
  publication-title: Atoms. Environ.
  doi: 10.1016/j.atmosenv.2013.06.031
– volume: 43
  start-page: 5876
  year: 2009
  ident: ref_23
  article-title: Correlation between concentrations and aerosol optical depth in eastern China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.08.026
– volume: 39
  start-page: 3269
  year: 2005
  ident: ref_26
  article-title: Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049352m
– volume: 59
  start-page: 4340
  year: 2021
  ident: ref_34
  article-title: More Diverse Means Better: Multimodal Deep Learning Meeets Remote-Sensing Imagery Classificaion
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3016820
– volume: 120
  start-page: 708
  year: 2012
  ident: ref_1
  article-title: Risk of Nonaccidental and Cardiovascular Mortality in Relation to Long-term Exposure to Low Concentrations of Fine Particulate Matter: A Canadian National-Level Cohort Study
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1104049
– volume: 124
  start-page: 55
  year: 2016
  ident: ref_17
  article-title: Potential application of VIIRS Day/Night Band for monitoring nighttime surface PM2.5 air quality from space
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.11.013
– volume: 121
  start-page: 1
  year: 2013
  ident: ref_24
  article-title: Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2012.11.003
– volume: 19
  start-page: 8243
  year: 2019
  ident: ref_39
  article-title: Evaluation and comparison of multiangle implementation of the atmospheric correction algorithm, Dark Target, and Deep Blue aerosol products over China
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-19-8243-2019
– volume: 49
  start-page: 12280
  year: 2015
  ident: ref_38
  article-title: Daily estimation of ground-level PM2.5 concentrations over Beijing using 3 km resolution MODIS AOD
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b01413
– volume: 109
  start-page: D22206
  year: 2004
  ident: ref_20
  article-title: Mapping annual mean ground-level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States
  publication-title: J. Geophys. Res. Atmos.
– volume: 156
  start-page: 117
  year: 2015
  ident: ref_29
  article-title: Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.09.015
– volume: 48
  start-page: 2020GL091611
  year: 2021
  ident: ref_44
  article-title: Chemistry of atmospheric fine particles during the COVID-19 pandemic in a megacity of Eastern China
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL091611
– volume: 697
  start-page: 134021
  year: 2019
  ident: ref_2
  article-title: Stacking machine learning model for estimating hourly PM2.5 in China based on Himawari 8 aerosol optical depth data
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134021
– volume: 11
  start-page: 9769
  year: 2011
  ident: ref_12
  article-title: A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-11-7991-2011
– ident: ref_16
  doi: 10.3390/rs9090908
– volume: 16
  start-page: 1343
  year: 2019
  ident: ref_30
  article-title: Deep learning architecture for estimating hourly ground-level PM2.5 using satellite remote sensing
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2900270
– volume: 228
  start-page: 117396
  year: 2020
  ident: ref_5
  article-title: Air quality and health impacts from using ethanol blended gasoline fuels in China
  publication-title: Atoms. Environ.
  doi: 10.1016/j.atmosenv.2020.117396
– volume: 114
  start-page: 50
  year: 2010
  ident: ref_22
  article-title: Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.009
– volume: 270
  start-page: 116119
  year: 2021
  ident: ref_19
  article-title: Estimation hourly full-coverage PM2.5 over China base on TOA reflectance data from the Fengyun-4A satellite
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.116119
– volume: 778
  start-page: 146228
  year: 2021
  ident: ref_4
  article-title: Estimating PM2.5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal scales across China in 2017
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.146288
– volume: 6
  start-page: 2989
  year: 2013
  ident: ref_37
  article-title: The Collection 6 MODIS aerosol products over land and ocean
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-6-2989-2013
– volume: 123
  start-page: 13875
  year: 2018
  ident: ref_32
  article-title: Estimating Regional Ground-Level PM2.5 Directly from Satellite Top-Of-Atmosphere Reflectance Using Deep Belief Networks
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2018JD028759
– volume: 216
  start-page: 91
  year: 2018
  ident: ref_6
  article-title: Estimation of ultrahigh resolution PM2.5 concentrations in urban areas using 160m Gaofen-1 AOD retrievals
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.030
SSID ssj0000331904
Score 2.356295
Snippet Fine particulate matter (PM2.5) threatens human health and the natural environment. Estimating the near-ground PM2.5 concentrations accurately is of great...
Fine particulate matter (PM₂.₅) threatens human health and the natural environment. Estimating the near-ground PM₂.₅ concentrations accurately is of great...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 623
SubjectTerms Accuracy
aerosol optical depth
Aerosols
air pollutants
Air pollution
Air quality
Algorithms
Artificial neural networks
Atmospheric models
CapsNet
China
Coastal zone
Cognition & reasoning
Cold season
Contaminants
data collection
Deep learning
Depth indicators
DNN
dynamic routing algorithm
Estimation
human health
Latitude
Longitude
Machine learning
Mathematical models
Meteorological parameters
Model accuracy
Natural environment
Neural networks
Neurons
Normalized difference vegetative index
Optical analysis
Optical thickness
Particulate matter
particulates
PM2.5 concentration
Remote sensing
Root-mean-square errors
Seasons
Statistical analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFB1BiwSb8hYpBQ2CDYuh43nZXiESpWIBVoRA6s6aZ4pUOSFOkdjxD_3Dfgn3OpNUCMSG7fh6ZPk-53HPIeSVsoInETQLvExMJW2ZLbRnkMqUS0VR-jQ0Cn8om6Y6Pa1necOtz9cqtzFxCNRh4XGP_FgY5ITghsu3y28MWaPwdDVTaNwk-4hUBna-P542s0-7XRYuwcS42uCSSljfH696RKjjRsjfMtEA2P9HPB6SzMnd__28e-Qgl5f03cYe7pMbsXtAbmem87MfD8l8Cj6NVWo3p1D70QYsneEGVBfo7KN4o-kEGxm7jKZL8YYnHUi26RgSXqAwhu9N7LJv4poil9o53TQ7Ukjz1dXPSwHF4SPy5WT6efKeZbIF5mWt1iw4RLJ3AepD42WllAzaJGWdiJ57V0RVO1fhOSRor7Y6FSqYWhrjy6i9M_Ix2esWXXxCqE06yhRDEBYm4Al0bmM9gCgJq0MakdfbH9_6jESOhBjnLaxIUEnttZJG5OVOdrnB3_ir1Bj1t5NAzOxhYLGat9kFWy0Qmca6oIJSUZlKeVMGr72VsGaMfkSOtqptsyP37bVeR-TF7jG4IJ6r2C4uLlAGoiCUoaU4_PcUT8kdgd0Tw6XvI7K3Xl3EZ-SW_77-2q-eZ9v9BZ1S-RQ
  priority: 102
  providerName: ProQuest
Title Estimating the Near-Ground PM2.5 Concentration over China Based on the CapsNet Model during 2018–2020
URI https://www.proquest.com/docview/2627830603
https://www.proquest.com/docview/2648861072
https://doaj.org/article/529481abd4d44e4684c67dc5ca3164ec
Volume 14
WOSCitedRecordID wos000754978600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqthJcEBQQC-3KFVw4hDp-JTl2V1uB1EYRD6lwifwsSFVa7W6RuCD-Q_9hf0lnnHQpAolLLz7Yk8Qaj2fG8cw3hLyShrPIvco8K2ImozKZyZXLwJRJG_O8cDElCh8WdV0eH1fNrVJfGBPWwwP3jNtTHPFEjPXSSxmkLqXThXfKGQGefnCofVlR3TpMJR0sQLSY7PFIBZzr9-YLRKZjmos_LFAC6v9LDyfjcvCQPBi8Qrrfz-YRWQvdFrk3FCj_-uMxOZnBVkTnsjuh4LLRGgQ0w_9GnafNEX-j6BTzD7sBBJdiYCZNtbHpBOyUp9CHz03N-aIOS4ol0E5pn6NIwTqXV78uOfh0T8ing9nH6dtsqJGQOVHJZeYtAtBbD26ddqKUUnilozSWB8eczYOsrC3x-hCYXhkVc-l1JbR2RVDOavGUrHdnXXhGqIkqiBi85wZewCIslQlVwj7iRvk4Iq9v-Na6AUAc61ictnCQQB63v3k8Ii9XtOc9bMY_qSbI_hUFQl2nDhCAdhCA9n8CMCLbN4vXDvtv0XKNFUSYZvCN3dUw7By8DjFdOLtAGlBe4D0W_PldzOMFuc8xNSJFdG-T9eX8IuyQTfd9-W0xH5ONyaxu3o-TmI4xwvQDtj9n0DbqC4w3746az9cHe_BX
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKlceCMCBRYBBw6mzr4cHxAiIVWrplaEitSbu95HQKqckKSg3vgP_A9-FL-EGT9SIRC3Hrja49Xa-3lm9jHfB_BcGh4H7lTk4iREMigTmZ6yEYYyWYReL7GhKhQeJ1nWPz5OJxvwo62FoWOVrU-sHLWbWVoj3-GaNCFiHYs3888RqUbR7moroVHD4sCff8Up2_L1_jsc3xec746OhntRoyoQWZHKVeQKomwvHCZC2oq-lMIpHaQpuLexLXpepkXRpw037GZqVOhJp1OhtU28soUW2O4V2JRCatWBzcEom7xfr-rEAiEdy5oHVYg03lksiREv1lz8FvkqgYA__H8V1HZv_G-f4yZcb9Jn9rbG-y3Y8OVt2GqU3D-e34HpCH0WZeHllGFuyzLsY0QLbKVjk0P-SrEhFWqWDVswoxOsrBIRZwMM6I7hNXpuaObLzK8YacWdsrqYk2Ea0__57TvH5PcufLiU97wHnXJW-vvATFBeBO8cN9hAHBDTxqcVSRQ3yoUuvGwHOrcN0zoJfpzmOOMiUOQXoOjCs7XtvOYX-avVgPCytiBO8OrCbDHNGxeTK07MO6Zw0knppe5LqxNnlTUC58TedmG7hVLeOKplfoGjLjxd30YXQ_tGpvSzM7JBL49pdsIf_LuJJ7C1d3Q4zsf72cFDuMapUqQ64L4NndXizD-Cq_bL6tNy8bj5bxicXDY2fwE-F1bW
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoALb0SgwCLgwMHE2ZftA0I0bUTVYuUAUsXFrPcRkConxCmoN_4D_4afwy9hxo9UCMStB67r9Wptf56Z3Z35PoAn0vA4cKciFychkkGZyIyUjdCVyTKMRokNTaHwQZLn6eFhNt2AH30tDKVV9jaxMdRubmmPfMg1aULEOhbD0KVFTHcmLxefI1KQopPWXk6jhci-P_mKy7f6xd4OfuunnE92345fR53CQGRFJleRK4m-vXQYFGkrUimFUzpIU3JvY1uOvMzKMqXDN5xyZlQYSaczobVNvLKlFjjuOTifSJ1SOtlUvV_v78QCwR3LlhFViCweLmvixos1F7_5wEYq4A9P0Li3ydX_-cVcgytdUM1etX_Bddjw1Q241Om7fzy5CbNdtGQUm1czhhEvy3GOEW27VY5N3_Dnio2pfLPqOIQZ5bWyRlqcbaObdwzb6L6xWdS5XzFSkDtibYknw-Am_fntO8eQ-Ba8O5PnvA2b1bzyd4CZoLwI3jlucIA4INKNzxrqKG6UCwN41n_0wnb86yQDclTgOowAUpwCZACP130XLevIX3ttE3bWPYgpvGmYL2dFZ3gKxYmPx5ROOik9AlVanTirrBG4UvZ2AFs9rIrOfNXFKaYG8Gh9GQ0PnSaZys-PqQ_afgy-E37330M8hIsIyOJgL9-_B5c5lY80We9bsLlaHvv7cMF-WX2qlw-aH4jBh7MG5i8_k15r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+Near-Ground+PM2.5+Concentration+over+China+Based+on+the+CapsNet+Model+during+2018%E2%80%932020&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Qiaolin+Zeng&rft.au=Tianshou+Xie&rft.au=Songyan+Zhu&rft.au=Meng+Fan&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=3&rft.spage=623&rft_id=info:doi/10.3390%2Frs14030623&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_529481abd4d44e4684c67dc5ca3164ec
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon