A binary artificial bee colony algorithm and its performance assessment
•This study proposes artificial bee colony algorithm-based binary optimization method.•The stigmergic behavior is integrated with this algorithm.•The proposed algorithm is applied to solve modern benchmark problems.•The performance of algorithm is compared with many state-of-art algorithms. Artifici...
Saved in:
| Published in: | Expert systems with applications Vol. 175; p. 114817 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Elsevier Ltd
01.08.2021
Elsevier BV |
| Subjects: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •This study proposes artificial bee colony algorithm-based binary optimization method.•The stigmergic behavior is integrated with this algorithm.•The proposed algorithm is applied to solve modern benchmark problems.•The performance of algorithm is compared with many state-of-art algorithms.
Artificial bee colony algorithm, ABC for short, is a swarm-based optimization algorithm proposed for solving continuous optimization problems. Due to its simple but effective structure, some binary versions of the algorithm have been developed. In this study, we focus on modification of its xor-based binary version, called as binABC. The solution update rule of basic ABC is replaced with a xor logic gate in binABC algorithm, and binABC works on discretely-structured solution space. The rest of components in binABC are the same as with the basic ABC algorithm. In order to improve local search capability and convergence characteristics of binABC, a stigmergic behavior-based update rule for onlooker bees of binABC and extended version of xor-based update rule are proposed in the present study. The developed version of binABC is applied to solve a modern benchmark problem set (CEC2015). To validate the performance of proposed algorithm, a series of comparisons are conducted on this problem set. The proposed algorithm is first compared with the basic ABC and binABC on CEC2015 set. After its performance validation, six binary versions of ABC algorithm are considered for comparison of the algorithms, and a comprehensive comparison among the state-of-art variants of swarm intelligence or evolutionary computation algorithms is conducted on this set of functions. Finally, an uncapacitated facility location problem set, a pure binary optimization problem, is considered for the comparison of the proposed algorithm and binary variants of ABC algorithm. The experimental results and comparisons show that the proposed algorithm is successful and effective in solving binary optimization problems as its basic version in solving continuous optimization problems. |
|---|---|
| AbstractList | •This study proposes artificial bee colony algorithm-based binary optimization method.•The stigmergic behavior is integrated with this algorithm.•The proposed algorithm is applied to solve modern benchmark problems.•The performance of algorithm is compared with many state-of-art algorithms.
Artificial bee colony algorithm, ABC for short, is a swarm-based optimization algorithm proposed for solving continuous optimization problems. Due to its simple but effective structure, some binary versions of the algorithm have been developed. In this study, we focus on modification of its xor-based binary version, called as binABC. The solution update rule of basic ABC is replaced with a xor logic gate in binABC algorithm, and binABC works on discretely-structured solution space. The rest of components in binABC are the same as with the basic ABC algorithm. In order to improve local search capability and convergence characteristics of binABC, a stigmergic behavior-based update rule for onlooker bees of binABC and extended version of xor-based update rule are proposed in the present study. The developed version of binABC is applied to solve a modern benchmark problem set (CEC2015). To validate the performance of proposed algorithm, a series of comparisons are conducted on this problem set. The proposed algorithm is first compared with the basic ABC and binABC on CEC2015 set. After its performance validation, six binary versions of ABC algorithm are considered for comparison of the algorithms, and a comprehensive comparison among the state-of-art variants of swarm intelligence or evolutionary computation algorithms is conducted on this set of functions. Finally, an uncapacitated facility location problem set, a pure binary optimization problem, is considered for the comparison of the proposed algorithm and binary variants of ABC algorithm. The experimental results and comparisons show that the proposed algorithm is successful and effective in solving binary optimization problems as its basic version in solving continuous optimization problems. Artificial bee colony algorithm, ABC for short, is a swarm-based optimization algorithm proposed for solving continuous optimization problems. Due to its simple but effective structure, some binary versions of the algorithm have been developed. In this study, we focus on modification of its xor-based binary version, called as binABC. The solution update rule of basic ABC is replaced with a xor logic gate in binABC algorithm, and binABC works on discretely-structured solution space. The rest of components in binABC are the same as with the basic ABC algorithm. In order to improve local search capability and convergence characteristics of binABC, a stigmergic behavior-based update rule for onlooker bees of binABC and extended version of xor-based update rule are proposed in the present study. The developed version of binABC is applied to solve a modern benchmark problem set (CEC2015). To validate the performance of proposed algorithm, a series of comparisons are conducted on this problem set. The proposed algorithm is first compared with the basic ABC and binABC on CEC2015 set. After its performance validation, six binary versions of ABC algorithm are considered for comparison of the algorithms, and a comprehensive comparison among the state-of-art variants of swarm intelligence or evolutionary computation algorithms is conducted on this set of functions. Finally, an uncapacitated facility location problem set, a pure binary optimization problem, is considered for the comparison of the proposed algorithm and binary variants of ABC algorithm. The experimental results and comparisons show that the proposed algorithm is successful and effective in solving binary optimization problems as its basic version in solving continuous optimization problems. |
| ArticleNumber | 114817 |
| Author | Kiran, Mustafa Servet |
| Author_xml | – sequence: 1 givenname: Mustafa Servet orcidid: 0000-0002-5896-7180 surname: Kiran fullname: Kiran, Mustafa Servet email: mskiran@ktun.edu.tr organization: Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Turkey |
| BookMark | eNp9kE1LAzEQhoMo2Fb_gKcFz7sm2Xx0wUspWoWCFz2HbHaiWXaTmqSK_94t9eShp4Fhnpl5nzk698EDQjcEVwQTcddXkL51RTElFSFsSeQZmpGlrEshm_oczXDDZcmIZJdonlKPMZEYyxnarIrWeR1_Ch2zs844PRQtQGHCEPzUHd5DdPljLLTvCpdTsYNoQxy1N1DolCClEXy-QhdWDwmu_-oCvT0-vK6fyu3L5nm92pamblguu6bmWloubNsYo6nFQLgA3GluJAUGXLfTl50VRjNcN5a1xFKg2GoBjIl6gW6Pe3cxfO4hZdWHffTTSUU5Z0I0nNbTFD1OmRhSimDVLrpxSqkIVgdhqlcHYeogTB2FTdDyH2Rc1tkFn6N2w2n0_ojCFP3LQVTJOJgMdS6CyaoL7hT-CzxeiUU |
| CitedBy_id | crossref_primary_10_1002_cpe_70052 crossref_primary_10_1109_ACCESS_2023_3287484 crossref_primary_10_1016_j_swevo_2025_102070 crossref_primary_10_1007_s00521_023_09200_w crossref_primary_10_3390_sym17070999 crossref_primary_10_1007_s00521_022_07541_6 crossref_primary_10_1007_s10586_024_04905_6 crossref_primary_10_1109_ACCESS_2021_3105796 crossref_primary_10_3390_math10071129 crossref_primary_10_1002_adem_202402477 crossref_primary_10_1016_j_asoc_2022_109590 crossref_primary_10_1016_j_jestch_2025_102031 crossref_primary_10_1016_j_eswa_2023_119956 crossref_primary_10_1007_s11042_023_17234_4 crossref_primary_10_1016_j_swevo_2024_101567 crossref_primary_10_1016_j_jestch_2025_102057 crossref_primary_10_1109_TETCI_2025_3529840 crossref_primary_10_1007_s12273_021_0838_z crossref_primary_10_1007_s10825_021_01796_3 crossref_primary_10_1016_j_est_2022_105515 crossref_primary_10_1007_s11760_025_04657_9 |
| Cites_doi | 10.1016/j.ins.2015.04.006 10.1016/j.asoc.2015.12.046 10.1080/00207721.2015.1010748 10.1016/j.ejor.2006.06.046 10.1016/j.asoc.2011.08.038 10.1007/s00170-010-3140-2 10.1109/TCYB.2014.2387067 10.1109/CCDC.2011.5968558 10.1109/CEC.2010.5586300 10.1145/2330784.2330977 10.1007/s00158-010-0551-5 10.1016/j.ins.2016.05.037 10.1038/scientificamerican0792-66 10.1080/0305215X.2019.1657113 10.1016/j.ins.2014.12.043 10.1109/ICNN.1995.488968 10.1016/j.cie.2014.08.016 10.1007/s00500-016-2166-2 10.1016/j.asoc.2016.08.023 10.1016/j.asoc.2018.01.001 10.1007/s13042-017-0772-7 10.1057/jors.1990.166 10.1016/j.ins.2014.10.060 10.1016/j.cor.2006.12.029 10.1080/0952813X.2015.1056238 10.4028/www.scientific.net/AMR.314-316.2191 10.1016/j.ins.2009.12.025 10.1016/j.asoc.2015.10.070 10.1007/s00521-011-0794-0 10.1016/j.asoc.2015.04.007 10.1109/ICTKE.2017.8259617 10.1109/ICACCI.2016.7732158 10.1007/978-981-10-0451-3_79 10.1016/j.asoc.2008.09.001 10.1109/ICCIE.2009.5223810 10.1007/s00158-011-0639-6 10.1007/978-3-319-48959-9_19 10.1016/j.asoc.2017.01.031 10.5755/j01.itc.46.4.18215 10.1007/s10898-007-9149-x 10.3906/elk-1203-104 10.1016/j.eswa.2010.07.006 10.1016/j.amc.2015.09.019 10.1016/j.future.2019.03.032 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Aug 1, 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Aug 1, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2021.114817 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2021_114817 S095741742100258X |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AGCQF JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c394t-d935a7f56fb9cca2f0e156e0da5c72e4e5ab417df6ca4039f4b1f2e20fa6e4463 |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664351700031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Wed Aug 13 09:55:14 EDT 2025 Tue Nov 18 22:39:57 EST 2025 Sat Nov 29 07:11:01 EST 2025 Fri Feb 23 02:44:07 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Artificial bee colony Xor logic gate Binary optimization Stigmergy |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c394t-d935a7f56fb9cca2f0e156e0da5c72e4e5ab417df6ca4039f4b1f2e20fa6e4463 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5896-7180 |
| PQID | 2554669523 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2554669523 crossref_primary_10_1016_j_eswa_2021_114817 crossref_citationtrail_10_1016_j_eswa_2021_114817 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_114817 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 2021-08-00 20210801 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Sharma, Pant (b0230) 2017; 21 Singh (b0235) 2009; 9 Wei, X. H., & Zhang, K. (2011). Discrete Artificial Bee Colony Algorithm for Multiple Knapsack Problems. Proceedings of the 4th Conference on Systems Science, Management Science and Systems Dynamics, Ssmssd10, Vol 4, 123–126. Retrieved from <Go to ISI>://WOS:000393356500020. Liang, J., Qu, B., Suganthan, P., & Chen, Q. (2014). Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Technical Report201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore. Korkmaz, Kiran (b0140) 2018 Ozturk, Hancer, Karaboga (b0175) 2015; 297 Beasley (b0015) 1990; 41 Li, Yang (b0155) 2016; 41 Sharma, H., Sharma, S., & Kumar, S. (2016). Lbest Gbest Artificial Bee Colony Algorithm. 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 893-898. Retrieved from <Go to ISI>://WOS:000392503100142. Kashan, Nahavandi, Kashan (b0080) 2012; 12 Kiran (b0105) 2015; 33 Sharma, Bansal, Arya, Yang (b0205) 2016; 47 Song, Yan, Zhao (b0245) 2017; 55 Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. 1995 IEEE International Conference on Neural Networks Proceedings, Vols 1–6, 1942–1948. Kong, Tian, Kao (b0130) 2008; 35 Pan, Tasgetiren, Suganthan, Chua (b0185) 2011; 181 Gao, Chan, Huang, Liu (b0025) 2015; 316 Tran, Wu (b0265) 2014; 6 Gao, Huang, Wang, Liu, Qin (b0040) 2016; 48 Korkmaz, Babalik, Kiran (b0135) 2018; 9 Kiran, Hakli, Gunduz, Uguz (b0115) 2015; 300 Karaboga, Gorkemli (b0075) 2011 Sharma, Gupta, Sharma (b0215) 2016; 28 Kiran, Iscan, Gunduz (b0120) 2013; 23 Kaya, E., & Kiran, M. S. (2017, 22–24 Nov). An improved binary artificial bee colony algorithm. Paper presented at the 2017 15th International Conference on ICT and Knowledge Engineering (ICT&KE). Pandey, S., & Kumar, S. (2013). Enhanced artificial bee colony algorithm and it’s application to travelling salesman problem. HCTL Open International Journal of Technology Innovations and Research, 2. Sonmez (b0250) 2011; 43 . Gao, Huang, Liu, Chan, Dai, Shan (b0030) 2015; 271 Li, W. H., Li, W. J., Yang, Y., Liao, H. Q., Li, J. L., & Zheng, X. P. (2011). Artificial bee colony algorithm for traveling salesman problem. Paper presented at the Advanced Materials Research. Vecek, Liu, Crepinsek, Mernik (b0270) 2017; 46 Kiran, Gunduz (b0110) 2013; 21 Kocer (b0125) 2016; 49 Karaboga, Basturk (b0070) 2007; 39 Kennedy, Eberhart (b0095) 1997; 5 Banitalebi, Aziz, Aziz (b0010) 2016; 367 Colorni, A., Dorigo, M., & Maniezzo, V. (1992). Distributed Optimization by Ant Colonies. Toward a Practice of Autonomous Systems, 134–142. Retrieved from <Go to ISI>://WOS:A1992BW87V00017. Stolpe (b0255) 2011; 44 Garcia, E. A. R., Ponsich, A., Gutierez, R. A. M., Vellazquez, P. L., Andrade, M. A. G., & Silva, S. G. D. (2012). Discrete Artificial Bee Colony Algorithm for the Multi-Objective Redistricting problem. Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Companion (Gecco'12), 1439-1440. Retrieved from <Go to ISI>://WOS:000394287200166. Pampará, Engelbrecht (b0180) 2011 Holland (b0055) 1992; 267 Sharma, N., Sharma, H., Sharma, A., & Bansal, J. C. (2016b). Modified Artificial Bee Colony Algorithm Based on Disruption Operator. Proceedings of Fifth International Conference on Soft Computing for Problem Solving (Socpros 2015), Vol. 2, 437, 889–900. Tasgetiren, M. F., Pan, Q. K., Suganthan, P. N., & Chen, A. H. L. (2010). A Discrete Artificial Bee Colony Algorithm for the Permutation Flow Shop Scheduling Problem with Total Flowtime Criterion. 2010 IEEE Congress on Evolutionary Computation (Cec). Retrieved from <Go to ISI>://WOS:000287375803007. Albayrak, Allahverdi (b0005) 2011; 38 Luo (b0165) 2020; 52 Han, Y. Y., Duan, J. H., & Zhang, M. (2011). Apply the discrete artificial bee colony algorithm to the blocking flow shop problem with makespan criterion. 2011 Chinese Control and Decision Conference, Vols 1–6, 2131–2135. Retrieved from <Go to ISI>://WOS:000323234701132. Sharma, N., Sharma, H., Sharma, A., & Bansal, J. C. (2016a). Black Hole Artificial Bee Colony Algorithm. Swarm, Evolutionary, and Memetic Computing (Semcco 2015), 9873, 214–221. Pathak, Tiwari (b0195) 2012; 13 Santana, Macedo, Siqueira, Gokhale, Bastos (b0200) 2019; 98 Marinakis, Y., Marinaki, M., & Matsatsinis, N. (2009). A Hybrid Discrete Artificial Bee Colony - GRASP Algorithm for Clustering. Cie: 2009 International Conference on Computers and Industrial Engineering, Vols 1-3, 548-+. Socha, Dorigo (b0240) 2008; 185 Gao, Huang, Liu, Dai (b0035) 2015; 45 Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Retrieved from Li, Pan, Gao (b0145) 2011; 55 Jia, Duan, Khan (b0060) 2014; 76 Gao (10.1016/j.eswa.2021.114817_b0035) 2015; 45 Pampará (10.1016/j.eswa.2021.114817_b0180) 2011 Santana (10.1016/j.eswa.2021.114817_b0200) 2019; 98 Kong (10.1016/j.eswa.2021.114817_b0130) 2008; 35 Kiran (10.1016/j.eswa.2021.114817_b0110) 2013; 21 10.1016/j.eswa.2021.114817_b0210 Sonmez (10.1016/j.eswa.2021.114817_b0250) 2011; 43 10.1016/j.eswa.2021.114817_b0050 10.1016/j.eswa.2021.114817_b0170 Jia (10.1016/j.eswa.2021.114817_b0060) 2014; 76 Karaboga (10.1016/j.eswa.2021.114817_b0070) 2007; 39 Albayrak (10.1016/j.eswa.2021.114817_b0005) 2011; 38 Song (10.1016/j.eswa.2021.114817_b0245) 2017; 55 Pan (10.1016/j.eswa.2021.114817_b0185) 2011; 181 Li (10.1016/j.eswa.2021.114817_b0155) 2016; 41 10.1016/j.eswa.2021.114817_b0220 10.1016/j.eswa.2021.114817_b0225 Singh (10.1016/j.eswa.2021.114817_b0235) 2009; 9 Sharma (10.1016/j.eswa.2021.114817_b0205) 2016; 47 Kiran (10.1016/j.eswa.2021.114817_b0105) 2015; 33 Gao (10.1016/j.eswa.2021.114817_b0025) 2015; 316 Korkmaz (10.1016/j.eswa.2021.114817_b0140) 2018 10.1016/j.eswa.2021.114817_b0260 10.1016/j.eswa.2021.114817_b0065 10.1016/j.eswa.2021.114817_b0020 Korkmaz (10.1016/j.eswa.2021.114817_b0135) 2018; 9 Luo (10.1016/j.eswa.2021.114817_b0165) 2020; 52 Socha (10.1016/j.eswa.2021.114817_b0240) 2008; 185 10.1016/j.eswa.2021.114817_b0275 Stolpe (10.1016/j.eswa.2021.114817_b0255) 2011; 44 Holland (10.1016/j.eswa.2021.114817_b0055) 1992; 267 10.1016/j.eswa.2021.114817_b0190 Gao (10.1016/j.eswa.2021.114817_b0030) 2015; 271 10.1016/j.eswa.2021.114817_b0150 Tran (10.1016/j.eswa.2021.114817_b0265) 2014; 6 Kiran (10.1016/j.eswa.2021.114817_b0120) 2013; 23 Karaboga (10.1016/j.eswa.2021.114817_b0075) 2011 Kennedy (10.1016/j.eswa.2021.114817_b0095) 1997; 5 Pathak (10.1016/j.eswa.2021.114817_b0195) 2012; 13 Kiran (10.1016/j.eswa.2021.114817_b0115) 2015; 300 Li (10.1016/j.eswa.2021.114817_b0145) 2011; 55 10.1016/j.eswa.2021.114817_b0090 Gao (10.1016/j.eswa.2021.114817_b0040) 2016; 48 Kocer (10.1016/j.eswa.2021.114817_b0125) 2016; 49 Kashan (10.1016/j.eswa.2021.114817_b0080) 2012; 12 Beasley (10.1016/j.eswa.2021.114817_b0015) 1990; 41 Sharma (10.1016/j.eswa.2021.114817_b0215) 2016; 28 10.1016/j.eswa.2021.114817_b0045 Banitalebi (10.1016/j.eswa.2021.114817_b0010) 2016; 367 10.1016/j.eswa.2021.114817_b0160 Sharma (10.1016/j.eswa.2021.114817_b0230) 2017; 21 10.1016/j.eswa.2021.114817_b0085 Ozturk (10.1016/j.eswa.2021.114817_b0175) 2015; 297 Vecek (10.1016/j.eswa.2021.114817_b0270) 2017; 46 |
| References_xml | – reference: Li, W. H., Li, W. J., Yang, Y., Liao, H. Q., Li, J. L., & Zheng, X. P. (2011). Artificial bee colony algorithm for traveling salesman problem. Paper presented at the Advanced Materials Research. – volume: 55 start-page: 384 year: 2017 end-page: 401 ident: b0245 article-title: An adaptive artificial bee colony algorithm based on objective function value information publication-title: Applied Soft Computing – start-page: 1 year: 2011 end-page: 8 ident: b0180 article-title: Binary artificial bee colony optimization publication-title: 2011 IEEE Symposium on Swarm Intelligence, Paris, France – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: b0070 article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm publication-title: Journal of Global Optimization – volume: 367 start-page: 487 year: 2016 end-page: 511 ident: b0010 article-title: A self-adaptive binary differential evolution algorithm for large scale binary optimization problems publication-title: Information Sciences – volume: 6 start-page: 1 year: 2014 ident: b0265 article-title: New approaches of binary artificial bee colony algorithm for solving 0–1 knapsack problem publication-title: Advances in information Sciences and Service Sciences – volume: 21 start-page: 2307 year: 2013 end-page: 2328 ident: b0110 article-title: XOR-based artificial bee colony algorithm for binary optimization publication-title: Turkish Journal of Electrical Engineering and Computer Sciences – reference: Garcia, E. A. R., Ponsich, A., Gutierez, R. A. M., Vellazquez, P. L., Andrade, M. A. G., & Silva, S. G. D. (2012). Discrete Artificial Bee Colony Algorithm for the Multi-Objective Redistricting problem. Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Companion (Gecco'12), 1439-1440. Retrieved from <Go to ISI>://WOS:000394287200166. – volume: 35 start-page: 2672 year: 2008 end-page: 2683 ident: b0130 article-title: A new ant colony optimization algorithm for the multidimensional knapsack problem publication-title: Computers & Operations Research – volume: 43 start-page: 85 year: 2011 end-page: 97 ident: b0250 article-title: Discrete optimum design of truss structures using artificial bee colony algorithm publication-title: Structural and Multidisciplinary Optimization – volume: 41 start-page: 362 year: 2016 end-page: 372 ident: b0155 article-title: Artificial bee colony algorithm with memory publication-title: Applied Soft Computing – reference: Kaya, E., & Kiran, M. S. (2017, 22–24 Nov). An improved binary artificial bee colony algorithm. Paper presented at the 2017 15th International Conference on ICT and Knowledge Engineering (ICT&KE). – volume: 44 start-page: 707 year: 2011 end-page: 711 ident: b0255 article-title: To bee or not to bee-comments on “Discrete optimum design of truss structures using artificial bee colony algorithm” publication-title: Structural and Multidisciplinary Optimization – year: 2018 ident: b0140 article-title: An artificial algae algorithm with stigmergic behavior for binary optimization publication-title: Applied Soft Computing – volume: 38 start-page: 1313 year: 2011 end-page: 1320 ident: b0005 article-title: Development a new mutation operator to solve the traveling salesman problem by aid of genetic algorithms publication-title: Expert Systems with Applications – reference: Sharma, H., Sharma, S., & Kumar, S. (2016). Lbest Gbest Artificial Bee Colony Algorithm. 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 893-898. Retrieved from <Go to ISI>://WOS:000392503100142. – volume: 33 start-page: 15 year: 2015 end-page: 23 ident: b0105 article-title: The continuous artificial bee colony algorithm for binary optimization publication-title: Applied Soft Computing – volume: 41 start-page: 1069 year: 1990 end-page: 1072 ident: b0015 article-title: OR-Library: Distributing test problems by electronic mail publication-title: Journal of the Operational Research Society – volume: 76 start-page: 360 year: 2014 end-page: 365 ident: b0060 article-title: Binary Artificial Bee Colony optimization using bitwise operation publication-title: Computers & Industrial Engineering – volume: 21 start-page: 6085 year: 2017 end-page: 6104 ident: b0230 article-title: Shuffled artificial bee colony algorithm publication-title: Soft Computing – reference: Colorni, A., Dorigo, M., & Maniezzo, V. (1992). Distributed Optimization by Ant Colonies. Toward a Practice of Autonomous Systems, 134–142. Retrieved from <Go to ISI>://WOS:A1992BW87V00017. – volume: 52 start-page: 1421 year: 2020 end-page: 1440 ident: b0165 article-title: A hybrid binary artificial bee colony algorithm for the satellite photograph scheduling problem publication-title: Engineering Optimization – volume: 49 start-page: 292 year: 2016 end-page: 312 ident: b0125 article-title: Bollinger bands approach on boosting ABC algorithm and its variants publication-title: Applied Soft Computing – volume: 47 start-page: 2652 year: 2016 end-page: 2670 ident: b0205 article-title: Levy flight artificial bee colony algorithm publication-title: International Journal of Systems Science – volume: 300 start-page: 140 year: 2015 end-page: 157 ident: b0115 article-title: Artificial bee colony algorithm with variable search strategy for continuous optimization publication-title: Information Sciences – volume: 98 start-page: 180 year: 2019 end-page: 196 ident: b0200 article-title: A novel binary artificial bee colony algorithm publication-title: Future Generation Computer Systems-The International Journal of Escience – reference: Sharma, N., Sharma, H., Sharma, A., & Bansal, J. C. (2016a). Black Hole Artificial Bee Colony Algorithm. Swarm, Evolutionary, and Memetic Computing (Semcco 2015), 9873, 214–221. – volume: 267 start-page: 66 year: 1992 end-page: 72 ident: b0055 article-title: Genetic algorithms publication-title: Scientific American – volume: 55 start-page: 1159 year: 2011 end-page: 1169 ident: b0145 article-title: Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems publication-title: International Journal of Advanced Manufacturing Technology – volume: 297 start-page: 154 year: 2015 end-page: 170 ident: b0175 article-title: A novel binary artificial bee colony algorithm based on genetic operators publication-title: Information Sciences – volume: 5 start-page: 4104 year: 1997 end-page: 4108 ident: b0095 article-title: A discrete binary version of the particle swarm algorithm publication-title: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA – volume: 9 start-page: 1233 year: 2018 end-page: 1247 ident: b0135 article-title: An artificial algae algorithm for solving binary optimization problems publication-title: International Journal of Machine Learning and Cybernetics – reference: Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Retrieved from – start-page: 50 year: 2011 end-page: 53 ident: b0075 article-title: A combinatorial Artificial Bee Colony algorithm for traveling salesman problem publication-title: 2011 International Symposium on Innovations in Intelligent Systems and Applications, Istanbul, Turkey – volume: 13 start-page: 18 year: 2012 ident: b0195 article-title: Travelling salesman problem using bee colony with SPV publication-title: Organization – volume: 45 start-page: 2827 year: 2015 end-page: 2839 ident: b0035 article-title: Artificial bee colony algorithm based on information learning publication-title: IEEE Transactions on Cybernetics – volume: 46 start-page: 566 year: 2017 end-page: 604 ident: b0270 article-title: On the importance of the artificial bee colony control parameter 'limit' publication-title: Information Technology and Control – volume: 9 start-page: 625 year: 2009 end-page: 631 ident: b0235 article-title: An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem publication-title: Applied Soft Computing – volume: 12 start-page: 342 year: 2012 end-page: 352 ident: b0080 article-title: DisABC: A new artificial bee colony algorithm for binary optimization publication-title: Applied Soft Computing – reference: Liang, J., Qu, B., Suganthan, P., & Chen, Q. (2014). Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Technical Report201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore. – reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. 1995 IEEE International Conference on Neural Networks Proceedings, Vols 1–6, 1942–1948. – volume: 316 start-page: 180 year: 2015 end-page: 200 ident: b0025 article-title: Bare bones artificial bee colony algorithm with parameter adaptation and fitness-based neighborhood publication-title: Information Sciences – reference: Pandey, S., & Kumar, S. (2013). Enhanced artificial bee colony algorithm and it’s application to travelling salesman problem. HCTL Open International Journal of Technology Innovations and Research, 2. – reference: Sharma, N., Sharma, H., Sharma, A., & Bansal, J. C. (2016b). Modified Artificial Bee Colony Algorithm Based on Disruption Operator. Proceedings of Fifth International Conference on Soft Computing for Problem Solving (Socpros 2015), Vol. 2, 437, 889–900. – reference: . – reference: Tasgetiren, M. F., Pan, Q. K., Suganthan, P. N., & Chen, A. H. L. (2010). A Discrete Artificial Bee Colony Algorithm for the Permutation Flow Shop Scheduling Problem with Total Flowtime Criterion. 2010 IEEE Congress on Evolutionary Computation (Cec). Retrieved from <Go to ISI>://WOS:000287375803007. – reference: Marinakis, Y., Marinaki, M., & Matsatsinis, N. (2009). A Hybrid Discrete Artificial Bee Colony - GRASP Algorithm for Clustering. Cie: 2009 International Conference on Computers and Industrial Engineering, Vols 1-3, 548-+. – reference: Han, Y. Y., Duan, J. H., & Zhang, M. (2011). Apply the discrete artificial bee colony algorithm to the blocking flow shop problem with makespan criterion. 2011 Chinese Control and Decision Conference, Vols 1–6, 2131–2135. Retrieved from <Go to ISI>://WOS:000323234701132. – volume: 181 start-page: 2455 year: 2011 end-page: 2468 ident: b0185 article-title: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem publication-title: Information Sciences – volume: 271 start-page: 269 year: 2015 end-page: 287 ident: b0030 article-title: Artificial bee colony algorithm with multiple search strategies publication-title: Applied Mathematics and Computation – volume: 185 start-page: 1155 year: 2008 end-page: 1173 ident: b0240 article-title: Ant colony optimization for continuous domains publication-title: European Journal of Operational Research – volume: 23 start-page: 9 year: 2013 end-page: 21 ident: b0120 article-title: The analysis of discrete artificial bee colony algorithm with neighborhood operator on traveling salesman problem publication-title: Neural Computing & Applications – volume: 48 start-page: 137 year: 2016 end-page: 150 ident: b0040 article-title: Enhanced artificial bee colony algorithm through differential evolution publication-title: Applied Soft Computing – volume: 28 start-page: 403 year: 2016 end-page: 416 ident: b0215 article-title: Fully informed artificial bee colony algorithm publication-title: Journal of Experimental & Theoretical Artificial Intelligence – reference: Wei, X. H., & Zhang, K. (2011). Discrete Artificial Bee Colony Algorithm for Multiple Knapsack Problems. Proceedings of the 4th Conference on Systems Science, Management Science and Systems Dynamics, Ssmssd10, Vol 4, 123–126. Retrieved from <Go to ISI>://WOS:000393356500020. – volume: 316 start-page: 180 year: 2015 ident: 10.1016/j.eswa.2021.114817_b0025 article-title: Bare bones artificial bee colony algorithm with parameter adaptation and fitness-based neighborhood publication-title: Information Sciences doi: 10.1016/j.ins.2015.04.006 – ident: 10.1016/j.eswa.2021.114817_b0160 – start-page: 50 year: 2011 ident: 10.1016/j.eswa.2021.114817_b0075 article-title: A combinatorial Artificial Bee Colony algorithm for traveling salesman problem – volume: 41 start-page: 362 year: 2016 ident: 10.1016/j.eswa.2021.114817_b0155 article-title: Artificial bee colony algorithm with memory publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.12.046 – volume: 47 start-page: 2652 issue: 11 year: 2016 ident: 10.1016/j.eswa.2021.114817_b0205 article-title: Levy flight artificial bee colony algorithm publication-title: International Journal of Systems Science doi: 10.1080/00207721.2015.1010748 – volume: 185 start-page: 1155 issue: 3 year: 2008 ident: 10.1016/j.eswa.2021.114817_b0240 article-title: Ant colony optimization for continuous domains publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.06.046 – volume: 12 start-page: 342 issue: 1 year: 2012 ident: 10.1016/j.eswa.2021.114817_b0080 article-title: DisABC: A new artificial bee colony algorithm for binary optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2011.08.038 – volume: 55 start-page: 1159 issue: 9–12 year: 2011 ident: 10.1016/j.eswa.2021.114817_b0145 article-title: Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-010-3140-2 – volume: 45 start-page: 2827 issue: 12 year: 2015 ident: 10.1016/j.eswa.2021.114817_b0035 article-title: Artificial bee colony algorithm based on information learning publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2387067 – ident: 10.1016/j.eswa.2021.114817_b0050 doi: 10.1109/CCDC.2011.5968558 – ident: 10.1016/j.eswa.2021.114817_b0065 – ident: 10.1016/j.eswa.2021.114817_b0260 doi: 10.1109/CEC.2010.5586300 – ident: 10.1016/j.eswa.2021.114817_b0045 doi: 10.1145/2330784.2330977 – volume: 43 start-page: 85 issue: 1 year: 2011 ident: 10.1016/j.eswa.2021.114817_b0250 article-title: Discrete optimum design of truss structures using artificial bee colony algorithm publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-010-0551-5 – volume: 367 start-page: 487 year: 2016 ident: 10.1016/j.eswa.2021.114817_b0010 article-title: A self-adaptive binary differential evolution algorithm for large scale binary optimization problems publication-title: Information Sciences doi: 10.1016/j.ins.2016.05.037 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 10.1016/j.eswa.2021.114817_b0055 article-title: Genetic algorithms publication-title: Scientific American doi: 10.1038/scientificamerican0792-66 – volume: 5 start-page: 4104 year: 1997 ident: 10.1016/j.eswa.2021.114817_b0095 article-title: A discrete binary version of the particle swarm algorithm – volume: 52 start-page: 1421 issue: 8 year: 2020 ident: 10.1016/j.eswa.2021.114817_b0165 article-title: A hybrid binary artificial bee colony algorithm for the satellite photograph scheduling problem publication-title: Engineering Optimization doi: 10.1080/0305215X.2019.1657113 – volume: 300 start-page: 140 year: 2015 ident: 10.1016/j.eswa.2021.114817_b0115 article-title: Artificial bee colony algorithm with variable search strategy for continuous optimization publication-title: Information Sciences doi: 10.1016/j.ins.2014.12.043 – ident: 10.1016/j.eswa.2021.114817_b0090 doi: 10.1109/ICNN.1995.488968 – volume: 76 start-page: 360 year: 2014 ident: 10.1016/j.eswa.2021.114817_b0060 article-title: Binary Artificial Bee Colony optimization using bitwise operation publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2014.08.016 – volume: 21 start-page: 6085 issue: 20 year: 2017 ident: 10.1016/j.eswa.2021.114817_b0230 article-title: Shuffled artificial bee colony algorithm publication-title: Soft Computing doi: 10.1007/s00500-016-2166-2 – volume: 49 start-page: 292 year: 2016 ident: 10.1016/j.eswa.2021.114817_b0125 article-title: Bollinger bands approach on boosting ABC algorithm and its variants publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.08.023 – year: 2018 ident: 10.1016/j.eswa.2021.114817_b0140 article-title: An artificial algae algorithm with stigmergic behavior for binary optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.01.001 – volume: 9 start-page: 1233 issue: 7 year: 2018 ident: 10.1016/j.eswa.2021.114817_b0135 article-title: An artificial algae algorithm for solving binary optimization problems publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-017-0772-7 – ident: 10.1016/j.eswa.2021.114817_b0020 – volume: 41 start-page: 1069 issue: 11 year: 1990 ident: 10.1016/j.eswa.2021.114817_b0015 article-title: OR-Library: Distributing test problems by electronic mail publication-title: Journal of the Operational Research Society doi: 10.1057/jors.1990.166 – volume: 297 start-page: 154 year: 2015 ident: 10.1016/j.eswa.2021.114817_b0175 article-title: A novel binary artificial bee colony algorithm based on genetic operators publication-title: Information Sciences doi: 10.1016/j.ins.2014.10.060 – volume: 35 start-page: 2672 issue: 8 year: 2008 ident: 10.1016/j.eswa.2021.114817_b0130 article-title: A new ant colony optimization algorithm for the multidimensional knapsack problem publication-title: Computers & Operations Research doi: 10.1016/j.cor.2006.12.029 – ident: 10.1016/j.eswa.2021.114817_b0275 – volume: 28 start-page: 403 issue: 1–2 year: 2016 ident: 10.1016/j.eswa.2021.114817_b0215 article-title: Fully informed artificial bee colony algorithm publication-title: Journal of Experimental & Theoretical Artificial Intelligence doi: 10.1080/0952813X.2015.1056238 – ident: 10.1016/j.eswa.2021.114817_b0150 doi: 10.4028/www.scientific.net/AMR.314-316.2191 – volume: 181 start-page: 2455 issue: 12 year: 2011 ident: 10.1016/j.eswa.2021.114817_b0185 article-title: A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem publication-title: Information Sciences doi: 10.1016/j.ins.2009.12.025 – volume: 48 start-page: 137 year: 2016 ident: 10.1016/j.eswa.2021.114817_b0040 article-title: Enhanced artificial bee colony algorithm through differential evolution publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.10.070 – volume: 23 start-page: 9 issue: 1 year: 2013 ident: 10.1016/j.eswa.2021.114817_b0120 article-title: The analysis of discrete artificial bee colony algorithm with neighborhood operator on traveling salesman problem publication-title: Neural Computing & Applications doi: 10.1007/s00521-011-0794-0 – volume: 6 start-page: 1 issue: 2 year: 2014 ident: 10.1016/j.eswa.2021.114817_b0265 article-title: New approaches of binary artificial bee colony algorithm for solving 0–1 knapsack problem publication-title: Advances in information Sciences and Service Sciences – volume: 33 start-page: 15 year: 2015 ident: 10.1016/j.eswa.2021.114817_b0105 article-title: The continuous artificial bee colony algorithm for binary optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.04.007 – ident: 10.1016/j.eswa.2021.114817_b0085 doi: 10.1109/ICTKE.2017.8259617 – volume: 13 start-page: 18 year: 2012 ident: 10.1016/j.eswa.2021.114817_b0195 article-title: Travelling salesman problem using bee colony with SPV publication-title: Organization – ident: 10.1016/j.eswa.2021.114817_b0210 doi: 10.1109/ICACCI.2016.7732158 – ident: 10.1016/j.eswa.2021.114817_b0225 doi: 10.1007/978-981-10-0451-3_79 – volume: 9 start-page: 625 issue: 2 year: 2009 ident: 10.1016/j.eswa.2021.114817_b0235 article-title: An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2008.09.001 – ident: 10.1016/j.eswa.2021.114817_b0170 doi: 10.1109/ICCIE.2009.5223810 – volume: 44 start-page: 707 issue: 5 year: 2011 ident: 10.1016/j.eswa.2021.114817_b0255 article-title: To bee or not to bee-comments on “Discrete optimum design of truss structures using artificial bee colony algorithm” publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-011-0639-6 – ident: 10.1016/j.eswa.2021.114817_b0220 doi: 10.1007/978-3-319-48959-9_19 – volume: 55 start-page: 384 year: 2017 ident: 10.1016/j.eswa.2021.114817_b0245 article-title: An adaptive artificial bee colony algorithm based on objective function value information publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.01.031 – volume: 46 start-page: 566 issue: 4 year: 2017 ident: 10.1016/j.eswa.2021.114817_b0270 article-title: On the importance of the artificial bee colony control parameter 'limit' publication-title: Information Technology and Control doi: 10.5755/j01.itc.46.4.18215 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 10.1016/j.eswa.2021.114817_b0070 article-title: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm publication-title: Journal of Global Optimization doi: 10.1007/s10898-007-9149-x – volume: 21 start-page: 2307 year: 2013 ident: 10.1016/j.eswa.2021.114817_b0110 article-title: XOR-based artificial bee colony algorithm for binary optimization publication-title: Turkish Journal of Electrical Engineering and Computer Sciences doi: 10.3906/elk-1203-104 – volume: 38 start-page: 1313 issue: 3 year: 2011 ident: 10.1016/j.eswa.2021.114817_b0005 article-title: Development a new mutation operator to solve the traveling salesman problem by aid of genetic algorithms publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.07.006 – volume: 271 start-page: 269 year: 2015 ident: 10.1016/j.eswa.2021.114817_b0030 article-title: Artificial bee colony algorithm with multiple search strategies publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2015.09.019 – ident: 10.1016/j.eswa.2021.114817_b0190 – start-page: 1 year: 2011 ident: 10.1016/j.eswa.2021.114817_b0180 article-title: Binary artificial bee colony optimization – volume: 98 start-page: 180 year: 2019 ident: 10.1016/j.eswa.2021.114817_b0200 article-title: A novel binary artificial bee colony algorithm publication-title: Future Generation Computer Systems-The International Journal of Escience doi: 10.1016/j.future.2019.03.032 |
| SSID | ssj0017007 |
| Score | 2.4893038 |
| Snippet | •This study proposes artificial bee colony algorithm-based binary optimization method.•The stigmergic behavior is integrated with this algorithm.•The proposed... Artificial bee colony algorithm, ABC for short, is a swarm-based optimization algorithm proposed for solving continuous optimization problems. Due to its... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114817 |
| SubjectTerms | Artificial bee colony Basic converters Binary optimization Evolutionary algorithms Evolutionary computation Logic circuits Operations research Optimization Optimization algorithms Performance assessment Search algorithms Site selection Solution space Stigmergy Swarm intelligence Xor logic gate |
| Title | A binary artificial bee colony algorithm and its performance assessment |
| URI | https://dx.doi.org/10.1016/j.eswa.2021.114817 https://www.proquest.com/docview/2554669523 |
| Volume | 175 |
| WOSCitedRecordID | wos000664351700031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3ohdFuQD4lJlldhOHF-QKtTloaVw6KLeLNuxYVclW9rssj-fce2k7QoqOHCJqjzaZr7MZDwz3wxCL1WpNXj1NCkUqRLmUpsIUtCEkkor6sP-zKyGTfDxuJxOxede73XLhbma8bour6_F_L9CDfsAbE-d_Qe4uy-FHfAZQIctwA7bvwJ-ONCBY-uPxf4Q2vqi9Bms9Adq9vVicdZ8-96lDeab3IGuUedWyN73Q25i1-eWD7eR-V4n8hchnvrR07KcWlmiyLCOkQWSdXVtMdzVUV6-bIUNecKyMFnnyAajWXLAmodJh51V5fmGXcx-a61D4OD8yC5_-hZQJPOdi8vA5dxujT3-JI9PT07kZDSdvJr_SPzUMJ9djyNUbqE9wnNR9tHe8P1o-qHLI_E0EObbfx1pU6HC7-bP_sk1ufGSXnkek_voblwy4GGA-gHq2fohuteO48DROj9Cb4c4II_XyGNAHgfkcYc8BuQxII83kMdr5B-j0-PR5M27JM7JSAwVrEkqQXPFXV44LUAhCSgcrMptWqnccGKZzZWGm69cYRRLqXBMZ45YkjpVWMYK-gT164vaPkW4cqUomEmdo4YR4oRmoLM6MybzjfLpPspaEUkTm8j7WSYz2VYLnksvVunFKoNY99Ggu2YeWqjsPDtvJS-jExicOwlPzc7rDluYZNTGpSS-BrMQOaEHuw8_Q3fWGnCI-s3i0j5Ht81Vc7ZcvIhP1S8ctodJ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+binary+artificial+bee+colony+algorithm+and+its+performance+assessment&rft.jtitle=Expert+systems+with+applications&rft.au=Kiran%2C+Mustafa+Servet&rft.date=2021-08-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=175&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.114817&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |