A binary artificial bee colony algorithm and its performance assessment

•This study proposes artificial bee colony algorithm-based binary optimization method.•The stigmergic behavior is integrated with this algorithm.•The proposed algorithm is applied to solve modern benchmark problems.•The performance of algorithm is compared with many state-of-art algorithms. Artifici...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 175; p. 114817
Main Author: Kiran, Mustafa Servet
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.08.2021
Elsevier BV
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •This study proposes artificial bee colony algorithm-based binary optimization method.•The stigmergic behavior is integrated with this algorithm.•The proposed algorithm is applied to solve modern benchmark problems.•The performance of algorithm is compared with many state-of-art algorithms. Artificial bee colony algorithm, ABC for short, is a swarm-based optimization algorithm proposed for solving continuous optimization problems. Due to its simple but effective structure, some binary versions of the algorithm have been developed. In this study, we focus on modification of its xor-based binary version, called as binABC. The solution update rule of basic ABC is replaced with a xor logic gate in binABC algorithm, and binABC works on discretely-structured solution space. The rest of components in binABC are the same as with the basic ABC algorithm. In order to improve local search capability and convergence characteristics of binABC, a stigmergic behavior-based update rule for onlooker bees of binABC and extended version of xor-based update rule are proposed in the present study. The developed version of binABC is applied to solve a modern benchmark problem set (CEC2015). To validate the performance of proposed algorithm, a series of comparisons are conducted on this problem set. The proposed algorithm is first compared with the basic ABC and binABC on CEC2015 set. After its performance validation, six binary versions of ABC algorithm are considered for comparison of the algorithms, and a comprehensive comparison among the state-of-art variants of swarm intelligence or evolutionary computation algorithms is conducted on this set of functions. Finally, an uncapacitated facility location problem set, a pure binary optimization problem, is considered for the comparison of the proposed algorithm and binary variants of ABC algorithm. The experimental results and comparisons show that the proposed algorithm is successful and effective in solving binary optimization problems as its basic version in solving continuous optimization problems.
AbstractList •This study proposes artificial bee colony algorithm-based binary optimization method.•The stigmergic behavior is integrated with this algorithm.•The proposed algorithm is applied to solve modern benchmark problems.•The performance of algorithm is compared with many state-of-art algorithms. Artificial bee colony algorithm, ABC for short, is a swarm-based optimization algorithm proposed for solving continuous optimization problems. Due to its simple but effective structure, some binary versions of the algorithm have been developed. In this study, we focus on modification of its xor-based binary version, called as binABC. The solution update rule of basic ABC is replaced with a xor logic gate in binABC algorithm, and binABC works on discretely-structured solution space. The rest of components in binABC are the same as with the basic ABC algorithm. In order to improve local search capability and convergence characteristics of binABC, a stigmergic behavior-based update rule for onlooker bees of binABC and extended version of xor-based update rule are proposed in the present study. The developed version of binABC is applied to solve a modern benchmark problem set (CEC2015). To validate the performance of proposed algorithm, a series of comparisons are conducted on this problem set. The proposed algorithm is first compared with the basic ABC and binABC on CEC2015 set. After its performance validation, six binary versions of ABC algorithm are considered for comparison of the algorithms, and a comprehensive comparison among the state-of-art variants of swarm intelligence or evolutionary computation algorithms is conducted on this set of functions. Finally, an uncapacitated facility location problem set, a pure binary optimization problem, is considered for the comparison of the proposed algorithm and binary variants of ABC algorithm. The experimental results and comparisons show that the proposed algorithm is successful and effective in solving binary optimization problems as its basic version in solving continuous optimization problems.
Artificial bee colony algorithm, ABC for short, is a swarm-based optimization algorithm proposed for solving continuous optimization problems. Due to its simple but effective structure, some binary versions of the algorithm have been developed. In this study, we focus on modification of its xor-based binary version, called as binABC. The solution update rule of basic ABC is replaced with a xor logic gate in binABC algorithm, and binABC works on discretely-structured solution space. The rest of components in binABC are the same as with the basic ABC algorithm. In order to improve local search capability and convergence characteristics of binABC, a stigmergic behavior-based update rule for onlooker bees of binABC and extended version of xor-based update rule are proposed in the present study. The developed version of binABC is applied to solve a modern benchmark problem set (CEC2015). To validate the performance of proposed algorithm, a series of comparisons are conducted on this problem set. The proposed algorithm is first compared with the basic ABC and binABC on CEC2015 set. After its performance validation, six binary versions of ABC algorithm are considered for comparison of the algorithms, and a comprehensive comparison among the state-of-art variants of swarm intelligence or evolutionary computation algorithms is conducted on this set of functions. Finally, an uncapacitated facility location problem set, a pure binary optimization problem, is considered for the comparison of the proposed algorithm and binary variants of ABC algorithm. The experimental results and comparisons show that the proposed algorithm is successful and effective in solving binary optimization problems as its basic version in solving continuous optimization problems.
ArticleNumber 114817
Author Kiran, Mustafa Servet
Author_xml – sequence: 1
  givenname: Mustafa Servet
  orcidid: 0000-0002-5896-7180
  surname: Kiran
  fullname: Kiran, Mustafa Servet
  email: mskiran@ktun.edu.tr
  organization: Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Turkey
BookMark eNp9kE1LAzEQhoMo2Fb_gKcFz7sm2Xx0wUspWoWCFz2HbHaiWXaTmqSK_94t9eShp4Fhnpl5nzk698EDQjcEVwQTcddXkL51RTElFSFsSeQZmpGlrEshm_oczXDDZcmIZJdonlKPMZEYyxnarIrWeR1_Ch2zs844PRQtQGHCEPzUHd5DdPljLLTvCpdTsYNoQxy1N1DolCClEXy-QhdWDwmu_-oCvT0-vK6fyu3L5nm92pamblguu6bmWloubNsYo6nFQLgA3GluJAUGXLfTl50VRjNcN5a1xFKg2GoBjIl6gW6Pe3cxfO4hZdWHffTTSUU5Z0I0nNbTFD1OmRhSimDVLrpxSqkIVgdhqlcHYeogTB2FTdDyH2Rc1tkFn6N2w2n0_ojCFP3LQVTJOJgMdS6CyaoL7hT-CzxeiUU
CitedBy_id crossref_primary_10_1002_cpe_70052
crossref_primary_10_1109_ACCESS_2023_3287484
crossref_primary_10_1016_j_swevo_2025_102070
crossref_primary_10_1007_s00521_023_09200_w
crossref_primary_10_3390_sym17070999
crossref_primary_10_1007_s00521_022_07541_6
crossref_primary_10_1007_s10586_024_04905_6
crossref_primary_10_1109_ACCESS_2021_3105796
crossref_primary_10_3390_math10071129
crossref_primary_10_1002_adem_202402477
crossref_primary_10_1016_j_asoc_2022_109590
crossref_primary_10_1016_j_jestch_2025_102031
crossref_primary_10_1016_j_eswa_2023_119956
crossref_primary_10_1007_s11042_023_17234_4
crossref_primary_10_1016_j_swevo_2024_101567
crossref_primary_10_1016_j_jestch_2025_102057
crossref_primary_10_1109_TETCI_2025_3529840
crossref_primary_10_1007_s12273_021_0838_z
crossref_primary_10_1007_s10825_021_01796_3
crossref_primary_10_1016_j_est_2022_105515
crossref_primary_10_1007_s11760_025_04657_9
Cites_doi 10.1016/j.ins.2015.04.006
10.1016/j.asoc.2015.12.046
10.1080/00207721.2015.1010748
10.1016/j.ejor.2006.06.046
10.1016/j.asoc.2011.08.038
10.1007/s00170-010-3140-2
10.1109/TCYB.2014.2387067
10.1109/CCDC.2011.5968558
10.1109/CEC.2010.5586300
10.1145/2330784.2330977
10.1007/s00158-010-0551-5
10.1016/j.ins.2016.05.037
10.1038/scientificamerican0792-66
10.1080/0305215X.2019.1657113
10.1016/j.ins.2014.12.043
10.1109/ICNN.1995.488968
10.1016/j.cie.2014.08.016
10.1007/s00500-016-2166-2
10.1016/j.asoc.2016.08.023
10.1016/j.asoc.2018.01.001
10.1007/s13042-017-0772-7
10.1057/jors.1990.166
10.1016/j.ins.2014.10.060
10.1016/j.cor.2006.12.029
10.1080/0952813X.2015.1056238
10.4028/www.scientific.net/AMR.314-316.2191
10.1016/j.ins.2009.12.025
10.1016/j.asoc.2015.10.070
10.1007/s00521-011-0794-0
10.1016/j.asoc.2015.04.007
10.1109/ICTKE.2017.8259617
10.1109/ICACCI.2016.7732158
10.1007/978-981-10-0451-3_79
10.1016/j.asoc.2008.09.001
10.1109/ICCIE.2009.5223810
10.1007/s00158-011-0639-6
10.1007/978-3-319-48959-9_19
10.1016/j.asoc.2017.01.031
10.5755/j01.itc.46.4.18215
10.1007/s10898-007-9149-x
10.3906/elk-1203-104
10.1016/j.eswa.2010.07.006
10.1016/j.amc.2015.09.019
10.1016/j.future.2019.03.032
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Aug 1, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 1, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.114817
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_114817
S095741742100258X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AGCQF
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c394t-d935a7f56fb9cca2f0e156e0da5c72e4e5ab417df6ca4039f4b1f2e20fa6e4463
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664351700031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Wed Aug 13 09:55:14 EDT 2025
Tue Nov 18 22:39:57 EST 2025
Sat Nov 29 07:11:01 EST 2025
Fri Feb 23 02:44:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Artificial bee colony
Xor logic gate
Binary optimization
Stigmergy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-d935a7f56fb9cca2f0e156e0da5c72e4e5ab417df6ca4039f4b1f2e20fa6e4463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5896-7180
PQID 2554669523
PQPubID 2045477
ParticipantIDs proquest_journals_2554669523
crossref_primary_10_1016_j_eswa_2021_114817
crossref_citationtrail_10_1016_j_eswa_2021_114817
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_114817
PublicationCentury 2000
PublicationDate 2021-08-01
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Sharma, Pant (b0230) 2017; 21
Singh (b0235) 2009; 9
Wei, X. H., & Zhang, K. (2011). Discrete Artificial Bee Colony Algorithm for Multiple Knapsack Problems. Proceedings of the 4th Conference on Systems Science, Management Science and Systems Dynamics, Ssmssd10, Vol 4, 123–126. Retrieved from <Go to ISI>://WOS:000393356500020.
Liang, J., Qu, B., Suganthan, P., & Chen, Q. (2014). Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Technical Report201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore.
Korkmaz, Kiran (b0140) 2018
Ozturk, Hancer, Karaboga (b0175) 2015; 297
Beasley (b0015) 1990; 41
Li, Yang (b0155) 2016; 41
Sharma, H., Sharma, S., & Kumar, S. (2016). Lbest Gbest Artificial Bee Colony Algorithm. 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 893-898. Retrieved from <Go to ISI>://WOS:000392503100142.
Kashan, Nahavandi, Kashan (b0080) 2012; 12
Kiran (b0105) 2015; 33
Sharma, Bansal, Arya, Yang (b0205) 2016; 47
Song, Yan, Zhao (b0245) 2017; 55
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. 1995 IEEE International Conference on Neural Networks Proceedings, Vols 1–6, 1942–1948.
Kong, Tian, Kao (b0130) 2008; 35
Pan, Tasgetiren, Suganthan, Chua (b0185) 2011; 181
Gao, Chan, Huang, Liu (b0025) 2015; 316
Tran, Wu (b0265) 2014; 6
Gao, Huang, Wang, Liu, Qin (b0040) 2016; 48
Korkmaz, Babalik, Kiran (b0135) 2018; 9
Kiran, Hakli, Gunduz, Uguz (b0115) 2015; 300
Karaboga, Gorkemli (b0075) 2011
Sharma, Gupta, Sharma (b0215) 2016; 28
Kiran, Iscan, Gunduz (b0120) 2013; 23
Kaya, E., & Kiran, M. S. (2017, 22–24 Nov). An improved binary artificial bee colony algorithm. Paper presented at the 2017 15th International Conference on ICT and Knowledge Engineering (ICT&KE).
Pandey, S., & Kumar, S. (2013). Enhanced artificial bee colony algorithm and it’s application to travelling salesman problem. HCTL Open International Journal of Technology Innovations and Research, 2.
Sonmez (b0250) 2011; 43
.
Gao, Huang, Liu, Chan, Dai, Shan (b0030) 2015; 271
Li, W. H., Li, W. J., Yang, Y., Liao, H. Q., Li, J. L., & Zheng, X. P. (2011). Artificial bee colony algorithm for traveling salesman problem. Paper presented at the Advanced Materials Research.
Vecek, Liu, Crepinsek, Mernik (b0270) 2017; 46
Kiran, Gunduz (b0110) 2013; 21
Kocer (b0125) 2016; 49
Karaboga, Basturk (b0070) 2007; 39
Kennedy, Eberhart (b0095) 1997; 5
Banitalebi, Aziz, Aziz (b0010) 2016; 367
Colorni, A., Dorigo, M., & Maniezzo, V. (1992). Distributed Optimization by Ant Colonies. Toward a Practice of Autonomous Systems, 134–142. Retrieved from <Go to ISI>://WOS:A1992BW87V00017.
Stolpe (b0255) 2011; 44
Garcia, E. A. R., Ponsich, A., Gutierez, R. A. M., Vellazquez, P. L., Andrade, M. A. G., & Silva, S. G. D. (2012). Discrete Artificial Bee Colony Algorithm for the Multi-Objective Redistricting problem. Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Companion (Gecco'12), 1439-1440. Retrieved from <Go to ISI>://WOS:000394287200166.
Pampará, Engelbrecht (b0180) 2011
Holland (b0055) 1992; 267
Sharma, N., Sharma, H., Sharma, A., & Bansal, J. C. (2016b). Modified Artificial Bee Colony Algorithm Based on Disruption Operator. Proceedings of Fifth International Conference on Soft Computing for Problem Solving (Socpros 2015), Vol. 2, 437, 889–900.
Tasgetiren, M. F., Pan, Q. K., Suganthan, P. N., & Chen, A. H. L. (2010). A Discrete Artificial Bee Colony Algorithm for the Permutation Flow Shop Scheduling Problem with Total Flowtime Criterion. 2010 IEEE Congress on Evolutionary Computation (Cec). Retrieved from <Go to ISI>://WOS:000287375803007.
Albayrak, Allahverdi (b0005) 2011; 38
Luo (b0165) 2020; 52
Han, Y. Y., Duan, J. H., & Zhang, M. (2011). Apply the discrete artificial bee colony algorithm to the blocking flow shop problem with makespan criterion. 2011 Chinese Control and Decision Conference, Vols 1–6, 2131–2135. Retrieved from <Go to ISI>://WOS:000323234701132.
Sharma, N., Sharma, H., Sharma, A., & Bansal, J. C. (2016a). Black Hole Artificial Bee Colony Algorithm. Swarm, Evolutionary, and Memetic Computing (Semcco 2015), 9873, 214–221.
Pathak, Tiwari (b0195) 2012; 13
Santana, Macedo, Siqueira, Gokhale, Bastos (b0200) 2019; 98
Marinakis, Y., Marinaki, M., & Matsatsinis, N. (2009). A Hybrid Discrete Artificial Bee Colony - GRASP Algorithm for Clustering. Cie: 2009 International Conference on Computers and Industrial Engineering, Vols 1-3, 548-+.
Socha, Dorigo (b0240) 2008; 185
Gao, Huang, Liu, Dai (b0035) 2015; 45
Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Retrieved from
Li, Pan, Gao (b0145) 2011; 55
Jia, Duan, Khan (b0060) 2014; 76
Gao (10.1016/j.eswa.2021.114817_b0035) 2015; 45
Pampará (10.1016/j.eswa.2021.114817_b0180) 2011
Santana (10.1016/j.eswa.2021.114817_b0200) 2019; 98
Kong (10.1016/j.eswa.2021.114817_b0130) 2008; 35
Kiran (10.1016/j.eswa.2021.114817_b0110) 2013; 21
10.1016/j.eswa.2021.114817_b0210
Sonmez (10.1016/j.eswa.2021.114817_b0250) 2011; 43
10.1016/j.eswa.2021.114817_b0050
10.1016/j.eswa.2021.114817_b0170
Jia (10.1016/j.eswa.2021.114817_b0060) 2014; 76
Karaboga (10.1016/j.eswa.2021.114817_b0070) 2007; 39
Albayrak (10.1016/j.eswa.2021.114817_b0005) 2011; 38
Song (10.1016/j.eswa.2021.114817_b0245) 2017; 55
Pan (10.1016/j.eswa.2021.114817_b0185) 2011; 181
Li (10.1016/j.eswa.2021.114817_b0155) 2016; 41
10.1016/j.eswa.2021.114817_b0220
10.1016/j.eswa.2021.114817_b0225
Singh (10.1016/j.eswa.2021.114817_b0235) 2009; 9
Sharma (10.1016/j.eswa.2021.114817_b0205) 2016; 47
Kiran (10.1016/j.eswa.2021.114817_b0105) 2015; 33
Gao (10.1016/j.eswa.2021.114817_b0025) 2015; 316
Korkmaz (10.1016/j.eswa.2021.114817_b0140) 2018
10.1016/j.eswa.2021.114817_b0260
10.1016/j.eswa.2021.114817_b0065
10.1016/j.eswa.2021.114817_b0020
Korkmaz (10.1016/j.eswa.2021.114817_b0135) 2018; 9
Luo (10.1016/j.eswa.2021.114817_b0165) 2020; 52
Socha (10.1016/j.eswa.2021.114817_b0240) 2008; 185
10.1016/j.eswa.2021.114817_b0275
Stolpe (10.1016/j.eswa.2021.114817_b0255) 2011; 44
Holland (10.1016/j.eswa.2021.114817_b0055) 1992; 267
10.1016/j.eswa.2021.114817_b0190
Gao (10.1016/j.eswa.2021.114817_b0030) 2015; 271
10.1016/j.eswa.2021.114817_b0150
Tran (10.1016/j.eswa.2021.114817_b0265) 2014; 6
Kiran (10.1016/j.eswa.2021.114817_b0120) 2013; 23
Karaboga (10.1016/j.eswa.2021.114817_b0075) 2011
Kennedy (10.1016/j.eswa.2021.114817_b0095) 1997; 5
Pathak (10.1016/j.eswa.2021.114817_b0195) 2012; 13
Kiran (10.1016/j.eswa.2021.114817_b0115) 2015; 300
Li (10.1016/j.eswa.2021.114817_b0145) 2011; 55
10.1016/j.eswa.2021.114817_b0090
Gao (10.1016/j.eswa.2021.114817_b0040) 2016; 48
Kocer (10.1016/j.eswa.2021.114817_b0125) 2016; 49
Kashan (10.1016/j.eswa.2021.114817_b0080) 2012; 12
Beasley (10.1016/j.eswa.2021.114817_b0015) 1990; 41
Sharma (10.1016/j.eswa.2021.114817_b0215) 2016; 28
10.1016/j.eswa.2021.114817_b0045
Banitalebi (10.1016/j.eswa.2021.114817_b0010) 2016; 367
10.1016/j.eswa.2021.114817_b0160
Sharma (10.1016/j.eswa.2021.114817_b0230) 2017; 21
10.1016/j.eswa.2021.114817_b0085
Ozturk (10.1016/j.eswa.2021.114817_b0175) 2015; 297
Vecek (10.1016/j.eswa.2021.114817_b0270) 2017; 46
References_xml – reference: Li, W. H., Li, W. J., Yang, Y., Liao, H. Q., Li, J. L., & Zheng, X. P. (2011). Artificial bee colony algorithm for traveling salesman problem. Paper presented at the Advanced Materials Research.
– volume: 55
  start-page: 384
  year: 2017
  end-page: 401
  ident: b0245
  article-title: An adaptive artificial bee colony algorithm based on objective function value information
  publication-title: Applied Soft Computing
– start-page: 1
  year: 2011
  end-page: 8
  ident: b0180
  article-title: Binary artificial bee colony optimization
  publication-title: 2011 IEEE Symposium on Swarm Intelligence, Paris, France
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: b0070
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: Journal of Global Optimization
– volume: 367
  start-page: 487
  year: 2016
  end-page: 511
  ident: b0010
  article-title: A self-adaptive binary differential evolution algorithm for large scale binary optimization problems
  publication-title: Information Sciences
– volume: 6
  start-page: 1
  year: 2014
  ident: b0265
  article-title: New approaches of binary artificial bee colony algorithm for solving 0–1 knapsack problem
  publication-title: Advances in information Sciences and Service Sciences
– volume: 21
  start-page: 2307
  year: 2013
  end-page: 2328
  ident: b0110
  article-title: XOR-based artificial bee colony algorithm for binary optimization
  publication-title: Turkish Journal of Electrical Engineering and Computer Sciences
– reference: Garcia, E. A. R., Ponsich, A., Gutierez, R. A. M., Vellazquez, P. L., Andrade, M. A. G., & Silva, S. G. D. (2012). Discrete Artificial Bee Colony Algorithm for the Multi-Objective Redistricting problem. Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Companion (Gecco'12), 1439-1440. Retrieved from <Go to ISI>://WOS:000394287200166.
– volume: 35
  start-page: 2672
  year: 2008
  end-page: 2683
  ident: b0130
  article-title: A new ant colony optimization algorithm for the multidimensional knapsack problem
  publication-title: Computers & Operations Research
– volume: 43
  start-page: 85
  year: 2011
  end-page: 97
  ident: b0250
  article-title: Discrete optimum design of truss structures using artificial bee colony algorithm
  publication-title: Structural and Multidisciplinary Optimization
– volume: 41
  start-page: 362
  year: 2016
  end-page: 372
  ident: b0155
  article-title: Artificial bee colony algorithm with memory
  publication-title: Applied Soft Computing
– reference: Kaya, E., & Kiran, M. S. (2017, 22–24 Nov). An improved binary artificial bee colony algorithm. Paper presented at the 2017 15th International Conference on ICT and Knowledge Engineering (ICT&KE).
– volume: 44
  start-page: 707
  year: 2011
  end-page: 711
  ident: b0255
  article-title: To bee or not to bee-comments on “Discrete optimum design of truss structures using artificial bee colony algorithm”
  publication-title: Structural and Multidisciplinary Optimization
– year: 2018
  ident: b0140
  article-title: An artificial algae algorithm with stigmergic behavior for binary optimization
  publication-title: Applied Soft Computing
– volume: 38
  start-page: 1313
  year: 2011
  end-page: 1320
  ident: b0005
  article-title: Development a new mutation operator to solve the traveling salesman problem by aid of genetic algorithms
  publication-title: Expert Systems with Applications
– reference: Sharma, H., Sharma, S., & Kumar, S. (2016). Lbest Gbest Artificial Bee Colony Algorithm. 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 893-898. Retrieved from <Go to ISI>://WOS:000392503100142.
– volume: 33
  start-page: 15
  year: 2015
  end-page: 23
  ident: b0105
  article-title: The continuous artificial bee colony algorithm for binary optimization
  publication-title: Applied Soft Computing
– volume: 41
  start-page: 1069
  year: 1990
  end-page: 1072
  ident: b0015
  article-title: OR-Library: Distributing test problems by electronic mail
  publication-title: Journal of the Operational Research Society
– volume: 76
  start-page: 360
  year: 2014
  end-page: 365
  ident: b0060
  article-title: Binary Artificial Bee Colony optimization using bitwise operation
  publication-title: Computers & Industrial Engineering
– volume: 21
  start-page: 6085
  year: 2017
  end-page: 6104
  ident: b0230
  article-title: Shuffled artificial bee colony algorithm
  publication-title: Soft Computing
– reference: Colorni, A., Dorigo, M., & Maniezzo, V. (1992). Distributed Optimization by Ant Colonies. Toward a Practice of Autonomous Systems, 134–142. Retrieved from <Go to ISI>://WOS:A1992BW87V00017.
– volume: 52
  start-page: 1421
  year: 2020
  end-page: 1440
  ident: b0165
  article-title: A hybrid binary artificial bee colony algorithm for the satellite photograph scheduling problem
  publication-title: Engineering Optimization
– volume: 49
  start-page: 292
  year: 2016
  end-page: 312
  ident: b0125
  article-title: Bollinger bands approach on boosting ABC algorithm and its variants
  publication-title: Applied Soft Computing
– volume: 47
  start-page: 2652
  year: 2016
  end-page: 2670
  ident: b0205
  article-title: Levy flight artificial bee colony algorithm
  publication-title: International Journal of Systems Science
– volume: 300
  start-page: 140
  year: 2015
  end-page: 157
  ident: b0115
  article-title: Artificial bee colony algorithm with variable search strategy for continuous optimization
  publication-title: Information Sciences
– volume: 98
  start-page: 180
  year: 2019
  end-page: 196
  ident: b0200
  article-title: A novel binary artificial bee colony algorithm
  publication-title: Future Generation Computer Systems-The International Journal of Escience
– reference: Sharma, N., Sharma, H., Sharma, A., & Bansal, J. C. (2016a). Black Hole Artificial Bee Colony Algorithm. Swarm, Evolutionary, and Memetic Computing (Semcco 2015), 9873, 214–221.
– volume: 267
  start-page: 66
  year: 1992
  end-page: 72
  ident: b0055
  article-title: Genetic algorithms
  publication-title: Scientific American
– volume: 55
  start-page: 1159
  year: 2011
  end-page: 1169
  ident: b0145
  article-title: Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems
  publication-title: International Journal of Advanced Manufacturing Technology
– volume: 297
  start-page: 154
  year: 2015
  end-page: 170
  ident: b0175
  article-title: A novel binary artificial bee colony algorithm based on genetic operators
  publication-title: Information Sciences
– volume: 5
  start-page: 4104
  year: 1997
  end-page: 4108
  ident: b0095
  article-title: A discrete binary version of the particle swarm algorithm
  publication-title: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA
– volume: 9
  start-page: 1233
  year: 2018
  end-page: 1247
  ident: b0135
  article-title: An artificial algae algorithm for solving binary optimization problems
  publication-title: International Journal of Machine Learning and Cybernetics
– reference: Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Retrieved from
– start-page: 50
  year: 2011
  end-page: 53
  ident: b0075
  article-title: A combinatorial Artificial Bee Colony algorithm for traveling salesman problem
  publication-title: 2011 International Symposium on Innovations in Intelligent Systems and Applications, Istanbul, Turkey
– volume: 13
  start-page: 18
  year: 2012
  ident: b0195
  article-title: Travelling salesman problem using bee colony with SPV
  publication-title: Organization
– volume: 45
  start-page: 2827
  year: 2015
  end-page: 2839
  ident: b0035
  article-title: Artificial bee colony algorithm based on information learning
  publication-title: IEEE Transactions on Cybernetics
– volume: 46
  start-page: 566
  year: 2017
  end-page: 604
  ident: b0270
  article-title: On the importance of the artificial bee colony control parameter 'limit'
  publication-title: Information Technology and Control
– volume: 9
  start-page: 625
  year: 2009
  end-page: 631
  ident: b0235
  article-title: An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem
  publication-title: Applied Soft Computing
– volume: 12
  start-page: 342
  year: 2012
  end-page: 352
  ident: b0080
  article-title: DisABC: A new artificial bee colony algorithm for binary optimization
  publication-title: Applied Soft Computing
– reference: Liang, J., Qu, B., Suganthan, P., & Chen, Q. (2014). Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Technical Report201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore.
– reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. 1995 IEEE International Conference on Neural Networks Proceedings, Vols 1–6, 1942–1948.
– volume: 316
  start-page: 180
  year: 2015
  end-page: 200
  ident: b0025
  article-title: Bare bones artificial bee colony algorithm with parameter adaptation and fitness-based neighborhood
  publication-title: Information Sciences
– reference: Pandey, S., & Kumar, S. (2013). Enhanced artificial bee colony algorithm and it’s application to travelling salesman problem. HCTL Open International Journal of Technology Innovations and Research, 2.
– reference: Sharma, N., Sharma, H., Sharma, A., & Bansal, J. C. (2016b). Modified Artificial Bee Colony Algorithm Based on Disruption Operator. Proceedings of Fifth International Conference on Soft Computing for Problem Solving (Socpros 2015), Vol. 2, 437, 889–900.
– reference: .
– reference: Tasgetiren, M. F., Pan, Q. K., Suganthan, P. N., & Chen, A. H. L. (2010). A Discrete Artificial Bee Colony Algorithm for the Permutation Flow Shop Scheduling Problem with Total Flowtime Criterion. 2010 IEEE Congress on Evolutionary Computation (Cec). Retrieved from <Go to ISI>://WOS:000287375803007.
– reference: Marinakis, Y., Marinaki, M., & Matsatsinis, N. (2009). A Hybrid Discrete Artificial Bee Colony - GRASP Algorithm for Clustering. Cie: 2009 International Conference on Computers and Industrial Engineering, Vols 1-3, 548-+.
– reference: Han, Y. Y., Duan, J. H., & Zhang, M. (2011). Apply the discrete artificial bee colony algorithm to the blocking flow shop problem with makespan criterion. 2011 Chinese Control and Decision Conference, Vols 1–6, 2131–2135. Retrieved from <Go to ISI>://WOS:000323234701132.
– volume: 181
  start-page: 2455
  year: 2011
  end-page: 2468
  ident: b0185
  article-title: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem
  publication-title: Information Sciences
– volume: 271
  start-page: 269
  year: 2015
  end-page: 287
  ident: b0030
  article-title: Artificial bee colony algorithm with multiple search strategies
  publication-title: Applied Mathematics and Computation
– volume: 185
  start-page: 1155
  year: 2008
  end-page: 1173
  ident: b0240
  article-title: Ant colony optimization for continuous domains
  publication-title: European Journal of Operational Research
– volume: 23
  start-page: 9
  year: 2013
  end-page: 21
  ident: b0120
  article-title: The analysis of discrete artificial bee colony algorithm with neighborhood operator on traveling salesman problem
  publication-title: Neural Computing & Applications
– volume: 48
  start-page: 137
  year: 2016
  end-page: 150
  ident: b0040
  article-title: Enhanced artificial bee colony algorithm through differential evolution
  publication-title: Applied Soft Computing
– volume: 28
  start-page: 403
  year: 2016
  end-page: 416
  ident: b0215
  article-title: Fully informed artificial bee colony algorithm
  publication-title: Journal of Experimental & Theoretical Artificial Intelligence
– reference: Wei, X. H., & Zhang, K. (2011). Discrete Artificial Bee Colony Algorithm for Multiple Knapsack Problems. Proceedings of the 4th Conference on Systems Science, Management Science and Systems Dynamics, Ssmssd10, Vol 4, 123–126. Retrieved from <Go to ISI>://WOS:000393356500020.
– volume: 316
  start-page: 180
  year: 2015
  ident: 10.1016/j.eswa.2021.114817_b0025
  article-title: Bare bones artificial bee colony algorithm with parameter adaptation and fitness-based neighborhood
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.04.006
– ident: 10.1016/j.eswa.2021.114817_b0160
– start-page: 50
  year: 2011
  ident: 10.1016/j.eswa.2021.114817_b0075
  article-title: A combinatorial Artificial Bee Colony algorithm for traveling salesman problem
– volume: 41
  start-page: 362
  year: 2016
  ident: 10.1016/j.eswa.2021.114817_b0155
  article-title: Artificial bee colony algorithm with memory
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.12.046
– volume: 47
  start-page: 2652
  issue: 11
  year: 2016
  ident: 10.1016/j.eswa.2021.114817_b0205
  article-title: Levy flight artificial bee colony algorithm
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207721.2015.1010748
– volume: 185
  start-page: 1155
  issue: 3
  year: 2008
  ident: 10.1016/j.eswa.2021.114817_b0240
  article-title: Ant colony optimization for continuous domains
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.06.046
– volume: 12
  start-page: 342
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2021.114817_b0080
  article-title: DisABC: A new artificial bee colony algorithm for binary optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2011.08.038
– volume: 55
  start-page: 1159
  issue: 9–12
  year: 2011
  ident: 10.1016/j.eswa.2021.114817_b0145
  article-title: Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems
  publication-title: International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-010-3140-2
– volume: 45
  start-page: 2827
  issue: 12
  year: 2015
  ident: 10.1016/j.eswa.2021.114817_b0035
  article-title: Artificial bee colony algorithm based on information learning
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2387067
– ident: 10.1016/j.eswa.2021.114817_b0050
  doi: 10.1109/CCDC.2011.5968558
– ident: 10.1016/j.eswa.2021.114817_b0065
– ident: 10.1016/j.eswa.2021.114817_b0260
  doi: 10.1109/CEC.2010.5586300
– ident: 10.1016/j.eswa.2021.114817_b0045
  doi: 10.1145/2330784.2330977
– volume: 43
  start-page: 85
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2021.114817_b0250
  article-title: Discrete optimum design of truss structures using artificial bee colony algorithm
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-010-0551-5
– volume: 367
  start-page: 487
  year: 2016
  ident: 10.1016/j.eswa.2021.114817_b0010
  article-title: A self-adaptive binary differential evolution algorithm for large scale binary optimization problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2016.05.037
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 10.1016/j.eswa.2021.114817_b0055
  article-title: Genetic algorithms
  publication-title: Scientific American
  doi: 10.1038/scientificamerican0792-66
– volume: 5
  start-page: 4104
  year: 1997
  ident: 10.1016/j.eswa.2021.114817_b0095
  article-title: A discrete binary version of the particle swarm algorithm
– volume: 52
  start-page: 1421
  issue: 8
  year: 2020
  ident: 10.1016/j.eswa.2021.114817_b0165
  article-title: A hybrid binary artificial bee colony algorithm for the satellite photograph scheduling problem
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2019.1657113
– volume: 300
  start-page: 140
  year: 2015
  ident: 10.1016/j.eswa.2021.114817_b0115
  article-title: Artificial bee colony algorithm with variable search strategy for continuous optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.12.043
– ident: 10.1016/j.eswa.2021.114817_b0090
  doi: 10.1109/ICNN.1995.488968
– volume: 76
  start-page: 360
  year: 2014
  ident: 10.1016/j.eswa.2021.114817_b0060
  article-title: Binary Artificial Bee Colony optimization using bitwise operation
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2014.08.016
– volume: 21
  start-page: 6085
  issue: 20
  year: 2017
  ident: 10.1016/j.eswa.2021.114817_b0230
  article-title: Shuffled artificial bee colony algorithm
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2166-2
– volume: 49
  start-page: 292
  year: 2016
  ident: 10.1016/j.eswa.2021.114817_b0125
  article-title: Bollinger bands approach on boosting ABC algorithm and its variants
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.08.023
– year: 2018
  ident: 10.1016/j.eswa.2021.114817_b0140
  article-title: An artificial algae algorithm with stigmergic behavior for binary optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.01.001
– volume: 9
  start-page: 1233
  issue: 7
  year: 2018
  ident: 10.1016/j.eswa.2021.114817_b0135
  article-title: An artificial algae algorithm for solving binary optimization problems
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-017-0772-7
– ident: 10.1016/j.eswa.2021.114817_b0020
– volume: 41
  start-page: 1069
  issue: 11
  year: 1990
  ident: 10.1016/j.eswa.2021.114817_b0015
  article-title: OR-Library: Distributing test problems by electronic mail
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/jors.1990.166
– volume: 297
  start-page: 154
  year: 2015
  ident: 10.1016/j.eswa.2021.114817_b0175
  article-title: A novel binary artificial bee colony algorithm based on genetic operators
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.10.060
– volume: 35
  start-page: 2672
  issue: 8
  year: 2008
  ident: 10.1016/j.eswa.2021.114817_b0130
  article-title: A new ant colony optimization algorithm for the multidimensional knapsack problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2006.12.029
– ident: 10.1016/j.eswa.2021.114817_b0275
– volume: 28
  start-page: 403
  issue: 1–2
  year: 2016
  ident: 10.1016/j.eswa.2021.114817_b0215
  article-title: Fully informed artificial bee colony algorithm
  publication-title: Journal of Experimental & Theoretical Artificial Intelligence
  doi: 10.1080/0952813X.2015.1056238
– ident: 10.1016/j.eswa.2021.114817_b0150
  doi: 10.4028/www.scientific.net/AMR.314-316.2191
– volume: 181
  start-page: 2455
  issue: 12
  year: 2011
  ident: 10.1016/j.eswa.2021.114817_b0185
  article-title: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.12.025
– volume: 48
  start-page: 137
  year: 2016
  ident: 10.1016/j.eswa.2021.114817_b0040
  article-title: Enhanced artificial bee colony algorithm through differential evolution
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.10.070
– volume: 23
  start-page: 9
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2021.114817_b0120
  article-title: The analysis of discrete artificial bee colony algorithm with neighborhood operator on traveling salesman problem
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-011-0794-0
– volume: 6
  start-page: 1
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2021.114817_b0265
  article-title: New approaches of binary artificial bee colony algorithm for solving 0–1 knapsack problem
  publication-title: Advances in information Sciences and Service Sciences
– volume: 33
  start-page: 15
  year: 2015
  ident: 10.1016/j.eswa.2021.114817_b0105
  article-title: The continuous artificial bee colony algorithm for binary optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.04.007
– ident: 10.1016/j.eswa.2021.114817_b0085
  doi: 10.1109/ICTKE.2017.8259617
– volume: 13
  start-page: 18
  year: 2012
  ident: 10.1016/j.eswa.2021.114817_b0195
  article-title: Travelling salesman problem using bee colony with SPV
  publication-title: Organization
– ident: 10.1016/j.eswa.2021.114817_b0210
  doi: 10.1109/ICACCI.2016.7732158
– ident: 10.1016/j.eswa.2021.114817_b0225
  doi: 10.1007/978-981-10-0451-3_79
– volume: 9
  start-page: 625
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2021.114817_b0235
  article-title: An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2008.09.001
– ident: 10.1016/j.eswa.2021.114817_b0170
  doi: 10.1109/ICCIE.2009.5223810
– volume: 44
  start-page: 707
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2021.114817_b0255
  article-title: To bee or not to bee-comments on “Discrete optimum design of truss structures using artificial bee colony algorithm”
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-011-0639-6
– ident: 10.1016/j.eswa.2021.114817_b0220
  doi: 10.1007/978-3-319-48959-9_19
– volume: 55
  start-page: 384
  year: 2017
  ident: 10.1016/j.eswa.2021.114817_b0245
  article-title: An adaptive artificial bee colony algorithm based on objective function value information
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.01.031
– volume: 46
  start-page: 566
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2021.114817_b0270
  article-title: On the importance of the artificial bee colony control parameter 'limit'
  publication-title: Information Technology and Control
  doi: 10.5755/j01.itc.46.4.18215
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2021.114817_b0070
  article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-007-9149-x
– volume: 21
  start-page: 2307
  year: 2013
  ident: 10.1016/j.eswa.2021.114817_b0110
  article-title: XOR-based artificial bee colony algorithm for binary optimization
  publication-title: Turkish Journal of Electrical Engineering and Computer Sciences
  doi: 10.3906/elk-1203-104
– volume: 38
  start-page: 1313
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2021.114817_b0005
  article-title: Development a new mutation operator to solve the traveling salesman problem by aid of genetic algorithms
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.07.006
– volume: 271
  start-page: 269
  year: 2015
  ident: 10.1016/j.eswa.2021.114817_b0030
  article-title: Artificial bee colony algorithm with multiple search strategies
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2015.09.019
– ident: 10.1016/j.eswa.2021.114817_b0190
– start-page: 1
  year: 2011
  ident: 10.1016/j.eswa.2021.114817_b0180
  article-title: Binary artificial bee colony optimization
– volume: 98
  start-page: 180
  year: 2019
  ident: 10.1016/j.eswa.2021.114817_b0200
  article-title: A novel binary artificial bee colony algorithm
  publication-title: Future Generation Computer Systems-The International Journal of Escience
  doi: 10.1016/j.future.2019.03.032
SSID ssj0017007
Score 2.4893038
Snippet •This study proposes artificial bee colony algorithm-based binary optimization method.•The stigmergic behavior is integrated with this algorithm.•The proposed...
Artificial bee colony algorithm, ABC for short, is a swarm-based optimization algorithm proposed for solving continuous optimization problems. Due to its...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114817
SubjectTerms Artificial bee colony
Basic converters
Binary optimization
Evolutionary algorithms
Evolutionary computation
Logic circuits
Operations research
Optimization
Optimization algorithms
Performance assessment
Search algorithms
Site selection
Solution space
Stigmergy
Swarm intelligence
Xor logic gate
Title A binary artificial bee colony algorithm and its performance assessment
URI https://dx.doi.org/10.1016/j.eswa.2021.114817
https://www.proquest.com/docview/2554669523
Volume 175
WOSCitedRecordID wos000664351700031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3ohdFuQD4lJlldhOHF-QKtTloaVw6KLeLNuxYVclW9rssj-fce2k7QoqOHCJqjzaZr7MZDwz3wxCL1WpNXj1NCkUqRLmUpsIUtCEkkor6sP-zKyGTfDxuJxOxede73XLhbma8bour6_F_L9CDfsAbE-d_Qe4uy-FHfAZQIctwA7bvwJ-ONCBY-uPxf4Q2vqi9Bms9Adq9vVicdZ8-96lDeab3IGuUedWyN73Q25i1-eWD7eR-V4n8hchnvrR07KcWlmiyLCOkQWSdXVtMdzVUV6-bIUNecKyMFnnyAajWXLAmodJh51V5fmGXcx-a61D4OD8yC5_-hZQJPOdi8vA5dxujT3-JI9PT07kZDSdvJr_SPzUMJ9djyNUbqE9wnNR9tHe8P1o-qHLI_E0EObbfx1pU6HC7-bP_sk1ufGSXnkek_voblwy4GGA-gHq2fohuteO48DROj9Cb4c4II_XyGNAHgfkcYc8BuQxII83kMdr5B-j0-PR5M27JM7JSAwVrEkqQXPFXV44LUAhCSgcrMptWqnccGKZzZWGm69cYRRLqXBMZ45YkjpVWMYK-gT164vaPkW4cqUomEmdo4YR4oRmoLM6MybzjfLpPspaEUkTm8j7WSYz2VYLnksvVunFKoNY99Ggu2YeWqjsPDtvJS-jExicOwlPzc7rDluYZNTGpSS-BrMQOaEHuw8_Q3fWGnCI-s3i0j5Ht81Vc7ZcvIhP1S8ctodJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+binary+artificial+bee+colony+algorithm+and+its+performance+assessment&rft.jtitle=Expert+systems+with+applications&rft.au=Kiran%2C+Mustafa+Servet&rft.date=2021-08-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=175&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.114817&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon