Remaining useful life estimation in prognostics using deep convolution neural networks

•Propose a novel deep convolutional neural network-based method for remaining useful life predictions.•No prior expertise on prognostics and signal processing is required, that facilitates the application of the proposed method.•Effects of the key factors on the prognostic performance are widely inv...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Reliability engineering & system safety Ročník 172; s. 1 - 11
Hlavní autori: Li, Xiang, Ding, Qian, Sun, Jian-Qiao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Barking Elsevier Ltd 01.04.2018
Elsevier BV
Predmet:
ISSN:0951-8320, 1879-0836
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Propose a novel deep convolutional neural network-based method for remaining useful life predictions.•No prior expertise on prognostics and signal processing is required, that facilitates the application of the proposed method.•Effects of the key factors on the prognostic performance are widely investigated and the model parameters are optimized.•Experiments on a popular aero-engine degradation dataset (C-MAPSS) and comparisons with the related state-of-the-art results validate the effectiveness and superiority of the proposed method. Traditionally, system prognostics and health management (PHM) depends on sufficient prior knowledge of critical components degradation process in order to predict the remaining useful life (RUL). However, the accurate physical or expert models are not available in most cases. This paper proposes a new data-driven approach for prognostics using deep convolution neural networks (DCNN). Time window approach is employed for sample preparation in order for better feature extraction by DCNN. Raw collected data with normalization are directly used as inputs to the proposed network, and no prior expertise on prognostics and signal processing is required, that facilitates the application of the proposed method. In order to show the effectiveness of the proposed approach, experiments on the popular C-MAPSS dataset for aero-engine unit prognostics are carried out. High prognostic accuracy on the RUL estimation is achieved. The superiority of the proposed method is demonstrated by comparisons with other popular approaches and the state-of-the-art results on the same dataset. The results of this study suggest that the proposed data-driven prognostic method offers a new and promising approach.
AbstractList Traditionally, system prognostics and health management (PHM) depends on sufficient prior knowledge of critical components degradation process in order to predict (he remaining useful life (RUL). However, the accurate physical or expert models are not available in most cases. This paper proposes a new data-driven approach for prognostics using deep convolution neural networks (DCNN). Time window approach is employed for sample preparation in order for better feature extraction by DCNN. Raw collected data with normalization are directly used as inputs to the proposed network, and no prior expertise on prognostics and signal processing is required, that facilitates the application of the proposed method. In order to show the effectiveness of the proposed approach, experiments on the popular C-MAPSS dataset for aero-engine unit prognostics are carried out. High prognostic accuracy on the RUL estimation is achieved. The superiority of the proposed method is demonstrated by comparisons with other popular approaches and the state-of-the-art results on the same dataset. The results of this study suggest that the proposed data-driven prognostic method offers a new and promising approach.
•Propose a novel deep convolutional neural network-based method for remaining useful life predictions.•No prior expertise on prognostics and signal processing is required, that facilitates the application of the proposed method.•Effects of the key factors on the prognostic performance are widely investigated and the model parameters are optimized.•Experiments on a popular aero-engine degradation dataset (C-MAPSS) and comparisons with the related state-of-the-art results validate the effectiveness and superiority of the proposed method. Traditionally, system prognostics and health management (PHM) depends on sufficient prior knowledge of critical components degradation process in order to predict the remaining useful life (RUL). However, the accurate physical or expert models are not available in most cases. This paper proposes a new data-driven approach for prognostics using deep convolution neural networks (DCNN). Time window approach is employed for sample preparation in order for better feature extraction by DCNN. Raw collected data with normalization are directly used as inputs to the proposed network, and no prior expertise on prognostics and signal processing is required, that facilitates the application of the proposed method. In order to show the effectiveness of the proposed approach, experiments on the popular C-MAPSS dataset for aero-engine unit prognostics are carried out. High prognostic accuracy on the RUL estimation is achieved. The superiority of the proposed method is demonstrated by comparisons with other popular approaches and the state-of-the-art results on the same dataset. The results of this study suggest that the proposed data-driven prognostic method offers a new and promising approach.
Author Ding, Qian
Sun, Jian-Qiao
Li, Xiang
Author_xml – sequence: 1
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  email: xiangli@mail.neu.edu.cn
  organization: College of Sciences, Northeastern University, Shenyang 110819, China
– sequence: 2
  givenname: Qian
  surname: Ding
  fullname: Ding, Qian
  organization: Department of Mechanics, Tianjin University, Tianjin 300072, China
– sequence: 3
  givenname: Jian-Qiao
  surname: Sun
  fullname: Sun, Jian-Qiao
  organization: School of Engineering, University of California, Merced, CA 95343, USA
BookMark eNp9kF1LwzAUhoNMcJv-Aa8KXrfmtGmbgjcy_AJBEPU2pOnJyOySmbQT_73Z5pUXuzpweJ_z8czIxDqLhFwCzYBCdb3KPIaQ5RTqDCCjOZyQKfC6SSkvqgmZ0qaElBc5PSOzEFaUUtaU9ZR8vOJaGmvsMhkD6rFPeqMxwTCYtRyMs4mxyca7pXWxpUJM7bId4iZRzm5dP-5TFkcv-1iGb-c_wzk51bIPePFX5-T9_u5t8Zg-vzw8LW6fU1U0bEi7ktGSyYJr3SjUHddQt00ORdXygivVNGXLS8ZkqWXLNUdaViirFkCquuZdMSdXh7nxxK8xXi1WbvQ2rhQ5zRmjDBjEVH5IKe9C8KjFxsf3_I8AKnb-xErs_ImdPwEgor8I8X-QMsNeyeCl6Y-jNwcU4-tbg14EZdAq7IxHNYjOmWP4L9Jlj-Q
CitedBy_id crossref_primary_10_1016_j_measurement_2019_107116
crossref_primary_10_1016_j_measurement_2023_113098
crossref_primary_10_1016_j_asoc_2022_108879
crossref_primary_10_1093_mnras_stab1981
crossref_primary_10_1016_j_comcom_2020_05_035
crossref_primary_10_1016_j_engappai_2025_110072
crossref_primary_10_1177_00202940231214868
crossref_primary_10_1088_1742_6596_2386_1_012027
crossref_primary_10_1088_2631_8695_ad68c9
crossref_primary_10_1016_j_engappai_2023_106491
crossref_primary_10_1109_ACCESS_2024_3435972
crossref_primary_10_1016_j_cie_2023_109433
crossref_primary_10_1016_j_artint_2022_103667
crossref_primary_10_1088_1361_6501_ad3ea0
crossref_primary_10_1155_2023_1830694
crossref_primary_10_1109_TNNLS_2020_2977132
crossref_primary_10_3390_sym16040455
crossref_primary_10_1007_s42979_023_02320_z
crossref_primary_10_1109_TIM_2021_3085935
crossref_primary_10_1088_1361_6501_ad3ea6
crossref_primary_10_1007_s10845_018_1456_1
crossref_primary_10_1088_1361_6501_adfcfb
crossref_primary_10_1109_TIE_2021_3053882
crossref_primary_10_1177_14759217251333312
crossref_primary_10_1016_j_engappai_2024_108965
crossref_primary_10_3390_app15179813
crossref_primary_10_1016_j_engappai_2024_109815
crossref_primary_10_1016_j_compind_2022_103762
crossref_primary_10_1016_j_ijepes_2019_02_046
crossref_primary_10_1016_j_cie_2025_111064
crossref_primary_10_1109_TNSE_2022_3163473
crossref_primary_10_1016_j_measurement_2021_110276
crossref_primary_10_1109_TAI_2024_3400929
crossref_primary_10_1016_j_ress_2023_109741
crossref_primary_10_1016_j_rser_2019_109405
crossref_primary_10_1109_JSYST_2022_3183134
crossref_primary_10_1155_2022_1588638
crossref_primary_10_3390_machines10060422
crossref_primary_10_3390_pr9060922
crossref_primary_10_3390_machines13090807
crossref_primary_10_1177_1748006X21990527
crossref_primary_10_3390_machines13090802
crossref_primary_10_1007_s10489_023_04777_0
crossref_primary_10_1016_j_ymssp_2019_106443
crossref_primary_10_1109_TII_2019_2927590
crossref_primary_10_1016_j_cie_2020_106536
crossref_primary_10_1016_j_ress_2023_109511
crossref_primary_10_1016_j_aei_2021_101396
crossref_primary_10_1016_j_engappai_2025_110099
crossref_primary_10_1016_j_ress_2023_109514
crossref_primary_10_1016_j_ins_2020_12_032
crossref_primary_10_1177_14759217231181678
crossref_primary_10_1016_j_engappai_2023_106687
crossref_primary_10_1109_ACCESS_2020_2990528
crossref_primary_10_1109_TIM_2022_3204089
crossref_primary_10_1109_ACCESS_2019_2919566
crossref_primary_10_1109_TII_2021_3138510
crossref_primary_10_3390_machines12120909
crossref_primary_10_1016_j_flowmeasinst_2022_102140
crossref_primary_10_3390_aerospace9060309
crossref_primary_10_1088_1361_6501_ad38d4
crossref_primary_10_1088_1742_6596_1881_2_022018
crossref_primary_10_1109_ACCESS_2025_3551772
crossref_primary_10_3390_aerospace9070341
crossref_primary_10_1016_j_procir_2023_06_021
crossref_primary_10_1016_j_rsase_2023_101117
crossref_primary_10_1088_1361_6501_ac793f
crossref_primary_10_1016_j_engappai_2021_104552
crossref_primary_10_3390_infrastructures8110162
crossref_primary_10_1155_2020_5357146
crossref_primary_10_1016_j_measurement_2023_112816
crossref_primary_10_3390_en13205447
crossref_primary_10_1016_j_aei_2023_101973
crossref_primary_10_1016_j_ifacol_2020_12_2795
crossref_primary_10_1109_TIM_2021_3072670
crossref_primary_10_3233_JIFS_189250
crossref_primary_10_1016_j_measurement_2020_108707
crossref_primary_10_1016_j_ress_2021_108082
crossref_primary_10_1016_j_ress_2023_109333
crossref_primary_10_1109_TCYB_2022_3164683
crossref_primary_10_1016_j_neunet_2025_107161
crossref_primary_10_3390_s20216011
crossref_primary_10_1016_j_engappai_2023_107519
crossref_primary_10_1016_j_isatra_2020_05_002
crossref_primary_10_1016_j_jmsy_2024_02_011
crossref_primary_10_1088_1361_6501_acb83e
crossref_primary_10_7717_peerj_cs_690
crossref_primary_10_3390_machines12120923
crossref_primary_10_1002_eng2_12305
crossref_primary_10_1016_j_aei_2023_101966
crossref_primary_10_1109_TIM_2024_3398070
crossref_primary_10_1063_5_0216417
crossref_primary_10_1016_j_measurement_2023_112824
crossref_primary_10_1155_2022_2249417
crossref_primary_10_1016_j_compind_2022_103716
crossref_primary_10_1155_2020_9601389
crossref_primary_10_1155_2021_3083190
crossref_primary_10_1016_j_compind_2024_104172
crossref_primary_10_1016_j_isatra_2021_03_045
crossref_primary_10_1016_j_ress_2025_110902
crossref_primary_10_1109_ACCESS_2024_3491866
crossref_primary_10_1016_j_mechmachtheory_2018_11_005
crossref_primary_10_1051_itmconf_20235703004
crossref_primary_10_1016_j_ress_2023_109319
crossref_primary_10_1109_TAI_2023_3279808
crossref_primary_10_1016_j_ress_2023_109798
crossref_primary_10_1016_j_aei_2020_101054
crossref_primary_10_1016_j_cie_2023_108999
crossref_primary_10_1109_ACCESS_2020_3032430
crossref_primary_10_1088_1361_6501_ac7f7f
crossref_primary_10_1016_j_cie_2023_109605
crossref_primary_10_1088_1361_6501_ade552
crossref_primary_10_1007_s42401_020_00070_x
crossref_primary_10_1016_j_ress_2021_107864
crossref_primary_10_1016_j_iswa_2021_200049
crossref_primary_10_1016_j_mfglet_2023_08_037
crossref_primary_10_1088_1361_6501_ade556
crossref_primary_10_1016_j_asoc_2023_110836
crossref_primary_10_1080_10589759_2025_2558066
crossref_primary_10_1088_1361_6501_aca8c2
crossref_primary_10_3390_electronics11071125
crossref_primary_10_1007_s00170_022_09280_3
crossref_primary_10_1109_JSEN_2024_3523335
crossref_primary_10_1007_s10845_024_02352_z
crossref_primary_10_1109_TIM_2025_3561378
crossref_primary_10_1016_j_ress_2024_110651
crossref_primary_10_1109_TII_2018_2866549
crossref_primary_10_1016_j_ress_2024_110652
crossref_primary_10_1016_j_ress_2021_107878
crossref_primary_10_1142_S0218539325500111
crossref_primary_10_1007_s10845_024_02398_z
crossref_primary_10_1088_1361_6501_ab6671
crossref_primary_10_1016_j_knosys_2025_114214
crossref_primary_10_1016_j_ress_2021_107871
crossref_primary_10_1016_j_ress_2025_110919
crossref_primary_10_1177_09544100211050432
crossref_primary_10_3390_act11030067
crossref_primary_10_1016_j_neucom_2018_05_021
crossref_primary_10_1016_j_ress_2022_109078
crossref_primary_10_1016_j_inffus_2025_103427
crossref_primary_10_1016_j_jmsy_2021_03_012
crossref_primary_10_1016_j_ymssp_2025_113200
crossref_primary_10_1109_TNNLS_2021_3084249
crossref_primary_10_1109_ACCESS_2023_3263196
crossref_primary_10_1109_TIM_2021_3064810
crossref_primary_10_1016_j_cie_2022_108211
crossref_primary_10_1109_JSEN_2021_3119151
crossref_primary_10_1016_j_isatra_2018_12_025
crossref_primary_10_1038_s41598_024_66377_3
crossref_primary_10_1016_j_compind_2023_103888
crossref_primary_10_1088_1742_6596_1648_4_042086
crossref_primary_10_1109_TII_2021_3126309
crossref_primary_10_1109_JSTARS_2024_3378298
crossref_primary_10_1109_TR_2019_2948705
crossref_primary_10_3390_app11114773
crossref_primary_10_3233_JIFS_210740
crossref_primary_10_1016_j_ress_2021_107646
crossref_primary_10_3390_s22155680
crossref_primary_10_1088_1361_6501_ad78f5
crossref_primary_10_1109_TASE_2025_3530845
crossref_primary_10_1007_s12206_019_0504_x
crossref_primary_10_1016_j_ress_2023_109344
crossref_primary_10_3390_machines10020140
crossref_primary_10_1109_ACCESS_2023_3304699
crossref_primary_10_1111_ffe_14291
crossref_primary_10_1109_TASE_2019_2961714
crossref_primary_10_1016_j_ymssp_2020_107600
crossref_primary_10_3390_s22103803
crossref_primary_10_1016_j_measurement_2020_108052
crossref_primary_10_1016_j_heliyon_2024_e35925
crossref_primary_10_1177_16878132241239802
crossref_primary_10_1007_s10845_023_02077_5
crossref_primary_10_1016_j_ress_2023_109357
crossref_primary_10_1016_j_ress_2024_110632
crossref_primary_10_1088_1361_6501_ade324
crossref_primary_10_1007_s12206_021_1109_8
crossref_primary_10_1109_ACCESS_2020_3003909
crossref_primary_10_1016_j_ress_2022_109051
crossref_primary_10_3390_s20030723
crossref_primary_10_1016_j_ress_2024_110685
crossref_primary_10_1016_j_engfailanal_2021_105385
crossref_primary_10_1016_j_aei_2024_102958
crossref_primary_10_3390_s21227655
crossref_primary_10_1007_s12046_022_01929_9
crossref_primary_10_1016_j_neucom_2024_127930
crossref_primary_10_1109_TNNLS_2020_3026644
crossref_primary_10_1016_j_ymssp_2023_110646
crossref_primary_10_1109_JIOT_2024_3363610
crossref_primary_10_1016_j_ress_2023_109167
crossref_primary_10_1038_s41598_021_03835_2
crossref_primary_10_3390_s25123810
crossref_primary_10_1016_j_ress_2023_109163
crossref_primary_10_1109_TIM_2021_3132374
crossref_primary_10_1016_j_ress_2023_109181
crossref_primary_10_3390_app10238489
crossref_primary_10_1109_ACCESS_2019_2942991
crossref_primary_10_1109_ACCESS_2020_2966827
crossref_primary_10_3390_sym13101861
crossref_primary_10_1016_j_ress_2024_110451
crossref_primary_10_3390_math12081229
crossref_primary_10_1016_j_ress_2024_110210
crossref_primary_10_1016_j_ifacol_2022_09_554
crossref_primary_10_1002_qre_3308
crossref_primary_10_3390_app15020966
crossref_primary_10_1016_j_procs_2023_03_076
crossref_primary_10_1016_j_sigpro_2019_03_019
crossref_primary_10_1016_j_neucom_2020_09_021
crossref_primary_10_1007_s10489_021_03004_y
crossref_primary_10_1016_j_jmsy_2021_10_004
crossref_primary_10_1007_s13198_025_02911_4
crossref_primary_10_3390_s24030824
crossref_primary_10_1007_s10766_019_00650_1
crossref_primary_10_1016_j_asoc_2024_111717
crossref_primary_10_1088_1361_6501_ad6c73
crossref_primary_10_1002_er_6699
crossref_primary_10_1016_j_ress_2019_02_011
crossref_primary_10_1088_1361_6501_ad58ff
crossref_primary_10_3390_aerospace11040289
crossref_primary_10_3390_aerospace11090741
crossref_primary_10_1016_j_ymssp_2020_106962
crossref_primary_10_1109_ACCESS_2019_2938227
crossref_primary_10_1155_2021_9976939
crossref_primary_10_1016_j_isatra_2023_11_043
crossref_primary_10_1016_j_isatra_2020_07_003
crossref_primary_10_1016_j_ress_2024_110666
crossref_primary_10_3390_act9030050
crossref_primary_10_3390_machines13090831
crossref_primary_10_1016_j_asoc_2023_110419
crossref_primary_10_1016_j_ress_2023_109141
crossref_primary_10_1016_j_ymssp_2025_113015
crossref_primary_10_3390_s20247109
crossref_primary_10_1016_j_compind_2022_103794
crossref_primary_10_1109_TII_2020_3032690
crossref_primary_10_1007_s40435_020_00675_2
crossref_primary_10_1016_j_measurement_2024_116411
crossref_primary_10_1109_TIM_2021_3053992
crossref_primary_10_1016_j_rser_2022_112159
crossref_primary_10_1109_ACCESS_2021_3101284
crossref_primary_10_1080_20464177_2023_2243748
crossref_primary_10_1109_JSEN_2024_3409617
crossref_primary_10_1038_s41598_023_31532_9
crossref_primary_10_1088_1361_6501_ad2bcc
crossref_primary_10_1016_j_measurement_2024_114242
crossref_primary_10_1109_JIOT_2025_3569131
crossref_primary_10_1016_j_ress_2023_109151
crossref_primary_10_1109_TIM_2022_3181307
crossref_primary_10_1002_stc_2811
crossref_primary_10_1016_j_ress_2024_110121
crossref_primary_10_1016_j_procs_2022_12_241
crossref_primary_10_1109_ACCESS_2023_3277730
crossref_primary_10_1016_j_ress_2022_108717
crossref_primary_10_1002_nav_21947
crossref_primary_10_3390_pr11102988
crossref_primary_10_1016_j_engappai_2020_103936
crossref_primary_10_1051_jnwpu_20213920407
crossref_primary_10_1109_JIOT_2021_3097269
crossref_primary_10_1093_jcde_qwae018
crossref_primary_10_1002_ett_3922
crossref_primary_10_1109_JSEN_2025_3547323
crossref_primary_10_1016_j_ress_2021_107583
crossref_primary_10_1109_TCYB_2021_3124838
crossref_primary_10_1109_JIOT_2024_3376715
crossref_primary_10_1016_j_aei_2024_102767
crossref_primary_10_1016_j_ymssp_2019_05_005
crossref_primary_10_1016_j_engappai_2023_106934
crossref_primary_10_3390_math10122066
crossref_primary_10_1002_qre_70043
crossref_primary_10_1007_s10845_021_01750_x
crossref_primary_10_1016_j_ress_2023_109096
crossref_primary_10_1016_j_ast_2025_110875
crossref_primary_10_1109_ACCESS_2021_3117002
crossref_primary_10_1109_TII_2020_2983760
crossref_primary_10_1016_j_ifacol_2022_07_212
crossref_primary_10_1109_TIM_2022_3160561
crossref_primary_10_1109_ACCESS_2025_3592775
crossref_primary_10_1016_j_est_2025_115575
crossref_primary_10_1088_1361_6501_ac7a91
crossref_primary_10_1109_JIOT_2024_3376706
crossref_primary_10_1016_j_engfailanal_2022_106414
crossref_primary_10_1016_j_compind_2019_103182
crossref_primary_10_1109_ACCESS_2024_3381492
crossref_primary_10_1016_j_cie_2025_110892
crossref_primary_10_1016_j_measurement_2020_108554
crossref_primary_10_1109_JSEN_2021_3050461
crossref_primary_10_1109_ACCESS_2023_3319553
crossref_primary_10_1002_qre_2997
crossref_primary_10_1109_ACCESS_2023_3267960
crossref_primary_10_1109_TIM_2023_3334339
crossref_primary_10_1109_TIM_2024_3375984
crossref_primary_10_1109_ACCESS_2019_2951804
crossref_primary_10_1016_j_psep_2024_06_008
crossref_primary_10_1016_j_asoc_2021_107817
crossref_primary_10_1038_s41598_025_13387_4
crossref_primary_10_1007_s00170_021_07281_2
crossref_primary_10_1093_jigpal_jzae023
crossref_primary_10_1007_s00170_023_12648_8
crossref_primary_10_1088_1361_6501_ac22ee
crossref_primary_10_1016_j_apm_2023_06_024
crossref_primary_10_1016_j_psep_2021_08_022
crossref_primary_10_3103_S014641162204006X
crossref_primary_10_1016_j_ins_2024_121446
crossref_primary_10_1109_TIM_2023_3291733
crossref_primary_10_1109_TIM_2023_3309395
crossref_primary_10_1016_j_engappai_2024_108161
crossref_primary_10_1016_j_engappai_2024_108160
crossref_primary_10_1016_j_ress_2019_106682
crossref_primary_10_1088_1361_6501_ad8b62
crossref_primary_10_1016_j_neucom_2021_07_080
crossref_primary_10_1016_j_ress_2024_110167
crossref_primary_10_3390_math13010130
crossref_primary_10_1007_s43684_022_00028_0
crossref_primary_10_1109_ACCESS_2019_2937798
crossref_primary_10_3390_app15158538
crossref_primary_10_1109_ACCESS_2021_3052305
crossref_primary_10_1109_TIE_2018_2868023
crossref_primary_10_1016_j_ress_2020_107028
crossref_primary_10_1007_s12206_020_0526_4
crossref_primary_10_1109_TIE_2021_3057030
crossref_primary_10_3390_app132111893
crossref_primary_10_1016_j_engappai_2025_110700
crossref_primary_10_1177_1475921719890616
crossref_primary_10_3390_math9233035
crossref_primary_10_3390_jmse9010047
crossref_primary_10_1016_j_engappai_2022_105749
crossref_primary_10_1016_j_ress_2019_04_036
crossref_primary_10_1109_JIOT_2024_3404017
crossref_primary_10_1109_JSEN_2024_3350229
crossref_primary_10_3390_machines10050356
crossref_primary_10_1016_j_aei_2024_102566
crossref_primary_10_2196_18331
crossref_primary_10_1016_j_ress_2021_107556
crossref_primary_10_1109_TNNLS_2021_3136768
crossref_primary_10_1109_JSEN_2021_3109623
crossref_primary_10_1109_TIM_2025_3560753
crossref_primary_10_1109_TR_2023_3349201
crossref_primary_10_3390_su142315667
crossref_primary_10_1088_1742_6596_2450_1_012006
crossref_primary_10_1109_JSEN_2023_3299432
crossref_primary_10_1007_s10845_024_02386_3
crossref_primary_10_1016_j_ress_2024_110143
crossref_primary_10_1038_s41598_025_09155_z
crossref_primary_10_1109_TII_2021_3081595
crossref_primary_10_1016_j_ress_2024_110146
crossref_primary_10_1109_TIM_2023_3246526
crossref_primary_10_1142_S0218539325500068
crossref_primary_10_1016_j_measurement_2019_107097
crossref_primary_10_1109_ACCESS_2019_2950985
crossref_primary_10_3390_fractalfract7110827
crossref_primary_10_1016_j_jprocont_2025_103460
crossref_primary_10_1038_s41598_025_05122_w
crossref_primary_10_1007_s10462_022_10260_y
crossref_primary_10_3390_s20236975
crossref_primary_10_1109_ACCESS_2018_2878813
crossref_primary_10_1109_TMECH_2022_3218771
crossref_primary_10_1016_j_ymssp_2023_110221
crossref_primary_10_1016_j_ress_2024_110394
crossref_primary_10_1177_09544100251376153
crossref_primary_10_1016_j_knosys_2024_112749
crossref_primary_10_3390_s25030873
crossref_primary_10_1016_j_ress_2024_110399
crossref_primary_10_1177_14759217241227599
crossref_primary_10_1109_ACCESS_2024_3403476
crossref_primary_10_1007_s00521_021_06089_1
crossref_primary_10_1007_s10845_024_02399_y
crossref_primary_10_1007_s10489_025_06705_w
crossref_primary_10_1007_s11071_023_08407_9
crossref_primary_10_1109_TASE_2023_3239004
crossref_primary_10_1016_j_ymssp_2023_110239
crossref_primary_10_1016_j_neucom_2022_02_032
crossref_primary_10_7232_JKIIE_2025_51_2_127
crossref_primary_10_1080_10589759_2025_2466078
crossref_primary_10_1016_j_neunet_2023_07_035
crossref_primary_10_1016_j_asoc_2020_106474
crossref_primary_10_1016_j_ress_2020_107031
crossref_primary_10_1109_JIOT_2020_3008170
crossref_primary_10_1016_j_eswa_2024_125995
crossref_primary_10_1016_j_compind_2019_06_001
crossref_primary_10_3390_electronics10030285
crossref_primary_10_1016_j_geoen_2023_211918
crossref_primary_10_1177_14759217251333056
crossref_primary_10_1109_TIM_2022_3184352
crossref_primary_10_1016_j_measurement_2020_107890
crossref_primary_10_1080_10255842_2022_2045974
crossref_primary_10_3390_s21020418
crossref_primary_10_3390_aerospace10110972
crossref_primary_10_1007_s40430_025_05400_8
crossref_primary_10_3390_machines9120337
crossref_primary_10_1016_j_ress_2021_108033
crossref_primary_10_1016_j_jmsy_2021_07_008
crossref_primary_10_1051_e3sconf_202124411001
crossref_primary_10_3390_math10030352
crossref_primary_10_1109_TIM_2022_3227956
crossref_primary_10_3390_s24248022
crossref_primary_10_1080_00207543_2021_1930234
crossref_primary_10_1109_TIM_2021_3056644
crossref_primary_10_1016_j_apm_2023_07_001
crossref_primary_10_1007_s12008_025_02261_2
crossref_primary_10_1007_s11424_025_3210_z
crossref_primary_10_1016_j_ymssp_2021_108653
crossref_primary_10_3390_machines11010092
crossref_primary_10_3390_s25113429
crossref_primary_10_1016_j_suscom_2021_100565
crossref_primary_10_1109_ACCESS_2018_2824352
crossref_primary_10_1016_j_aei_2023_102066
crossref_primary_10_1088_1361_6501_ac84f6
crossref_primary_10_1007_s10462_024_10748_9
crossref_primary_10_1088_1361_6501_ac84f8
crossref_primary_10_1007_s13042_021_01283_y
crossref_primary_10_3390_aerospace10050474
crossref_primary_10_1109_JIOT_2024_3459968
crossref_primary_10_1016_j_ifacol_2022_04_200
crossref_primary_10_1016_j_neucom_2019_12_033
crossref_primary_10_1109_TTE_2020_3041604
crossref_primary_10_3233_JIFS_213586
crossref_primary_10_1016_j_aei_2022_101725
crossref_primary_10_3389_frai_2020_578613
crossref_primary_10_3390_aerospace12050423
crossref_primary_10_1007_s00500_023_08322_6
crossref_primary_10_3390_data6010005
crossref_primary_10_1109_TR_2022_3199924
crossref_primary_10_1016_j_ress_2021_108297
crossref_primary_10_1109_TIM_2019_2929669
crossref_primary_10_1088_1361_6501_ad3b2c
crossref_primary_10_1088_1361_6501_ad3b2b
crossref_primary_10_1051_e3sconf_202131211017
crossref_primary_10_1115_1_4068540
crossref_primary_10_1109_TASE_2024_3372711
crossref_primary_10_1177_1748006X241279480
crossref_primary_10_1007_s10845_021_01739_6
crossref_primary_10_1088_2631_8695_adbe26
crossref_primary_10_3390_su13116206
crossref_primary_10_3390_s22218430
crossref_primary_10_1109_TIM_2022_3221142
crossref_primary_10_1115_1_4068316
crossref_primary_10_1109_ACCESS_2025_3593206
crossref_primary_10_1155_2023_2381638
crossref_primary_10_3389_fmech_2020_578379
crossref_primary_10_1109_JIOT_2025_3581906
crossref_primary_10_1007_s11668_024_01922_w
crossref_primary_10_1038_s41598_024_59095_3
crossref_primary_10_1177_1475921719850576
crossref_primary_10_3390_s19051088
crossref_primary_10_1016_j_ress_2023_109723
crossref_primary_10_1109_ACCESS_2019_2907050
crossref_primary_10_1016_j_asoc_2021_107474
crossref_primary_10_1155_2021_2491116
crossref_primary_10_1016_j_ress_2022_108353
crossref_primary_10_1109_TII_2023_3240599
crossref_primary_10_1016_j_ress_2022_108590
crossref_primary_10_1016_j_ress_2025_111121
crossref_primary_10_1016_j_mechmachtheory_2020_103932
crossref_primary_10_1038_s41529_018_0058_x
crossref_primary_10_1016_j_ress_2018_11_002
crossref_primary_10_1002_cjce_25170
crossref_primary_10_1108_JBIM_04_2022_0183
crossref_primary_10_3390_s23146346
crossref_primary_10_1016_j_engappai_2023_107389
crossref_primary_10_1109_JSEN_2024_3479211
crossref_primary_10_1061_JAEEEZ_ASENG_5887
crossref_primary_10_3390_s23125669
crossref_primary_10_1016_j_measurement_2020_108545
crossref_primary_10_1007_s00170_022_10485_9
crossref_primary_10_1016_j_ress_2022_108341
crossref_primary_10_1155_2023_5510329
crossref_primary_10_1109_TAI_2024_3396422
crossref_primary_10_1016_j_heliyon_2023_e17118
crossref_primary_10_1016_j_ress_2020_107098
crossref_primary_10_1109_ACCESS_2019_2920297
crossref_primary_10_1007_s11227_021_03811_7
crossref_primary_10_1016_j_ress_2018_11_011
crossref_primary_10_1016_j_asoc_2023_111071
crossref_primary_10_1016_j_ress_2023_109707
crossref_primary_10_1016_j_sigpro_2018_12_005
crossref_primary_10_1016_j_aei_2021_101404
crossref_primary_10_1002_sys_21651
crossref_primary_10_3390_s25020432
crossref_primary_10_1016_j_compeleceng_2021_107195
crossref_primary_10_1016_j_ress_2021_108259
crossref_primary_10_1016_j_engappai_2023_107365
crossref_primary_10_1016_j_aei_2024_102372
crossref_primary_10_1109_TII_2022_3206339
crossref_primary_10_3390_s24113454
crossref_primary_10_1016_j_ress_2022_108330
crossref_primary_10_1016_j_aei_2023_102094
crossref_primary_10_1016_j_ress_2021_108012
crossref_primary_10_3390_machines13070583
crossref_primary_10_1016_j_isatra_2020_03_007
crossref_primary_10_1016_j_ress_2018_11_027
crossref_primary_10_3390_forecast6020014
crossref_primary_10_1016_j_jmsy_2019_11_008
crossref_primary_10_1016_j_ress_2023_109718
crossref_primary_10_1109_TIM_2020_2996004
crossref_primary_10_1016_j_engappai_2024_109846
crossref_primary_10_3390_app13010017
crossref_primary_10_1007_s10639_023_12349_5
crossref_primary_10_1016_j_asoc_2025_113616
crossref_primary_10_1109_ACCESS_2020_3001013
crossref_primary_10_1109_JSEN_2022_3202606
crossref_primary_10_1177_09544054221124476
crossref_primary_10_1016_j_eswa_2023_119824
crossref_primary_10_1155_2022_9707940
crossref_primary_10_1109_TCYB_2019_2938244
crossref_primary_10_1109_JAS_2023_123369
crossref_primary_10_1016_j_ress_2021_108265
crossref_primary_10_1109_TAES_2021_3056086
crossref_primary_10_1007_s00521_025_10995_z
crossref_primary_10_1016_j_compind_2022_103660
crossref_primary_10_1109_TIE_2019_2959492
crossref_primary_10_1016_j_inffus_2018_10_005
crossref_primary_10_3390_batteries9030177
crossref_primary_10_1109_TIM_2022_3162283
crossref_primary_10_1016_j_asoc_2022_109604
crossref_primary_10_1016_j_ymssp_2019_106330
crossref_primary_10_1177_14759217231202543
crossref_primary_10_3390_act10070146
crossref_primary_10_1016_j_aei_2024_103053
crossref_primary_10_3390_e20100747
crossref_primary_10_1016_j_aei_2022_101781
crossref_primary_10_1016_j_ymssp_2022_109611
crossref_primary_10_1088_1361_6501_ab8df9
crossref_primary_10_1109_ACCESS_2021_3116813
crossref_primary_10_1016_j_rineng_2025_106152
crossref_primary_10_3390_electronics10010039
crossref_primary_10_1016_j_asoc_2022_108507
crossref_primary_10_1016_j_ress_2021_107919
crossref_primary_10_1109_JSEN_2023_3246595
crossref_primary_10_1007_s43684_025_00099_9
crossref_primary_10_1109_TIM_2025_3568963
crossref_primary_10_1088_1742_6596_2361_1_012019
crossref_primary_10_3390_s24020518
crossref_primary_10_1007_s10994_023_06305_0
crossref_primary_10_1016_j_engappai_2024_108813
crossref_primary_10_1088_1742_6596_2181_1_012001
crossref_primary_10_3390_su142416810
crossref_primary_10_1016_j_asoc_2024_112325
crossref_primary_10_1109_ACCESS_2021_3110049
crossref_primary_10_1109_ACCESS_2019_2927011
crossref_primary_10_1108_IMDS_10_2018_0445
crossref_primary_10_1016_j_measurement_2023_114082
crossref_primary_10_1016_j_ymssp_2022_109608
crossref_primary_10_1080_24725854_2020_1766729
crossref_primary_10_3390_machines10070552
crossref_primary_10_1007_s11760_025_04150_3
crossref_primary_10_1109_JSYST_2022_3205179
crossref_primary_10_1109_TIM_2022_3200667
crossref_primary_10_1109_TMECH_2020_2992331
crossref_primary_10_1016_j_aei_2025_103795
crossref_primary_10_1016_j_apor_2024_104368
crossref_primary_10_1016_j_isatra_2022_04_042
crossref_primary_10_1109_TIM_2022_3149094
crossref_primary_10_1016_j_ress_2021_107927
crossref_primary_10_1016_j_jmsy_2020_12_020
crossref_primary_10_1007_s10845_021_01747_6
crossref_primary_10_1038_s41598_022_10191_2
crossref_primary_10_1016_j_asoc_2021_107379
crossref_primary_10_1088_1361_6501_ad0ad5
crossref_primary_10_1016_j_jmsy_2020_11_005
crossref_primary_10_1109_TSM_2022_3164578
crossref_primary_10_1007_s43684_022_00031_5
crossref_primary_10_3390_e24121818
crossref_primary_10_1016_j_ifacol_2020_12_853
crossref_primary_10_1016_j_asoc_2024_111459
crossref_primary_10_1088_1361_6501_ac90dc
crossref_primary_10_1016_j_ress_2022_108482
crossref_primary_10_1109_TNNLS_2023_3257038
crossref_primary_10_1109_TIM_2022_3167778
crossref_primary_10_1109_JSEN_2024_3492019
crossref_primary_10_1002_qre_3256
crossref_primary_10_1155_2020_8888627
crossref_primary_10_1109_JSEN_2024_3420124
crossref_primary_10_1016_j_knosys_2022_109340
crossref_primary_10_1017_aer_2024_40
crossref_primary_10_1016_j_engappai_2025_110144
crossref_primary_10_1007_s10845_022_01916_1
crossref_primary_10_1109_TIV_2023_3294726
crossref_primary_10_1016_j_ifacol_2021_08_124
crossref_primary_10_1016_j_apenergy_2019_113841
crossref_primary_10_1109_JSEN_2022_3221753
crossref_primary_10_1088_1361_6501_abb917
crossref_primary_10_1016_j_aei_2024_103083
crossref_primary_10_3390_en17225538
crossref_primary_10_1016_j_measurement_2022_111782
crossref_primary_10_3390_s24030780
crossref_primary_10_1063_5_0225277
crossref_primary_10_1007_s10845_022_01929_w
crossref_primary_10_1016_j_jmsy_2020_11_020
crossref_primary_10_1016_j_ress_2025_111085
crossref_primary_10_1007_s00170_021_08351_1
crossref_primary_10_1002_er_8596
crossref_primary_10_1016_j_ymssp_2023_110935
crossref_primary_10_1109_TPEL_2024_3410958
crossref_primary_10_1016_j_ress_2023_109456
crossref_primary_10_1109_TIM_2025_3551011
crossref_primary_10_1016_j_ress_2023_109696
crossref_primary_10_1016_j_jii_2023_100444
crossref_primary_10_1016_j_eswa_2025_127513
crossref_primary_10_1109_JSEN_2022_3185161
crossref_primary_10_1016_j_est_2024_113749
crossref_primary_10_1016_j_aei_2021_101247
crossref_primary_10_1016_j_knosys_2020_105843
crossref_primary_10_1145_3486252
crossref_primary_10_3390_s20010176
crossref_primary_10_1109_JSEN_2023_3323276
crossref_primary_10_1016_j_eswa_2023_121859
crossref_primary_10_1088_1361_6501_adc61e
crossref_primary_10_1016_j_ress_2023_109666
crossref_primary_10_1016_j_ymssp_2025_112449
crossref_primary_10_3390_app13127186
crossref_primary_10_1016_j_compind_2019_04_013
crossref_primary_10_1016_j_neucom_2021_04_139
crossref_primary_10_1016_j_ress_2023_109662
crossref_primary_10_1177_09596518241269642
crossref_primary_10_1016_j_ifacol_2020_12_805
crossref_primary_10_1007_s42452_022_05114_9
crossref_primary_10_1109_JSEN_2023_3269030
crossref_primary_10_1155_2022_9930176
crossref_primary_10_1016_j_eswa_2023_119787
crossref_primary_10_1109_JSEN_2024_3479079
crossref_primary_10_1177_1748006X20935760
crossref_primary_10_1520_JTE20180849
crossref_primary_10_1007_s10489_021_03034_6
crossref_primary_10_1016_j_psep_2022_07_046
crossref_primary_10_3390_pr13082366
crossref_primary_10_3390_s23229190
crossref_primary_10_1145_3575637_3575651
crossref_primary_10_1016_j_neucom_2021_09_022
crossref_primary_10_1109_ACCESS_2020_3027349
crossref_primary_10_1109_TR_2023_3277332
crossref_primary_10_1016_j_ifacol_2024_07_582
crossref_primary_10_1007_s11192_021_04060_4
crossref_primary_10_1007_s40314_021_01752_8
crossref_primary_10_3390_s22166252
crossref_primary_10_1002_qre_3494
crossref_primary_10_3390_s23187840
crossref_primary_10_1080_08982112_2020_1754427
crossref_primary_10_1016_j_future_2025_107945
crossref_primary_10_3390_s21051712
crossref_primary_10_3390_aerospace7090132
crossref_primary_10_3390_en12203937
crossref_primary_10_1016_j_knosys_2020_106555
crossref_primary_10_1109_TVT_2023_3319377
crossref_primary_10_3390_s23041892
crossref_primary_10_1016_j_future_2021_11_006
crossref_primary_10_1109_JSEN_2021_3136622
crossref_primary_10_1016_j_ress_2020_107225
crossref_primary_10_1007_s10489_022_03670_6
crossref_primary_10_1016_j_ress_2023_109247
crossref_primary_10_1016_j_ress_2023_109244
crossref_primary_10_1109_JSEN_2022_3208753
crossref_primary_10_1016_j_energy_2025_137253
crossref_primary_10_3390_electronics12030580
crossref_primary_10_1016_j_advengsoft_2024_103645
crossref_primary_10_1016_j_compag_2020_105284
crossref_primary_10_1109_JSEN_2024_3485750
crossref_primary_10_1109_JSEN_2024_3404072
crossref_primary_10_1016_j_eswa_2021_114569
crossref_primary_10_1007_s10845_022_02015_x
crossref_primary_10_1016_j_compind_2021_103554
crossref_primary_10_1016_j_aei_2023_101898
crossref_primary_10_3390_en14082135
crossref_primary_10_1007_s40435_020_00708_w
crossref_primary_10_1109_TNNLS_2023_3305601
crossref_primary_10_1016_j_eswa_2025_127315
crossref_primary_10_1016_j_procs_2022_03_060
crossref_primary_10_1088_1742_6596_1754_1_012218
crossref_primary_10_1109_TMECH_2021_3079729
crossref_primary_10_1016_j_measurement_2024_116589
crossref_primary_10_1007_s00158_022_03425_4
crossref_primary_10_1016_j_measurement_2024_116345
crossref_primary_10_1016_j_neunet_2019_04_016
crossref_primary_10_1177_16878132221106609
crossref_primary_10_1109_TASE_2021_3072363
crossref_primary_10_1155_2021_5876299
crossref_primary_10_1016_j_ymssp_2022_109679
crossref_primary_10_3390_machines11030341
crossref_primary_10_1016_j_neucom_2022_04_055
crossref_primary_10_1109_TIM_2023_3318706
crossref_primary_10_3390_jsan9010008
crossref_primary_10_1002_qre_3445
crossref_primary_10_1016_j_cie_2023_109736
crossref_primary_10_1088_1361_6501_ac632d
crossref_primary_10_1109_ACCESS_2020_3020356
crossref_primary_10_3390_en14154711
crossref_primary_10_3390_jmse11112128
crossref_primary_10_1109_TR_2020_2995724
crossref_primary_10_1109_JSEN_2023_3324330
crossref_primary_10_1016_j_ress_2021_107530
crossref_primary_10_1109_TIM_2025_3576953
crossref_primary_10_1109_TASE_2024_3504595
crossref_primary_10_1109_TNNLS_2020_2980004
crossref_primary_10_1016_j_ress_2023_109235
crossref_primary_10_1080_23307706_2024_2398536
crossref_primary_10_1016_j_ress_2024_110513
crossref_primary_10_3390_s25030837
crossref_primary_10_1109_TIM_2021_3084305
crossref_primary_10_1016_j_ifacol_2022_04_183
crossref_primary_10_1177_1748006X19868335
crossref_primary_10_3390_s22176472
crossref_primary_10_1016_j_ress_2021_107946
crossref_primary_10_1109_TII_2022_3210250
crossref_primary_10_1016_j_cie_2022_108559
crossref_primary_10_1016_j_aei_2023_102316
crossref_primary_10_3390_s21206841
crossref_primary_10_1016_j_ress_2022_108915
crossref_primary_10_1088_1361_6501_ac22f0
crossref_primary_10_7232_JKIIE_2025_51_3_217
crossref_primary_10_1080_24725854_2023_2222402
crossref_primary_10_1109_TII_2020_3017194
crossref_primary_10_1016_j_jmsy_2024_08_025
crossref_primary_10_1007_s00521_023_08507_y
crossref_primary_10_3390_jmse12030387
crossref_primary_10_1088_1361_6501_ad9e12
crossref_primary_10_1016_j_neucom_2018_09_076
crossref_primary_10_1109_TR_2021_3124944
crossref_primary_10_1109_ACCESS_2022_3187702
crossref_primary_10_1016_j_compind_2020_103295
crossref_primary_10_1016_j_aei_2024_102608
crossref_primary_10_1016_j_ress_2022_108908
crossref_primary_10_1109_JSEN_2024_3494020
crossref_primary_10_1088_1361_6501_ad5c8c
crossref_primary_10_1007_s40997_022_00526_9
crossref_primary_10_3390_app9224813
crossref_primary_10_3390_s21144676
crossref_primary_10_1016_j_engappai_2024_108186
crossref_primary_10_1016_j_isatra_2024_06_015
crossref_primary_10_1016_j_measurement_2021_110565
crossref_primary_10_1109_JIOT_2020_3004452
crossref_primary_10_1016_j_jestch_2023_101409
crossref_primary_10_1002_eng2_12291
crossref_primary_10_1080_24725854_2025_2561566
crossref_primary_10_3390_s25123702
crossref_primary_10_1016_j_ress_2024_110540
crossref_primary_10_3390_aerospace12030259
crossref_primary_10_1016_j_jag_2021_102459
crossref_primary_10_3390_batteries10030106
crossref_primary_10_1088_1361_6501_acdf0d
crossref_primary_10_1016_j_ress_2021_107961
crossref_primary_10_1109_TII_2023_3342885
crossref_primary_10_1016_j_measurement_2021_110354
crossref_primary_10_1016_j_compind_2019_02_004
crossref_primary_10_1088_1742_6596_2694_1_012045
crossref_primary_10_1109_JSEN_2025_3546498
crossref_primary_10_1016_j_ress_2024_110549
crossref_primary_10_1049_cth2_12315
crossref_primary_10_1016_j_jmsy_2022_05_014
crossref_primary_10_3390_en18081899
crossref_primary_10_1016_j_engappai_2023_105860
crossref_primary_10_1109_ACCESS_2021_3136235
crossref_primary_10_1016_j_asoc_2025_113067
crossref_primary_10_1016_j_engappai_2023_106956
crossref_primary_10_1109_ACCESS_2018_2859922
crossref_primary_10_3390_lubricants10040067
crossref_primary_10_1016_j_ijhydene_2024_08_285
crossref_primary_10_1016_j_ress_2025_110857
crossref_primary_10_1109_ACCESS_2022_3203406
crossref_primary_10_1016_j_isatra_2021_05_026
crossref_primary_10_1007_s13369_019_04008_0
crossref_primary_10_1016_j_engfailanal_2022_106791
crossref_primary_10_1016_j_ifacol_2022_07_353
crossref_primary_10_1007_s11227_023_05126_1
crossref_primary_10_1016_j_jmsy_2020_07_008
crossref_primary_10_3390_ai2010005
crossref_primary_10_1016_j_est_2022_104936
crossref_primary_10_1109_TR_2019_2957965
crossref_primary_10_1016_j_asoc_2020_106344
crossref_primary_10_3390_s21124217
crossref_primary_10_1109_JPHOTOV_2023_3272071
crossref_primary_10_1016_j_knosys_2021_107652
crossref_primary_10_1109_JAS_2022_105746
crossref_primary_10_1002_qre_2651
crossref_primary_10_1002_qre_3740
crossref_primary_10_1016_j_ress_2024_110253
crossref_primary_10_1088_1742_6596_1881_3_032096
crossref_primary_10_3390_s21206772
crossref_primary_10_1109_JAS_2021_1004051
crossref_primary_10_3103_S0146411621010089
crossref_primary_10_1016_j_ymssp_2024_111924
crossref_primary_10_1016_j_pnucene_2022_104143
crossref_primary_10_1016_j_asoc_2022_109164
crossref_primary_10_1016_j_measurement_2018_11_040
crossref_primary_10_1109_ACCESS_2019_2958330
crossref_primary_10_1109_TASE_2023_3242355
crossref_primary_10_1016_j_ijhydene_2025_01_437
crossref_primary_10_1109_ACCESS_2020_2970444
crossref_primary_10_1109_ACCESS_2019_2960406
crossref_primary_10_3390_machines11020163
crossref_primary_10_1016_j_est_2022_104701
crossref_primary_10_1016_j_psep_2023_04_007
crossref_primary_10_1109_TIM_2023_3322481
crossref_primary_10_1088_1361_6501_ad1224
crossref_primary_10_1109_JSEN_2021_3060395
crossref_primary_10_1016_j_mlwa_2025_100704
crossref_primary_10_1016_j_rineng_2025_105513
crossref_primary_10_1109_ACCESS_2022_3214320
crossref_primary_10_3390_machines10090725
crossref_primary_10_1007_s00170_024_14000_0
crossref_primary_10_1007_s12204_022_2506_6
crossref_primary_10_1109_TNNLS_2023_3310482
crossref_primary_10_1109_ACCESS_2022_3226780
crossref_primary_10_1016_j_ress_2025_111635
crossref_primary_10_1016_j_ifacol_2022_09_182
crossref_primary_10_1109_TASE_2023_3267860
crossref_primary_10_1016_j_eswa_2025_127277
crossref_primary_10_1016_j_isatra_2019_07_004
crossref_primary_10_1109_TIM_2022_3190062
crossref_primary_10_1016_j_knosys_2024_111738
crossref_primary_10_1109_TR_2020_3010970
crossref_primary_10_1016_j_ssci_2023_106363
crossref_primary_10_1109_TIM_2023_3264027
crossref_primary_10_1109_ACCESS_2019_2959405
crossref_primary_10_3390_s20226626
crossref_primary_10_1016_j_ymssp_2020_107322
crossref_primary_10_1109_TIM_2025_3550613
crossref_primary_10_1016_j_eswa_2025_128370
crossref_primary_10_1016_j_ress_2018_08_010
crossref_primary_10_3390_agriculture12122119
crossref_primary_10_1016_j_ress_2023_109199
crossref_primary_10_1515_teme_2019_0082
crossref_primary_10_3103_S0146411623010030
crossref_primary_10_1016_j_ijfatigue_2022_107481
crossref_primary_10_1016_j_anucene_2020_107501
crossref_primary_10_1088_1361_6501_ad89ee
crossref_primary_10_1016_j_ress_2024_110288
crossref_primary_10_1016_j_petrol_2019_04_030
crossref_primary_10_1007_s12206_024_0616_9
crossref_primary_10_3390_s23135970
crossref_primary_10_1109_ACCESS_2020_2973500
crossref_primary_10_1016_j_engappai_2024_108475
crossref_primary_10_1007_s11071_024_10815_4
crossref_primary_10_1109_TNNLS_2023_3347227
crossref_primary_10_1016_j_ress_2025_111413
crossref_primary_10_1109_TIE_2021_3086706
crossref_primary_10_1088_1361_6501_acf401
crossref_primary_10_1177_1748006X20965016
crossref_primary_10_1016_j_ress_2024_110296
crossref_primary_10_1016_j_ress_2024_110055
crossref_primary_10_1109_TR_2022_3190639
crossref_primary_10_1016_j_ijhydene_2024_09_266
crossref_primary_10_1080_00224065_2021_1960934
crossref_primary_10_1016_j_ress_2022_108869
crossref_primary_10_1016_j_engappai_2020_103849
crossref_primary_10_1007_s00500_022_07625_4
crossref_primary_10_1007_s42417_021_00286_x
crossref_primary_10_1109_TIE_2019_2935987
crossref_primary_10_1109_TIM_2024_3522678
crossref_primary_10_3390_e25050798
crossref_primary_10_1109_JAS_2022_105935
crossref_primary_10_1016_j_jlp_2024_105343
crossref_primary_10_1016_j_compind_2021_103523
crossref_primary_10_1016_j_measurement_2021_110637
crossref_primary_10_1109_ACCESS_2022_3211258
crossref_primary_10_1007_s10845_024_02461_9
crossref_primary_10_1088_1361_6501_add044
crossref_primary_10_1007_s10845_023_02185_2
crossref_primary_10_1016_j_ast_2024_109065
crossref_primary_10_1109_TIM_2025_3595245
crossref_primary_10_1016_j_ress_2024_110030
crossref_primary_10_1016_j_eswa_2024_124752
crossref_primary_10_1016_j_scitotenv_2022_155886
crossref_primary_10_1016_j_ress_2025_111421
crossref_primary_10_1016_j_measurement_2019_05_057
crossref_primary_10_3390_electronics10202453
crossref_primary_10_1016_j_aei_2024_102422
crossref_primary_10_1088_1361_6501_ae0144
crossref_primary_10_1186_s10033_024_01055_z
crossref_primary_10_1155_2024_6465566
crossref_primary_10_1016_j_jclepro_2020_122804
crossref_primary_10_1155_2020_8814658
crossref_primary_10_1016_j_knosys_2024_111783
crossref_primary_10_1016_j_asoc_2020_106113
crossref_primary_10_1016_j_ress_2025_111451
crossref_primary_10_1080_00207543_2024_2349257
crossref_primary_10_3390_math11244972
crossref_primary_10_1109_TIM_2025_3569885
crossref_primary_10_1016_j_asoc_2023_110041
crossref_primary_10_1016_j_measurement_2024_115714
crossref_primary_10_3390_s25134224
crossref_primary_10_1007_s00170_022_09894_7
crossref_primary_10_1016_j_aei_2023_102195
crossref_primary_10_1016_j_cma_2024_117219
crossref_primary_10_1016_j_asoc_2021_108401
crossref_primary_10_1109_ACCESS_2022_3188681
crossref_primary_10_1109_ACCESS_2025_3607733
crossref_primary_10_1155_2020_2792481
crossref_primary_10_1109_TII_2021_3121326
crossref_primary_10_3390_app8071102
crossref_primary_10_1007_s10845_020_01630_w
crossref_primary_10_1016_j_ijhydene_2020_10_108
crossref_primary_10_3390_e27010079
crossref_primary_10_1155_2021_2122655
crossref_primary_10_1109_TIM_2024_3413142
crossref_primary_10_1016_j_eswa_2024_124538
crossref_primary_10_1109_TII_2022_3217758
crossref_primary_10_3390_app10031062
crossref_primary_10_1016_j_ress_2020_106926
crossref_primary_10_1109_JSEN_2024_3514168
crossref_primary_10_3233_IDA_227099
crossref_primary_10_1038_s41598_025_08515_z
crossref_primary_10_1080_24725854_2023_2223245
crossref_primary_10_1016_j_rcim_2019_101924
crossref_primary_10_1016_j_neucom_2021_04_109
crossref_primary_10_1016_j_cie_2018_09_015
crossref_primary_10_1016_j_strusafe_2022_102186
crossref_primary_10_1007_s00521_022_07378_z
crossref_primary_10_1109_TNNLS_2023_3330487
crossref_primary_10_3390_app11115180
crossref_primary_10_3390_machines10110974
crossref_primary_10_1007_s00170_023_12020_w
crossref_primary_10_3390_machines10100927
crossref_primary_10_1016_j_ress_2021_108179
crossref_primary_10_1109_ACCESS_2020_2982800
crossref_primary_10_1016_j_ymssp_2020_107183
crossref_primary_10_1007_s00521_024_09791_y
crossref_primary_10_1016_j_ymssp_2024_111551
crossref_primary_10_1109_ACCESS_2020_2976595
crossref_primary_10_1088_1361_6501_ad8946
crossref_primary_10_1038_s41598_024_74989_y
crossref_primary_10_1088_1361_6501_ad8940
crossref_primary_10_1177_1748006X19866546
crossref_primary_10_1016_j_aei_2021_101318
crossref_primary_10_1109_ACCESS_2019_2933676
crossref_primary_10_1080_0951192X_2019_1686173
crossref_primary_10_1016_j_ress_2022_108646
crossref_primary_10_3390_app10010368
crossref_primary_10_1016_j_ress_2022_108405
crossref_primary_10_1016_j_rineng_2025_105137
crossref_primary_10_1016_j_ress_2022_108886
crossref_primary_10_1109_ACCESS_2024_3390234
crossref_primary_10_1109_TIM_2024_3428643
crossref_primary_10_1007_s40430_022_03856_6
crossref_primary_10_1016_j_scitotenv_2022_154902
crossref_primary_10_1109_TCE_2024_3510786
crossref_primary_10_1007_s40815_023_01564_4
crossref_primary_10_3390_aerospace10010080
crossref_primary_10_1007_s10845_023_02215_z
crossref_primary_10_3390_s22145174
crossref_primary_10_1002_cpe_5762
crossref_primary_10_1007_s11760_023_02800_y
crossref_primary_10_1109_TMECH_2021_3094986
crossref_primary_10_1109_JSEN_2023_3342884
crossref_primary_10_3390_app14209439
crossref_primary_10_1007_s10462_020_09934_2
crossref_primary_10_1016_j_ress_2023_109605
crossref_primary_10_1016_j_neucom_2020_07_088
crossref_primary_10_1109_TII_2019_2956220
crossref_primary_10_3390_e24121733
crossref_primary_10_1063_5_0065792
crossref_primary_10_1088_1361_6501_acda52
crossref_primary_10_2196_49113
crossref_primary_10_1007_s00170_023_10811_9
crossref_primary_10_1016_j_neucom_2019_05_052
crossref_primary_10_1155_2021_9937846
crossref_primary_10_1016_j_knosys_2021_107216
crossref_primary_10_1016_j_jmsy_2020_06_014
crossref_primary_10_1109_TR_2019_2907402
crossref_primary_10_1186_s10033_021_00570_7
crossref_primary_10_1016_j_atmosres_2022_106037
crossref_primary_10_3390_pr13041232
crossref_primary_10_1016_j_measen_2023_100944
crossref_primary_10_1109_ACCESS_2019_2895394
crossref_primary_10_1016_j_ymssp_2020_107592
crossref_primary_10_1088_1742_6596_2853_1_012068
crossref_primary_10_1016_j_ress_2021_108123
crossref_primary_10_3390_machines12110766
crossref_primary_10_1016_j_ress_2023_109854
crossref_primary_10_1109_JSEN_2023_3279365
crossref_primary_10_3390_app13169194
crossref_primary_10_1109_TIE_2019_2891463
crossref_primary_10_1109_ACCESS_2020_3010066
crossref_primary_10_1109_JIOT_2023_3303188
crossref_primary_10_3389_fnbot_2024_1448482
crossref_primary_10_1016_j_cnsns_2025_109083
crossref_primary_10_1016_j_ifacol_2022_07_133
crossref_primary_10_1109_TIM_2020_3031113
crossref_primary_10_1016_j_neucom_2020_06_052
crossref_primary_10_1109_TNNLS_2021_3070840
crossref_primary_10_1007_s42835_024_02036_x
crossref_primary_10_1016_j_measurement_2020_108878
crossref_primary_10_1016_j_engappai_2023_107241
crossref_primary_10_1016_j_measurement_2020_107788
crossref_primary_10_1016_j_ymssp_2023_111037
crossref_primary_10_1177_0954408920974141
crossref_primary_10_1007_s11227_023_05404_y
crossref_primary_10_1109_TIE_2019_2907440
crossref_primary_10_1016_j_compchemeng_2020_107197
crossref_primary_10_1016_j_conengprac_2021_104969
crossref_primary_10_1109_TII_2022_3218665
crossref_primary_10_1109_TII_2023_3254656
crossref_primary_10_1016_j_ress_2019_106706
crossref_primary_10_1016_j_ress_2022_108444
crossref_primary_10_1016_j_ress_2021_108140
crossref_primary_10_3390_su15010029
Cites_doi 10.1016/j.measurement.2016.07.054
10.1109/TIE.2004.824875
10.1177/0142331208092031
10.1109/TIE.2016.2586442
10.1016/j.neucom.2017.02.045
10.1016/j.ymssp.2008.06.009
10.1016/j.ymssp.2013.07.010
10.1126/science.1127647
10.1109/TIM.2010.2078296
10.1016/j.ress.2015.12.003
10.1109/JSEN.2013.2293517
10.1016/j.jmsy.2017.02.013
10.1016/j.ymssp.2013.06.004
10.1016/j.ymssp.2010.11.018
10.1016/j.engappai.2013.02.006
10.1016/j.measurement.2016.04.007
10.1016/j.ymssp.2006.10.001
10.1016/j.ymssp.2016.06.031
10.1016/j.ress.2015.04.009
10.1007/s10845-009-0356-9
10.1016/j.ymssp.2011.10.019
10.1016/j.ress.2013.08.004
10.1016/S0888-3270(03)00079-7
10.1016/j.ress.2017.02.007
10.1016/j.ymssp.2005.11.008
10.1016/j.ymssp.2015.11.008
10.1038/323533a0
10.1109/MSP.2012.2205597
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Apr 2018
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 2018
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2017.11.021
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
EndPage 11
ExternalDocumentID 10_1016_j_ress_2017_11_021
S0951832017307779
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
SOI
ID FETCH-LOGICAL-c394t-d54054a38ff9cefd8f17b92136b838cc995b8544a5fab8f8e056ea6b11ac778d3
ISICitedReferencesCount 1209
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424960000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Wed Aug 13 06:27:07 EDT 2025
Sat Nov 29 07:08:14 EST 2025
Tue Nov 18 22:32:40 EST 2025
Fri Feb 23 02:28:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Remaining useful life
Convolution neural network
Prognostics and health management
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-d54054a38ff9cefd8f17b92136b838cc995b8544a5fab8f8e056ea6b11ac778d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2024404141
PQPubID 2045406
PageCount 11
ParticipantIDs proquest_journals_2024404141
crossref_primary_10_1016_j_ress_2017_11_021
crossref_citationtrail_10_1016_j_ress_2017_11_021
elsevier_sciencedirect_doi_10_1016_j_ress_2017_11_021
PublicationCentury 2000
PublicationDate April 2018
2018-04-00
20180401
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhao, Wang, Yan, Mao (bib0023) 2016
Louen, Ding, Kandler (bib0050) 2013
Coble, Hines (bib0043) 2008
Jouin, Gouriveau, Hissel, Pra, Zerhouni (bib0008) 2016; 7273
Liu, Liu, Bai, Lu (bib0037) 2014
Guo, Chen, Shen (bib0045) 2016; 93
Kingma D., Ba J.. Adam: a method for stochastic optimization. arXiv preprint
Tian (bib0017) 2012; 23
Ren, Liu, Zhang, Pan, Cao, Yang (bib0035) 2016
Sun, Shao, Zhao, Yan, Zhang, Chen (bib0036) 2016; 89
Hinton, Salakhutdinov (bib0024) 2006; 313
Zhang, Lim, Qin, Tan (bib0029) 2016; PP
Wang, Youn, Hu (bib0044) 2012; 28
Qian, Yan, Gao (bib0007) 2017; 83
Ioffe, Szegedy (bib0048) 2015; 1
Azadeh, Asadzadeh, Salehi, Firoozi (bib0001) 2015; 142
Wang, Golnaraghi, Ismail (bib0020) 2004; 18
Zhao, Bin, Wang, Lu (bib0002) 2017; 164
Malhotra P., TV V., Ramakrishnan A., Anand G., Vig L., Agarwal P., et al. Multi-sensor prognostics using an unsupervised health index based on LSTM encoder-decoder. arXiv preprint
Ren, Cui, Sun, Cheng (bib0027) 2017; 43, Part 2
Liao, Jin, Pavel (bib0028) 2016; 63
Saxena, Goebel (bib0041) 2008
Pecht, Gu (bib0004) 2009; 31
Huang, Xi, Li, Liu, Qiu, Lee (bib0016) 2007; 21
Xu, Wang, Xu (bib0032) 2014; 14
Yuan, Wu, Lin (bib0022) 2016
Glorot, Bengio (bib0038) 2010; 9
Rumelhart, Hinton, Williams (bib0039) 1986; 323
Ali, Chebel-Morello, Saidi, Malinowski, Fnaiech (bib0010) 2015; 5657
Szegedy, Liu, Yangqing, Sermanet, Reed, Anguelov (bib0034) 2015
Ramasso (bib0042) 2014; 5
Benkedjouh, Medjaher, Zerhouni, Rechak (bib0012) 2013; 26
Dong, He (bib0013) 2007; 21
Guo, Li, Jia, Lei, Lin (bib0046) 2017; 240
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly (bib0026) 2012; 29
Heng, Zhang, Tan, Mathew (bib0006) 2009; 23
Gebraeel, Lawley, Liu, Parmeshwaran (bib0011) 2004; 51
Fink, Zio, Weidmann (bib0018) 2014; 121
Heimes (bib0005) 2008
Peng, Wang, Wang, Liu, Peng (bib0049) 2012
Jouin, Gouriveau, Hissel, Pra, Zerhouni (bib0009) 2016; 148
Khawaja, Vachtsevanos, Wu (bib0019) 2005
Sikorska, Hodkiewicz, Ma (bib0015) 2011; 25
Lim, Goh, Tan (bib0051) 2016
Babu, Zhao, Li (bib0031) 2016
Saxena, Goebel, Simon, Eklund (bib0030) 2008
Krizhevsky, Sutskever, Hinton (bib0025) 2012; 2
Malhi, Yan, Gao (bib0021) 2011; 60
Baraldi, Compare, Sauco, Zio (bib0014) 2013; 41
2014;.
Lee, Wu, Zhao, Ghaffari, Liao, Siegel (bib0003) 2014; 42
2016;.
Abdel-Hamid, Mohamed, Hui, Penn (bib0033) 2012
Glorot (10.1016/j.ress.2017.11.021_bib0038) 2010; 9
Tian (10.1016/j.ress.2017.11.021_bib0017) 2012; 23
Jouin (10.1016/j.ress.2017.11.021_bib0009) 2016; 148
Saxena (10.1016/j.ress.2017.11.021_sbref0040) 2008
Zhao (10.1016/j.ress.2017.11.021_bib0002) 2017; 164
Hinton (10.1016/j.ress.2017.11.021_bib0024) 2006; 313
10.1016/j.ress.2017.11.021_bib0040
Guo (10.1016/j.ress.2017.11.021_bib0045) 2016; 93
Sikorska (10.1016/j.ress.2017.11.021_bib0015) 2011; 25
10.1016/j.ress.2017.11.021_bib0047
Liao (10.1016/j.ress.2017.11.021_bib0028) 2016; 63
Zhang (10.1016/j.ress.2017.11.021_bib0029) 2016; PP
Ren (10.1016/j.ress.2017.11.021_bib0027) 2017; 43, Part 2
Hinton (10.1016/j.ress.2017.11.021_bib0026) 2012; 29
Liu (10.1016/j.ress.2017.11.021_bib0037) 2014
Jouin (10.1016/j.ress.2017.11.021_bib0008) 2016; 7273
Ioffe (10.1016/j.ress.2017.11.021_sbref0046) 2015; 1
Pecht (10.1016/j.ress.2017.11.021_bib0004) 2009; 31
Peng (10.1016/j.ress.2017.11.021_bib0049) 2012
Qian (10.1016/j.ress.2017.11.021_bib0007) 2017; 83
Sun (10.1016/j.ress.2017.11.021_bib0036) 2016; 89
Ali (10.1016/j.ress.2017.11.021_bib0010) 2015; 5657
Dong (10.1016/j.ress.2017.11.021_bib0013) 2007; 21
Yuan (10.1016/j.ress.2017.11.021_bib0022) 2016
Ren (10.1016/j.ress.2017.11.021_bib0035) 2016
Louen (10.1016/j.ress.2017.11.021_bib0050) 2013
Babu (10.1016/j.ress.2017.11.021_bib0031) 2016
Szegedy (10.1016/j.ress.2017.11.021_bib0034) 2015
Wang (10.1016/j.ress.2017.11.021_bib0020) 2004; 18
Lee (10.1016/j.ress.2017.11.021_bib0003) 2014; 42
Benkedjouh (10.1016/j.ress.2017.11.021_bib0012) 2013; 26
Rumelhart (10.1016/j.ress.2017.11.021_bib0039) 1986; 323
Heimes (10.1016/j.ress.2017.11.021_bib0005) 2008
Fink (10.1016/j.ress.2017.11.021_bib0018) 2014; 121
Gebraeel (10.1016/j.ress.2017.11.021_bib0011) 2004; 51
Lim (10.1016/j.ress.2017.11.021_bib0051) 2016
Khawaja (10.1016/j.ress.2017.11.021_bib0019) 2005
Zhao (10.1016/j.ress.2017.11.021_bib0023) 2016
Krizhevsky (10.1016/j.ress.2017.11.021_bib0025) 2012; 2
Azadeh (10.1016/j.ress.2017.11.021_bib0001) 2015; 142
Baraldi (10.1016/j.ress.2017.11.021_bib0014) 2013; 41
Huang (10.1016/j.ress.2017.11.021_bib0016) 2007; 21
Xu (10.1016/j.ress.2017.11.021_bib0032) 2014; 14
Abdel-Hamid (10.1016/j.ress.2017.11.021_bib0033) 2012
Guo (10.1016/j.ress.2017.11.021_bib0046) 2017; 240
Ramasso (10.1016/j.ress.2017.11.021_bib0042) 2014; 5
Coble (10.1016/j.ress.2017.11.021_bib0043) 2008
Malhi (10.1016/j.ress.2017.11.021_bib0021) 2011; 60
Saxena (10.1016/j.ress.2017.11.021_bib0030) 2008
Wang (10.1016/j.ress.2017.11.021_bib0044) 2012; 28
Heng (10.1016/j.ress.2017.11.021_bib0006) 2009; 23
References_xml – start-page: 1
  year: 2008
  end-page: 11
  ident: bib0043
  article-title: Prognostic algorithm categorization with PHM challenge application
  publication-title: Proceedings of international conference on prognostics and health management
– volume: 25
  start-page: 1803
  year: 2011
  end-page: 1836
  ident: bib0015
  article-title: Prognostic modelling options for remaining useful life estimation by industry
  publication-title: Mech Syst Signal Process
– volume: 83
  start-page: 549
  year: 2017
  end-page: 567
  ident: bib0007
  article-title: A multi-time scale approach to remaining useful life prediction in rolling bearing
  publication-title: Mech Syst Signal Process
– volume: 89
  start-page: 171
  year: 2016
  end-page: 178
  ident: bib0036
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
– volume: 1
  start-page: 448
  year: 2015
  end-page: 456
  ident: bib0048
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proceedings of 32nd International Conference on Machine Learning
– start-page: 228
  year: 2013
  end-page: 233
  ident: bib0050
  article-title: A new framework for remaining useful life estimation using support vector machine classifier
  publication-title: Proceedings of IEEE Conference on Control and Fault-Tolerant Systems
– start-page: 214
  year: 2016
  end-page: 228
  ident: bib0031
  article-title: Deep convolutional neural network based regression approach for estimation of remaining useful life
  publication-title: Database systems for advanced applications: 21st international conference
– volume: 93
  start-page: 490
  year: 2016
  end-page: 502
  ident: bib0045
  article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
  publication-title: Measurement
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0034
  article-title: Going deeper with convolutions
  publication-title: Proceedings of IEEE conference on computer vision and pattern recognition
– volume: 23
  start-page: 724
  year: 2009
  end-page: 739
  ident: bib0006
  article-title: Rotating machinery prognostics: state of the art, challenges and opportunities
  publication-title: Mech Syst Signal Process
– volume: 7273
  start-page: 2
  year: 2016
  end-page: 31
  ident: bib0008
  article-title: Particle filter-based prognostics: review, discussion and perspectives
  publication-title: Mech Syst Signal Process
– reference: 2016;.
– start-page: 1
  year: 2012
  end-page: 7
  ident: bib0049
  article-title: A modified echo state network based remaining useful life estimation approach
  publication-title: Proceedings of IEEE Conference on Prognostics and Health Management
– start-page: 1
  year: 2008
  end-page: 9
  ident: bib0030
  article-title: Damage propagation modeling for aircraft engine run-to-failure simulation
  publication-title: Proceedings of International Conference on Prognostics and Health Management
– volume: 5657
  start-page: 150
  year: 2015
  end-page: 172
  ident: bib0010
  article-title: Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network
  publication-title: Mech Syst Signal Process
– start-page: 1
  year: 2016
  end-page: 6
  ident: bib0023
  article-title: Machine health monitoring with LSTM networks
  publication-title: Proceedings of 10th International Conference on Sensing Technology
– start-page: 1746
  year: 2016
  end-page: 1753
  ident: bib0051
  article-title: A time window neural network based framework for remaining useful life estimation
  publication-title: Proceedings of International Joint Conference on Neural Networks
– volume: 2
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0025
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proceedings of 26th Annual Conference on Neural Information Processing Systems
– start-page: 4293
  year: 2014
  end-page: 4298
  ident: bib0037
  article-title: Regularized hierarchical feature learning with non-negative sparsity and selectivity for image classification
  publication-title: Proceedings of 22nd Int Conf Pattern Recognit
– year: 2008
  ident: bib0041
  article-title: Turbofan engine degradation simulation data set
  publication-title: NASA Ames Prognostics Data Repository
– volume: 164
  start-page: 74
  year: 2017
  end-page: 83
  ident: bib0002
  article-title: Remaining useful life prediction of aircraft engine based on degradation pattern learning
  publication-title: Reliabil Eng Syst Saf
– volume: 240
  start-page: 98
  year: 2017
  end-page: 109
  ident: bib0046
  article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings
  publication-title: Neurocomputing
– volume: 26
  start-page: 1751
  year: 2013
  end-page: 1760
  ident: bib0012
  article-title: Remaining useful life estimation based on nonlinear feature reduction and support vector regression
  publication-title: Eng Appl Artif Intell
– volume: 63
  start-page: 7076
  year: 2016
  end-page: 7083
  ident: bib0028
  article-title: Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment
  publication-title: IEEE Trans Ind Electron
– volume: 51
  start-page: 694
  year: 2004
  end-page: 700
  ident: bib0011
  article-title: Residual life predictions from vibration-based degradation signals: a neural network approach
  publication-title: IEEE Trans Ind Electron
– reference: Malhotra P., TV V., Ramakrishnan A., Anand G., Vig L., Agarwal P., et al. Multi-sensor prognostics using an unsupervised health index based on LSTM encoder-decoder. arXiv preprint
– reference: Kingma D., Ba J.. Adam: a method for stochastic optimization. arXiv preprint
– volume: 28
  start-page: 622
  year: 2012
  end-page: 637
  ident: bib0044
  article-title: A generic probabilistic framework for structural health prognostics and uncertainty management
  publication-title: Mech Syst Signal Process
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: bib0026
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process Mag
– start-page: 1
  year: 2008
  end-page: 6
  ident: bib0005
  article-title: Recurrent neural networks for remaining useful life estimation
  publication-title: Proceedings of international conference on prognostics and health management
– volume: 5
  start-page: 005
  year: 2014
  ident: bib0042
  article-title: Investigating computational geometry for failure prognostics
  publication-title: Int J Prognostics Health Manage
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: bib0039
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– reference: 2014;.
– volume: 42
  start-page: 314
  year: 2014
  end-page: 334
  ident: bib0003
  article-title: Prognostics and health management design for rotary machinery systems - reviews, methodology and applications
  publication-title: Mech Syst Signal Process
– volume: 14
  start-page: 1124
  year: 2014
  end-page: 1132
  ident: bib0032
  article-title: PHM-oriented integrated fusion prognostics for aircraft engines based on sensor data
  publication-title: IEEE Sensors J
– start-page: 7
  year: 2005
  end-page: 12
  ident: bib0019
  article-title: Reasoning about uncertainty in prognosis: a confidence prediction neural network approach
  publication-title: Proceedings of Annual Meeting of the North American Fuzzy Information Processing Society
– volume: 121
  start-page: 198
  year: 2014
  end-page: 206
  ident: bib0018
  article-title: Predicting component reliability and level of degradation with complex-valued neural networks
  publication-title: Reliabil Eng Syst Saf
– volume: 313
  start-page: 504
  year: 2006
  ident: bib0024
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 31
  start-page: 309
  year: 2009
  end-page: 322
  ident: bib0004
  article-title: Physics-of-failure-based prognostics for electronic products
  publication-title: Trans Inst Meas Control
– volume: PP
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib0029
  article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics
  publication-title: IEEE Trans Neural Netw Learn Syst
– start-page: 4277
  year: 2012
  end-page: 4280
  ident: bib0033
  article-title: Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition
  publication-title: Proceedings of IEEE international conference on acoustics, speech and signal processing
– volume: 148
  start-page: 78
  year: 2016
  end-page: 95
  ident: bib0009
  article-title: Degradations analysis and aging modeling for health assessment and prognostics of PEMFC
  publication-title: Reliabil Eng Syst Saf
– volume: 21
  start-page: 2248
  year: 2007
  end-page: 2266
  ident: bib0013
  article-title: A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology
  publication-title: Mech Syst Signal Process
– volume: 142
  start-page: 357
  year: 2015
  end-page: 368
  ident: bib0001
  article-title: Condition-based maintenance effectiveness for series-parallel power generation system - a combined Markovian simulation model
  publication-title: Reliabil Eng Syst Saf
– volume: 23
  start-page: 227
  year: 2012
  end-page: 237
  ident: bib0017
  article-title: An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring
  publication-title: J Intell Manuf
– volume: 21
  start-page: 193
  year: 2007
  end-page: 207
  ident: bib0016
  article-title: Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods
  publication-title: Mech Syst Signal Process
– start-page: 135
  year: 2016
  end-page: 140
  ident: bib0022
  article-title: Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network
  publication-title: Proceedings of IEEE International Conference on Aircraft Utility Systems
– volume: 9
  start-page: 249
  year: 2010
  end-page: 256
  ident: bib0038
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: J Mach Learn Res
– volume: 60
  start-page: 703
  year: 2011
  end-page: 711
  ident: bib0021
  article-title: Prognosis of defect propagation based on recurrent neural networks
  publication-title: IEEE Trans Instrum Meas
– start-page: 154
  year: 2016
  end-page: 169
  ident: bib0035
  article-title: Single image dehazing via multi-scale convolutional neural networks
  publication-title: European conference on computer vision
– volume: 41
  start-page: 288
  year: 2013
  end-page: 300
  ident: bib0014
  article-title: Ensemble neural network-based particle filtering for prognostics
  publication-title: Mech Syst Signal Process
– volume: 18
  start-page: 813
  year: 2004
  end-page: 831
  ident: bib0020
  article-title: Prognosis of machine health condition using neuro-fuzzy systems
  publication-title: Mech Syst Signal Process
– volume: 43, Part 2
  start-page: 248
  year: 2017
  end-page: 256
  ident: bib0027
  article-title: Multi-bearing remaining useful life collaborative prediction: a deep learning approach
  publication-title: J Manuf Syst
– volume: 93
  start-page: 490
  year: 2016
  ident: 10.1016/j.ress.2017.11.021_bib0045
  article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.07.054
– start-page: 4277
  year: 2012
  ident: 10.1016/j.ress.2017.11.021_bib0033
  article-title: Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition
– volume: 51
  start-page: 694
  issue: 3
  year: 2004
  ident: 10.1016/j.ress.2017.11.021_bib0011
  article-title: Residual life predictions from vibration-based degradation signals: a neural network approach
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2004.824875
– volume: 31
  start-page: 309
  issue: 3–4
  year: 2009
  ident: 10.1016/j.ress.2017.11.021_bib0004
  article-title: Physics-of-failure-based prognostics for electronic products
  publication-title: Trans Inst Meas Control
  doi: 10.1177/0142331208092031
– start-page: 4293
  year: 2014
  ident: 10.1016/j.ress.2017.11.021_bib0037
  article-title: Regularized hierarchical feature learning with non-negative sparsity and selectivity for image classification
– volume: 5657
  start-page: 150
  year: 2015
  ident: 10.1016/j.ress.2017.11.021_bib0010
  article-title: Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network
  publication-title: Mech Syst Signal Process
– volume: 63
  start-page: 7076
  issue: 11
  year: 2016
  ident: 10.1016/j.ress.2017.11.021_bib0028
  article-title: Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2016.2586442
– start-page: 154
  year: 2016
  ident: 10.1016/j.ress.2017.11.021_bib0035
  article-title: Single image dehazing via multi-scale convolutional neural networks
– volume: 240
  start-page: 98
  year: 2017
  ident: 10.1016/j.ress.2017.11.021_bib0046
  article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.045
– volume: 23
  start-page: 724
  issue: 3
  year: 2009
  ident: 10.1016/j.ress.2017.11.021_bib0006
  article-title: Rotating machinery prognostics: state of the art, challenges and opportunities
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2008.06.009
– volume: 41
  start-page: 288
  issue: 1–2
  year: 2013
  ident: 10.1016/j.ress.2017.11.021_bib0014
  article-title: Ensemble neural network-based particle filtering for prognostics
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2013.07.010
– start-page: 1746
  year: 2016
  ident: 10.1016/j.ress.2017.11.021_bib0051
  article-title: A time window neural network based framework for remaining useful life estimation
– start-page: 228
  year: 2013
  ident: 10.1016/j.ress.2017.11.021_bib0050
  article-title: A new framework for remaining useful life estimation using support vector machine classifier
– start-page: 1
  year: 2015
  ident: 10.1016/j.ress.2017.11.021_bib0034
  article-title: Going deeper with convolutions
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.ress.2017.11.021_bib0024
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 1
  start-page: 448
  year: 2015
  ident: 10.1016/j.ress.2017.11.021_sbref0046
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– ident: 10.1016/j.ress.2017.11.021_bib0047
– volume: 60
  start-page: 703
  issue: 3
  year: 2011
  ident: 10.1016/j.ress.2017.11.021_bib0021
  article-title: Prognosis of defect propagation based on recurrent neural networks
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2010.2078296
– volume: 148
  start-page: 78
  year: 2016
  ident: 10.1016/j.ress.2017.11.021_bib0009
  article-title: Degradations analysis and aging modeling for health assessment and prognostics of PEMFC
  publication-title: Reliabil Eng Syst Saf
  doi: 10.1016/j.ress.2015.12.003
– volume: 14
  start-page: 1124
  issue: 4
  year: 2014
  ident: 10.1016/j.ress.2017.11.021_bib0032
  article-title: PHM-oriented integrated fusion prognostics for aircraft engines based on sensor data
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2013.2293517
– volume: 2
  start-page: 1097
  year: 2012
  ident: 10.1016/j.ress.2017.11.021_bib0025
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 43, Part 2
  start-page: 248
  year: 2017
  ident: 10.1016/j.ress.2017.11.021_bib0027
  article-title: Multi-bearing remaining useful life collaborative prediction: a deep learning approach
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2017.02.013
– volume: 42
  start-page: 314
  issue: 1–2
  year: 2014
  ident: 10.1016/j.ress.2017.11.021_bib0003
  article-title: Prognostics and health management design for rotary machinery systems - reviews, methodology and applications
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2013.06.004
– volume: 25
  start-page: 1803
  issue: 5
  year: 2011
  ident: 10.1016/j.ress.2017.11.021_bib0015
  article-title: Prognostic modelling options for remaining useful life estimation by industry
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2010.11.018
– volume: 26
  start-page: 1751
  issue: 7
  year: 2013
  ident: 10.1016/j.ress.2017.11.021_bib0012
  article-title: Remaining useful life estimation based on nonlinear feature reduction and support vector regression
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2013.02.006
– start-page: 1
  year: 2016
  ident: 10.1016/j.ress.2017.11.021_bib0023
  article-title: Machine health monitoring with LSTM networks
– volume: 89
  start-page: 171
  year: 2016
  ident: 10.1016/j.ress.2017.11.021_bib0036
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.04.007
– volume: 21
  start-page: 2248
  issue: 5
  year: 2007
  ident: 10.1016/j.ress.2017.11.021_bib0013
  article-title: A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2006.10.001
– start-page: 1
  year: 2008
  ident: 10.1016/j.ress.2017.11.021_bib0005
  article-title: Recurrent neural networks for remaining useful life estimation
– volume: 83
  start-page: 549
  year: 2017
  ident: 10.1016/j.ress.2017.11.021_bib0007
  article-title: A multi-time scale approach to remaining useful life prediction in rolling bearing
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.06.031
– volume: 142
  start-page: 357
  year: 2015
  ident: 10.1016/j.ress.2017.11.021_bib0001
  article-title: Condition-based maintenance effectiveness for series-parallel power generation system - a combined Markovian simulation model
  publication-title: Reliabil Eng Syst Saf
  doi: 10.1016/j.ress.2015.04.009
– volume: 23
  start-page: 227
  issue: 2
  year: 2012
  ident: 10.1016/j.ress.2017.11.021_bib0017
  article-title: An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-009-0356-9
– volume: 28
  start-page: 622
  year: 2012
  ident: 10.1016/j.ress.2017.11.021_bib0044
  article-title: A generic probabilistic framework for structural health prognostics and uncertainty management
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2011.10.019
– volume: 121
  start-page: 198
  year: 2014
  ident: 10.1016/j.ress.2017.11.021_bib0018
  article-title: Predicting component reliability and level of degradation with complex-valued neural networks
  publication-title: Reliabil Eng Syst Saf
  doi: 10.1016/j.ress.2013.08.004
– volume: 18
  start-page: 813
  issue: 4
  year: 2004
  ident: 10.1016/j.ress.2017.11.021_bib0020
  article-title: Prognosis of machine health condition using neuro-fuzzy systems
  publication-title: Mech Syst Signal Process
  doi: 10.1016/S0888-3270(03)00079-7
– volume: 9
  start-page: 249
  year: 2010
  ident: 10.1016/j.ress.2017.11.021_bib0038
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: J Mach Learn Res
– start-page: 1
  year: 2012
  ident: 10.1016/j.ress.2017.11.021_bib0049
  article-title: A modified echo state network based remaining useful life estimation approach
– volume: 5
  start-page: 005
  issue: 1
  year: 2014
  ident: 10.1016/j.ress.2017.11.021_bib0042
  article-title: Investigating computational geometry for failure prognostics
  publication-title: Int J Prognostics Health Manage
– start-page: 135
  year: 2016
  ident: 10.1016/j.ress.2017.11.021_bib0022
  article-title: Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network
– start-page: 1
  year: 2008
  ident: 10.1016/j.ress.2017.11.021_bib0043
  article-title: Prognostic algorithm categorization with PHM challenge application
– volume: 164
  start-page: 74
  year: 2017
  ident: 10.1016/j.ress.2017.11.021_bib0002
  article-title: Remaining useful life prediction of aircraft engine based on degradation pattern learning
  publication-title: Reliabil Eng Syst Saf
  doi: 10.1016/j.ress.2017.02.007
– volume: 21
  start-page: 193
  issue: 1
  year: 2007
  ident: 10.1016/j.ress.2017.11.021_bib0016
  article-title: Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2005.11.008
– volume: 7273
  start-page: 2
  year: 2016
  ident: 10.1016/j.ress.2017.11.021_bib0008
  article-title: Particle filter-based prognostics: review, discussion and perspectives
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.11.008
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.ress.2017.11.021_bib0039
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 10.1016/j.ress.2017.11.021_bib0026
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2205597
– volume: PP
  start-page: 1
  issue: 99
  year: 2016
  ident: 10.1016/j.ress.2017.11.021_bib0029
  article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics
  publication-title: IEEE Trans Neural Netw Learn Syst
– start-page: 214
  year: 2016
  ident: 10.1016/j.ress.2017.11.021_bib0031
  article-title: Deep convolutional neural network based regression approach for estimation of remaining useful life
– start-page: 7
  year: 2005
  ident: 10.1016/j.ress.2017.11.021_bib0019
  article-title: Reasoning about uncertainty in prognosis: a confidence prediction neural network approach
– start-page: 1
  year: 2008
  ident: 10.1016/j.ress.2017.11.021_bib0030
  article-title: Damage propagation modeling for aircraft engine run-to-failure simulation
– ident: 10.1016/j.ress.2017.11.021_bib0040
– year: 2008
  ident: 10.1016/j.ress.2017.11.021_sbref0040
  article-title: Turbofan engine degradation simulation data set
SSID ssj0004957
Score 2.6990469
Snippet •Propose a novel deep convolutional neural network-based method for remaining useful life predictions.•No prior expertise on prognostics and signal processing...
Traditionally, system prognostics and health management (PHM) depends on sufficient prior knowledge of critical components degradation process in order to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Components
Convolution
Convolution neural network
Critical components
Data processing
Deep learning
Feature extraction
Information processing
Neural networks
Prognostics and health management
Reliability engineering
Remaining useful life
Sample preparation
Signal processing
Studies
Useful life
Windows (intervals)
Title Remaining useful life estimation in prognostics using deep convolution neural networks
URI https://dx.doi.org/10.1016/j.ress.2017.11.021
https://www.proquest.com/docview/2024404141
Volume 172
WOSCitedRecordID wos000424960000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZQywEOiKcoFOQDtyjVOnFi-1ihIuBQ8Shob5Hj2GirNrva7KLy75mxnQeLWtEDlyjyxpaz82U8mXz-hpA3MwfraOlU6rJcpLwxKtXGubTMbeG4EqY02hebEKencj5Xn-IX086XExBtK6-u1Oq_mhrawNi4dfYW5h4GhQY4B6PDEcwOx38y_Bd7Gao-JNvOIgP5YuFsgmIaYZei542vl0iw8xLNW58taKxdeQp6nFuCQpdgvjbQxLtpEIs05iDv_Suxo56hR1FQhk467aLAiGf7eMrAHJD4YwicYy2VzxN4ft2GjSLQlEL7cpqRYHJCZOlTiywFTzH7w8uGCj3RT7LJghuc7V-uPGQVzo8w64AUPHGEaqsZGxeu_mP9zno2sAx7Att5hWNUOAa88FQz1B3Yz0ShwAvuH384mX8cd9KqoA3b30HcZhUYgbszuS6U2VnUfaRy9pA8iK8Y9DhA4xG5Y9vH5P5EePIJ-T6AhAaQUAQJHUFCFy2dgIR6kFAECZ2AhAaQ0B4kT8m3dydnb9-nscJGanLFN2mD8TrXuXROGesa6ZioVcbyspa5NEapopYF57pwupZOWgiXrS5rxrQRQjb5M7LXLlv7nFBTQKSdmcwZAx24koZx5uqZ4lq6xooDwvo_qzJRfh6roFxU15vpgCRDn1UQX7nx6qK3QRXDxxAWVgCpG_sd9gar4nOMv2eonAn38OJWk3hJ7o2PxCHZ26y39hW5a35uFt36dYTbb9h_n9M
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+useful+life+estimation+in+prognostics+using+deep+convolution+neural+networks&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Li%2C+Xiang&rft.au=Ding%2C+Qian&rft.au=Sun%2C+Jian-Qiao&rft.date=2018-04-01&rft.issn=0951-8320&rft.volume=172&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1016%2Fj.ress.2017.11.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2017_11_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon