Remaining useful life estimation in prognostics using deep convolution neural networks
•Propose a novel deep convolutional neural network-based method for remaining useful life predictions.•No prior expertise on prognostics and signal processing is required, that facilitates the application of the proposed method.•Effects of the key factors on the prognostic performance are widely inv...
Uložené v:
| Vydané v: | Reliability engineering & system safety Ročník 172; s. 1 - 11 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Barking
Elsevier Ltd
01.04.2018
Elsevier BV |
| Predmet: | |
| ISSN: | 0951-8320, 1879-0836 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Propose a novel deep convolutional neural network-based method for remaining useful life predictions.•No prior expertise on prognostics and signal processing is required, that facilitates the application of the proposed method.•Effects of the key factors on the prognostic performance are widely investigated and the model parameters are optimized.•Experiments on a popular aero-engine degradation dataset (C-MAPSS) and comparisons with the related state-of-the-art results validate the effectiveness and superiority of the proposed method.
Traditionally, system prognostics and health management (PHM) depends on sufficient prior knowledge of critical components degradation process in order to predict the remaining useful life (RUL). However, the accurate physical or expert models are not available in most cases. This paper proposes a new data-driven approach for prognostics using deep convolution neural networks (DCNN). Time window approach is employed for sample preparation in order for better feature extraction by DCNN. Raw collected data with normalization are directly used as inputs to the proposed network, and no prior expertise on prognostics and signal processing is required, that facilitates the application of the proposed method. In order to show the effectiveness of the proposed approach, experiments on the popular C-MAPSS dataset for aero-engine unit prognostics are carried out. High prognostic accuracy on the RUL estimation is achieved. The superiority of the proposed method is demonstrated by comparisons with other popular approaches and the state-of-the-art results on the same dataset. The results of this study suggest that the proposed data-driven prognostic method offers a new and promising approach. |
|---|---|
| AbstractList | Traditionally, system prognostics and health management (PHM) depends on sufficient prior knowledge of critical components degradation process in order to predict (he remaining useful life (RUL). However, the accurate physical or expert models are not available in most cases. This paper proposes a new data-driven approach for prognostics using deep convolution neural networks (DCNN). Time window approach is employed for sample preparation in order for better feature extraction by DCNN. Raw collected data with normalization are directly used as inputs to the proposed network, and no prior expertise on prognostics and signal processing is required, that facilitates the application of the proposed method. In order to show the effectiveness of the proposed approach, experiments on the popular C-MAPSS dataset for aero-engine unit prognostics are carried out. High prognostic accuracy on the RUL estimation is achieved. The superiority of the proposed method is demonstrated by comparisons with other popular approaches and the state-of-the-art results on the same dataset. The results of this study suggest that the proposed data-driven prognostic method offers a new and promising approach. •Propose a novel deep convolutional neural network-based method for remaining useful life predictions.•No prior expertise on prognostics and signal processing is required, that facilitates the application of the proposed method.•Effects of the key factors on the prognostic performance are widely investigated and the model parameters are optimized.•Experiments on a popular aero-engine degradation dataset (C-MAPSS) and comparisons with the related state-of-the-art results validate the effectiveness and superiority of the proposed method. Traditionally, system prognostics and health management (PHM) depends on sufficient prior knowledge of critical components degradation process in order to predict the remaining useful life (RUL). However, the accurate physical or expert models are not available in most cases. This paper proposes a new data-driven approach for prognostics using deep convolution neural networks (DCNN). Time window approach is employed for sample preparation in order for better feature extraction by DCNN. Raw collected data with normalization are directly used as inputs to the proposed network, and no prior expertise on prognostics and signal processing is required, that facilitates the application of the proposed method. In order to show the effectiveness of the proposed approach, experiments on the popular C-MAPSS dataset for aero-engine unit prognostics are carried out. High prognostic accuracy on the RUL estimation is achieved. The superiority of the proposed method is demonstrated by comparisons with other popular approaches and the state-of-the-art results on the same dataset. The results of this study suggest that the proposed data-driven prognostic method offers a new and promising approach. |
| Author | Ding, Qian Sun, Jian-Qiao Li, Xiang |
| Author_xml | – sequence: 1 givenname: Xiang surname: Li fullname: Li, Xiang email: xiangli@mail.neu.edu.cn organization: College of Sciences, Northeastern University, Shenyang 110819, China – sequence: 2 givenname: Qian surname: Ding fullname: Ding, Qian organization: Department of Mechanics, Tianjin University, Tianjin 300072, China – sequence: 3 givenname: Jian-Qiao surname: Sun fullname: Sun, Jian-Qiao organization: School of Engineering, University of California, Merced, CA 95343, USA |
| BookMark | eNp9kF1LwzAUhoNMcJv-Aa8KXrfmtGmbgjcy_AJBEPU2pOnJyOySmbQT_73Z5pUXuzpweJ_z8czIxDqLhFwCzYBCdb3KPIaQ5RTqDCCjOZyQKfC6SSkvqgmZ0qaElBc5PSOzEFaUUtaU9ZR8vOJaGmvsMhkD6rFPeqMxwTCYtRyMs4mxyca7pXWxpUJM7bId4iZRzm5dP-5TFkcv-1iGb-c_wzk51bIPePFX5-T9_u5t8Zg-vzw8LW6fU1U0bEi7ktGSyYJr3SjUHddQt00ORdXygivVNGXLS8ZkqWXLNUdaViirFkCquuZdMSdXh7nxxK8xXi1WbvQ2rhQ5zRmjDBjEVH5IKe9C8KjFxsf3_I8AKnb-xErs_ImdPwEgor8I8X-QMsNeyeCl6Y-jNwcU4-tbg14EZdAq7IxHNYjOmWP4L9Jlj-Q |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2019_107116 crossref_primary_10_1016_j_measurement_2023_113098 crossref_primary_10_1016_j_asoc_2022_108879 crossref_primary_10_1093_mnras_stab1981 crossref_primary_10_1016_j_comcom_2020_05_035 crossref_primary_10_1016_j_engappai_2025_110072 crossref_primary_10_1177_00202940231214868 crossref_primary_10_1088_1742_6596_2386_1_012027 crossref_primary_10_1088_2631_8695_ad68c9 crossref_primary_10_1016_j_engappai_2023_106491 crossref_primary_10_1109_ACCESS_2024_3435972 crossref_primary_10_1016_j_cie_2023_109433 crossref_primary_10_1016_j_artint_2022_103667 crossref_primary_10_1088_1361_6501_ad3ea0 crossref_primary_10_1155_2023_1830694 crossref_primary_10_1109_TNNLS_2020_2977132 crossref_primary_10_3390_sym16040455 crossref_primary_10_1007_s42979_023_02320_z crossref_primary_10_1109_TIM_2021_3085935 crossref_primary_10_1088_1361_6501_ad3ea6 crossref_primary_10_1007_s10845_018_1456_1 crossref_primary_10_1088_1361_6501_adfcfb crossref_primary_10_1109_TIE_2021_3053882 crossref_primary_10_1177_14759217251333312 crossref_primary_10_1016_j_engappai_2024_108965 crossref_primary_10_3390_app15179813 crossref_primary_10_1016_j_engappai_2024_109815 crossref_primary_10_1016_j_compind_2022_103762 crossref_primary_10_1016_j_ijepes_2019_02_046 crossref_primary_10_1016_j_cie_2025_111064 crossref_primary_10_1109_TNSE_2022_3163473 crossref_primary_10_1016_j_measurement_2021_110276 crossref_primary_10_1109_TAI_2024_3400929 crossref_primary_10_1016_j_ress_2023_109741 crossref_primary_10_1016_j_rser_2019_109405 crossref_primary_10_1109_JSYST_2022_3183134 crossref_primary_10_1155_2022_1588638 crossref_primary_10_3390_machines10060422 crossref_primary_10_3390_pr9060922 crossref_primary_10_3390_machines13090807 crossref_primary_10_1177_1748006X21990527 crossref_primary_10_3390_machines13090802 crossref_primary_10_1007_s10489_023_04777_0 crossref_primary_10_1016_j_ymssp_2019_106443 crossref_primary_10_1109_TII_2019_2927590 crossref_primary_10_1016_j_cie_2020_106536 crossref_primary_10_1016_j_ress_2023_109511 crossref_primary_10_1016_j_aei_2021_101396 crossref_primary_10_1016_j_engappai_2025_110099 crossref_primary_10_1016_j_ress_2023_109514 crossref_primary_10_1016_j_ins_2020_12_032 crossref_primary_10_1177_14759217231181678 crossref_primary_10_1016_j_engappai_2023_106687 crossref_primary_10_1109_ACCESS_2020_2990528 crossref_primary_10_1109_TIM_2022_3204089 crossref_primary_10_1109_ACCESS_2019_2919566 crossref_primary_10_1109_TII_2021_3138510 crossref_primary_10_3390_machines12120909 crossref_primary_10_1016_j_flowmeasinst_2022_102140 crossref_primary_10_3390_aerospace9060309 crossref_primary_10_1088_1361_6501_ad38d4 crossref_primary_10_1088_1742_6596_1881_2_022018 crossref_primary_10_1109_ACCESS_2025_3551772 crossref_primary_10_3390_aerospace9070341 crossref_primary_10_1016_j_procir_2023_06_021 crossref_primary_10_1016_j_rsase_2023_101117 crossref_primary_10_1088_1361_6501_ac793f crossref_primary_10_1016_j_engappai_2021_104552 crossref_primary_10_3390_infrastructures8110162 crossref_primary_10_1155_2020_5357146 crossref_primary_10_1016_j_measurement_2023_112816 crossref_primary_10_3390_en13205447 crossref_primary_10_1016_j_aei_2023_101973 crossref_primary_10_1016_j_ifacol_2020_12_2795 crossref_primary_10_1109_TIM_2021_3072670 crossref_primary_10_3233_JIFS_189250 crossref_primary_10_1016_j_measurement_2020_108707 crossref_primary_10_1016_j_ress_2021_108082 crossref_primary_10_1016_j_ress_2023_109333 crossref_primary_10_1109_TCYB_2022_3164683 crossref_primary_10_1016_j_neunet_2025_107161 crossref_primary_10_3390_s20216011 crossref_primary_10_1016_j_engappai_2023_107519 crossref_primary_10_1016_j_isatra_2020_05_002 crossref_primary_10_1016_j_jmsy_2024_02_011 crossref_primary_10_1088_1361_6501_acb83e crossref_primary_10_7717_peerj_cs_690 crossref_primary_10_3390_machines12120923 crossref_primary_10_1002_eng2_12305 crossref_primary_10_1016_j_aei_2023_101966 crossref_primary_10_1109_TIM_2024_3398070 crossref_primary_10_1063_5_0216417 crossref_primary_10_1016_j_measurement_2023_112824 crossref_primary_10_1155_2022_2249417 crossref_primary_10_1016_j_compind_2022_103716 crossref_primary_10_1155_2020_9601389 crossref_primary_10_1155_2021_3083190 crossref_primary_10_1016_j_compind_2024_104172 crossref_primary_10_1016_j_isatra_2021_03_045 crossref_primary_10_1016_j_ress_2025_110902 crossref_primary_10_1109_ACCESS_2024_3491866 crossref_primary_10_1016_j_mechmachtheory_2018_11_005 crossref_primary_10_1051_itmconf_20235703004 crossref_primary_10_1016_j_ress_2023_109319 crossref_primary_10_1109_TAI_2023_3279808 crossref_primary_10_1016_j_ress_2023_109798 crossref_primary_10_1016_j_aei_2020_101054 crossref_primary_10_1016_j_cie_2023_108999 crossref_primary_10_1109_ACCESS_2020_3032430 crossref_primary_10_1088_1361_6501_ac7f7f crossref_primary_10_1016_j_cie_2023_109605 crossref_primary_10_1088_1361_6501_ade552 crossref_primary_10_1007_s42401_020_00070_x crossref_primary_10_1016_j_ress_2021_107864 crossref_primary_10_1016_j_iswa_2021_200049 crossref_primary_10_1016_j_mfglet_2023_08_037 crossref_primary_10_1088_1361_6501_ade556 crossref_primary_10_1016_j_asoc_2023_110836 crossref_primary_10_1080_10589759_2025_2558066 crossref_primary_10_1088_1361_6501_aca8c2 crossref_primary_10_3390_electronics11071125 crossref_primary_10_1007_s00170_022_09280_3 crossref_primary_10_1109_JSEN_2024_3523335 crossref_primary_10_1007_s10845_024_02352_z crossref_primary_10_1109_TIM_2025_3561378 crossref_primary_10_1016_j_ress_2024_110651 crossref_primary_10_1109_TII_2018_2866549 crossref_primary_10_1016_j_ress_2024_110652 crossref_primary_10_1016_j_ress_2021_107878 crossref_primary_10_1142_S0218539325500111 crossref_primary_10_1007_s10845_024_02398_z crossref_primary_10_1088_1361_6501_ab6671 crossref_primary_10_1016_j_knosys_2025_114214 crossref_primary_10_1016_j_ress_2021_107871 crossref_primary_10_1016_j_ress_2025_110919 crossref_primary_10_1177_09544100211050432 crossref_primary_10_3390_act11030067 crossref_primary_10_1016_j_neucom_2018_05_021 crossref_primary_10_1016_j_ress_2022_109078 crossref_primary_10_1016_j_inffus_2025_103427 crossref_primary_10_1016_j_jmsy_2021_03_012 crossref_primary_10_1016_j_ymssp_2025_113200 crossref_primary_10_1109_TNNLS_2021_3084249 crossref_primary_10_1109_ACCESS_2023_3263196 crossref_primary_10_1109_TIM_2021_3064810 crossref_primary_10_1016_j_cie_2022_108211 crossref_primary_10_1109_JSEN_2021_3119151 crossref_primary_10_1016_j_isatra_2018_12_025 crossref_primary_10_1038_s41598_024_66377_3 crossref_primary_10_1016_j_compind_2023_103888 crossref_primary_10_1088_1742_6596_1648_4_042086 crossref_primary_10_1109_TII_2021_3126309 crossref_primary_10_1109_JSTARS_2024_3378298 crossref_primary_10_1109_TR_2019_2948705 crossref_primary_10_3390_app11114773 crossref_primary_10_3233_JIFS_210740 crossref_primary_10_1016_j_ress_2021_107646 crossref_primary_10_3390_s22155680 crossref_primary_10_1088_1361_6501_ad78f5 crossref_primary_10_1109_TASE_2025_3530845 crossref_primary_10_1007_s12206_019_0504_x crossref_primary_10_1016_j_ress_2023_109344 crossref_primary_10_3390_machines10020140 crossref_primary_10_1109_ACCESS_2023_3304699 crossref_primary_10_1111_ffe_14291 crossref_primary_10_1109_TASE_2019_2961714 crossref_primary_10_1016_j_ymssp_2020_107600 crossref_primary_10_3390_s22103803 crossref_primary_10_1016_j_measurement_2020_108052 crossref_primary_10_1016_j_heliyon_2024_e35925 crossref_primary_10_1177_16878132241239802 crossref_primary_10_1007_s10845_023_02077_5 crossref_primary_10_1016_j_ress_2023_109357 crossref_primary_10_1016_j_ress_2024_110632 crossref_primary_10_1088_1361_6501_ade324 crossref_primary_10_1007_s12206_021_1109_8 crossref_primary_10_1109_ACCESS_2020_3003909 crossref_primary_10_1016_j_ress_2022_109051 crossref_primary_10_3390_s20030723 crossref_primary_10_1016_j_ress_2024_110685 crossref_primary_10_1016_j_engfailanal_2021_105385 crossref_primary_10_1016_j_aei_2024_102958 crossref_primary_10_3390_s21227655 crossref_primary_10_1007_s12046_022_01929_9 crossref_primary_10_1016_j_neucom_2024_127930 crossref_primary_10_1109_TNNLS_2020_3026644 crossref_primary_10_1016_j_ymssp_2023_110646 crossref_primary_10_1109_JIOT_2024_3363610 crossref_primary_10_1016_j_ress_2023_109167 crossref_primary_10_1038_s41598_021_03835_2 crossref_primary_10_3390_s25123810 crossref_primary_10_1016_j_ress_2023_109163 crossref_primary_10_1109_TIM_2021_3132374 crossref_primary_10_1016_j_ress_2023_109181 crossref_primary_10_3390_app10238489 crossref_primary_10_1109_ACCESS_2019_2942991 crossref_primary_10_1109_ACCESS_2020_2966827 crossref_primary_10_3390_sym13101861 crossref_primary_10_1016_j_ress_2024_110451 crossref_primary_10_3390_math12081229 crossref_primary_10_1016_j_ress_2024_110210 crossref_primary_10_1016_j_ifacol_2022_09_554 crossref_primary_10_1002_qre_3308 crossref_primary_10_3390_app15020966 crossref_primary_10_1016_j_procs_2023_03_076 crossref_primary_10_1016_j_sigpro_2019_03_019 crossref_primary_10_1016_j_neucom_2020_09_021 crossref_primary_10_1007_s10489_021_03004_y crossref_primary_10_1016_j_jmsy_2021_10_004 crossref_primary_10_1007_s13198_025_02911_4 crossref_primary_10_3390_s24030824 crossref_primary_10_1007_s10766_019_00650_1 crossref_primary_10_1016_j_asoc_2024_111717 crossref_primary_10_1088_1361_6501_ad6c73 crossref_primary_10_1002_er_6699 crossref_primary_10_1016_j_ress_2019_02_011 crossref_primary_10_1088_1361_6501_ad58ff crossref_primary_10_3390_aerospace11040289 crossref_primary_10_3390_aerospace11090741 crossref_primary_10_1016_j_ymssp_2020_106962 crossref_primary_10_1109_ACCESS_2019_2938227 crossref_primary_10_1155_2021_9976939 crossref_primary_10_1016_j_isatra_2023_11_043 crossref_primary_10_1016_j_isatra_2020_07_003 crossref_primary_10_1016_j_ress_2024_110666 crossref_primary_10_3390_act9030050 crossref_primary_10_3390_machines13090831 crossref_primary_10_1016_j_asoc_2023_110419 crossref_primary_10_1016_j_ress_2023_109141 crossref_primary_10_1016_j_ymssp_2025_113015 crossref_primary_10_3390_s20247109 crossref_primary_10_1016_j_compind_2022_103794 crossref_primary_10_1109_TII_2020_3032690 crossref_primary_10_1007_s40435_020_00675_2 crossref_primary_10_1016_j_measurement_2024_116411 crossref_primary_10_1109_TIM_2021_3053992 crossref_primary_10_1016_j_rser_2022_112159 crossref_primary_10_1109_ACCESS_2021_3101284 crossref_primary_10_1080_20464177_2023_2243748 crossref_primary_10_1109_JSEN_2024_3409617 crossref_primary_10_1038_s41598_023_31532_9 crossref_primary_10_1088_1361_6501_ad2bcc crossref_primary_10_1016_j_measurement_2024_114242 crossref_primary_10_1109_JIOT_2025_3569131 crossref_primary_10_1016_j_ress_2023_109151 crossref_primary_10_1109_TIM_2022_3181307 crossref_primary_10_1002_stc_2811 crossref_primary_10_1016_j_ress_2024_110121 crossref_primary_10_1016_j_procs_2022_12_241 crossref_primary_10_1109_ACCESS_2023_3277730 crossref_primary_10_1016_j_ress_2022_108717 crossref_primary_10_1002_nav_21947 crossref_primary_10_3390_pr11102988 crossref_primary_10_1016_j_engappai_2020_103936 crossref_primary_10_1051_jnwpu_20213920407 crossref_primary_10_1109_JIOT_2021_3097269 crossref_primary_10_1093_jcde_qwae018 crossref_primary_10_1002_ett_3922 crossref_primary_10_1109_JSEN_2025_3547323 crossref_primary_10_1016_j_ress_2021_107583 crossref_primary_10_1109_TCYB_2021_3124838 crossref_primary_10_1109_JIOT_2024_3376715 crossref_primary_10_1016_j_aei_2024_102767 crossref_primary_10_1016_j_ymssp_2019_05_005 crossref_primary_10_1016_j_engappai_2023_106934 crossref_primary_10_3390_math10122066 crossref_primary_10_1002_qre_70043 crossref_primary_10_1007_s10845_021_01750_x crossref_primary_10_1016_j_ress_2023_109096 crossref_primary_10_1016_j_ast_2025_110875 crossref_primary_10_1109_ACCESS_2021_3117002 crossref_primary_10_1109_TII_2020_2983760 crossref_primary_10_1016_j_ifacol_2022_07_212 crossref_primary_10_1109_TIM_2022_3160561 crossref_primary_10_1109_ACCESS_2025_3592775 crossref_primary_10_1016_j_est_2025_115575 crossref_primary_10_1088_1361_6501_ac7a91 crossref_primary_10_1109_JIOT_2024_3376706 crossref_primary_10_1016_j_engfailanal_2022_106414 crossref_primary_10_1016_j_compind_2019_103182 crossref_primary_10_1109_ACCESS_2024_3381492 crossref_primary_10_1016_j_cie_2025_110892 crossref_primary_10_1016_j_measurement_2020_108554 crossref_primary_10_1109_JSEN_2021_3050461 crossref_primary_10_1109_ACCESS_2023_3319553 crossref_primary_10_1002_qre_2997 crossref_primary_10_1109_ACCESS_2023_3267960 crossref_primary_10_1109_TIM_2023_3334339 crossref_primary_10_1109_TIM_2024_3375984 crossref_primary_10_1109_ACCESS_2019_2951804 crossref_primary_10_1016_j_psep_2024_06_008 crossref_primary_10_1016_j_asoc_2021_107817 crossref_primary_10_1038_s41598_025_13387_4 crossref_primary_10_1007_s00170_021_07281_2 crossref_primary_10_1093_jigpal_jzae023 crossref_primary_10_1007_s00170_023_12648_8 crossref_primary_10_1088_1361_6501_ac22ee crossref_primary_10_1016_j_apm_2023_06_024 crossref_primary_10_1016_j_psep_2021_08_022 crossref_primary_10_3103_S014641162204006X crossref_primary_10_1016_j_ins_2024_121446 crossref_primary_10_1109_TIM_2023_3291733 crossref_primary_10_1109_TIM_2023_3309395 crossref_primary_10_1016_j_engappai_2024_108161 crossref_primary_10_1016_j_engappai_2024_108160 crossref_primary_10_1016_j_ress_2019_106682 crossref_primary_10_1088_1361_6501_ad8b62 crossref_primary_10_1016_j_neucom_2021_07_080 crossref_primary_10_1016_j_ress_2024_110167 crossref_primary_10_3390_math13010130 crossref_primary_10_1007_s43684_022_00028_0 crossref_primary_10_1109_ACCESS_2019_2937798 crossref_primary_10_3390_app15158538 crossref_primary_10_1109_ACCESS_2021_3052305 crossref_primary_10_1109_TIE_2018_2868023 crossref_primary_10_1016_j_ress_2020_107028 crossref_primary_10_1007_s12206_020_0526_4 crossref_primary_10_1109_TIE_2021_3057030 crossref_primary_10_3390_app132111893 crossref_primary_10_1016_j_engappai_2025_110700 crossref_primary_10_1177_1475921719890616 crossref_primary_10_3390_math9233035 crossref_primary_10_3390_jmse9010047 crossref_primary_10_1016_j_engappai_2022_105749 crossref_primary_10_1016_j_ress_2019_04_036 crossref_primary_10_1109_JIOT_2024_3404017 crossref_primary_10_1109_JSEN_2024_3350229 crossref_primary_10_3390_machines10050356 crossref_primary_10_1016_j_aei_2024_102566 crossref_primary_10_2196_18331 crossref_primary_10_1016_j_ress_2021_107556 crossref_primary_10_1109_TNNLS_2021_3136768 crossref_primary_10_1109_JSEN_2021_3109623 crossref_primary_10_1109_TIM_2025_3560753 crossref_primary_10_1109_TR_2023_3349201 crossref_primary_10_3390_su142315667 crossref_primary_10_1088_1742_6596_2450_1_012006 crossref_primary_10_1109_JSEN_2023_3299432 crossref_primary_10_1007_s10845_024_02386_3 crossref_primary_10_1016_j_ress_2024_110143 crossref_primary_10_1038_s41598_025_09155_z crossref_primary_10_1109_TII_2021_3081595 crossref_primary_10_1016_j_ress_2024_110146 crossref_primary_10_1109_TIM_2023_3246526 crossref_primary_10_1142_S0218539325500068 crossref_primary_10_1016_j_measurement_2019_107097 crossref_primary_10_1109_ACCESS_2019_2950985 crossref_primary_10_3390_fractalfract7110827 crossref_primary_10_1016_j_jprocont_2025_103460 crossref_primary_10_1038_s41598_025_05122_w crossref_primary_10_1007_s10462_022_10260_y crossref_primary_10_3390_s20236975 crossref_primary_10_1109_ACCESS_2018_2878813 crossref_primary_10_1109_TMECH_2022_3218771 crossref_primary_10_1016_j_ymssp_2023_110221 crossref_primary_10_1016_j_ress_2024_110394 crossref_primary_10_1177_09544100251376153 crossref_primary_10_1016_j_knosys_2024_112749 crossref_primary_10_3390_s25030873 crossref_primary_10_1016_j_ress_2024_110399 crossref_primary_10_1177_14759217241227599 crossref_primary_10_1109_ACCESS_2024_3403476 crossref_primary_10_1007_s00521_021_06089_1 crossref_primary_10_1007_s10845_024_02399_y crossref_primary_10_1007_s10489_025_06705_w crossref_primary_10_1007_s11071_023_08407_9 crossref_primary_10_1109_TASE_2023_3239004 crossref_primary_10_1016_j_ymssp_2023_110239 crossref_primary_10_1016_j_neucom_2022_02_032 crossref_primary_10_7232_JKIIE_2025_51_2_127 crossref_primary_10_1080_10589759_2025_2466078 crossref_primary_10_1016_j_neunet_2023_07_035 crossref_primary_10_1016_j_asoc_2020_106474 crossref_primary_10_1016_j_ress_2020_107031 crossref_primary_10_1109_JIOT_2020_3008170 crossref_primary_10_1016_j_eswa_2024_125995 crossref_primary_10_1016_j_compind_2019_06_001 crossref_primary_10_3390_electronics10030285 crossref_primary_10_1016_j_geoen_2023_211918 crossref_primary_10_1177_14759217251333056 crossref_primary_10_1109_TIM_2022_3184352 crossref_primary_10_1016_j_measurement_2020_107890 crossref_primary_10_1080_10255842_2022_2045974 crossref_primary_10_3390_s21020418 crossref_primary_10_3390_aerospace10110972 crossref_primary_10_1007_s40430_025_05400_8 crossref_primary_10_3390_machines9120337 crossref_primary_10_1016_j_ress_2021_108033 crossref_primary_10_1016_j_jmsy_2021_07_008 crossref_primary_10_1051_e3sconf_202124411001 crossref_primary_10_3390_math10030352 crossref_primary_10_1109_TIM_2022_3227956 crossref_primary_10_3390_s24248022 crossref_primary_10_1080_00207543_2021_1930234 crossref_primary_10_1109_TIM_2021_3056644 crossref_primary_10_1016_j_apm_2023_07_001 crossref_primary_10_1007_s12008_025_02261_2 crossref_primary_10_1007_s11424_025_3210_z crossref_primary_10_1016_j_ymssp_2021_108653 crossref_primary_10_3390_machines11010092 crossref_primary_10_3390_s25113429 crossref_primary_10_1016_j_suscom_2021_100565 crossref_primary_10_1109_ACCESS_2018_2824352 crossref_primary_10_1016_j_aei_2023_102066 crossref_primary_10_1088_1361_6501_ac84f6 crossref_primary_10_1007_s10462_024_10748_9 crossref_primary_10_1088_1361_6501_ac84f8 crossref_primary_10_1007_s13042_021_01283_y crossref_primary_10_3390_aerospace10050474 crossref_primary_10_1109_JIOT_2024_3459968 crossref_primary_10_1016_j_ifacol_2022_04_200 crossref_primary_10_1016_j_neucom_2019_12_033 crossref_primary_10_1109_TTE_2020_3041604 crossref_primary_10_3233_JIFS_213586 crossref_primary_10_1016_j_aei_2022_101725 crossref_primary_10_3389_frai_2020_578613 crossref_primary_10_3390_aerospace12050423 crossref_primary_10_1007_s00500_023_08322_6 crossref_primary_10_3390_data6010005 crossref_primary_10_1109_TR_2022_3199924 crossref_primary_10_1016_j_ress_2021_108297 crossref_primary_10_1109_TIM_2019_2929669 crossref_primary_10_1088_1361_6501_ad3b2c crossref_primary_10_1088_1361_6501_ad3b2b crossref_primary_10_1051_e3sconf_202131211017 crossref_primary_10_1115_1_4068540 crossref_primary_10_1109_TASE_2024_3372711 crossref_primary_10_1177_1748006X241279480 crossref_primary_10_1007_s10845_021_01739_6 crossref_primary_10_1088_2631_8695_adbe26 crossref_primary_10_3390_su13116206 crossref_primary_10_3390_s22218430 crossref_primary_10_1109_TIM_2022_3221142 crossref_primary_10_1115_1_4068316 crossref_primary_10_1109_ACCESS_2025_3593206 crossref_primary_10_1155_2023_2381638 crossref_primary_10_3389_fmech_2020_578379 crossref_primary_10_1109_JIOT_2025_3581906 crossref_primary_10_1007_s11668_024_01922_w crossref_primary_10_1038_s41598_024_59095_3 crossref_primary_10_1177_1475921719850576 crossref_primary_10_3390_s19051088 crossref_primary_10_1016_j_ress_2023_109723 crossref_primary_10_1109_ACCESS_2019_2907050 crossref_primary_10_1016_j_asoc_2021_107474 crossref_primary_10_1155_2021_2491116 crossref_primary_10_1016_j_ress_2022_108353 crossref_primary_10_1109_TII_2023_3240599 crossref_primary_10_1016_j_ress_2022_108590 crossref_primary_10_1016_j_ress_2025_111121 crossref_primary_10_1016_j_mechmachtheory_2020_103932 crossref_primary_10_1038_s41529_018_0058_x crossref_primary_10_1016_j_ress_2018_11_002 crossref_primary_10_1002_cjce_25170 crossref_primary_10_1108_JBIM_04_2022_0183 crossref_primary_10_3390_s23146346 crossref_primary_10_1016_j_engappai_2023_107389 crossref_primary_10_1109_JSEN_2024_3479211 crossref_primary_10_1061_JAEEEZ_ASENG_5887 crossref_primary_10_3390_s23125669 crossref_primary_10_1016_j_measurement_2020_108545 crossref_primary_10_1007_s00170_022_10485_9 crossref_primary_10_1016_j_ress_2022_108341 crossref_primary_10_1155_2023_5510329 crossref_primary_10_1109_TAI_2024_3396422 crossref_primary_10_1016_j_heliyon_2023_e17118 crossref_primary_10_1016_j_ress_2020_107098 crossref_primary_10_1109_ACCESS_2019_2920297 crossref_primary_10_1007_s11227_021_03811_7 crossref_primary_10_1016_j_ress_2018_11_011 crossref_primary_10_1016_j_asoc_2023_111071 crossref_primary_10_1016_j_ress_2023_109707 crossref_primary_10_1016_j_sigpro_2018_12_005 crossref_primary_10_1016_j_aei_2021_101404 crossref_primary_10_1002_sys_21651 crossref_primary_10_3390_s25020432 crossref_primary_10_1016_j_compeleceng_2021_107195 crossref_primary_10_1016_j_ress_2021_108259 crossref_primary_10_1016_j_engappai_2023_107365 crossref_primary_10_1016_j_aei_2024_102372 crossref_primary_10_1109_TII_2022_3206339 crossref_primary_10_3390_s24113454 crossref_primary_10_1016_j_ress_2022_108330 crossref_primary_10_1016_j_aei_2023_102094 crossref_primary_10_1016_j_ress_2021_108012 crossref_primary_10_3390_machines13070583 crossref_primary_10_1016_j_isatra_2020_03_007 crossref_primary_10_1016_j_ress_2018_11_027 crossref_primary_10_3390_forecast6020014 crossref_primary_10_1016_j_jmsy_2019_11_008 crossref_primary_10_1016_j_ress_2023_109718 crossref_primary_10_1109_TIM_2020_2996004 crossref_primary_10_1016_j_engappai_2024_109846 crossref_primary_10_3390_app13010017 crossref_primary_10_1007_s10639_023_12349_5 crossref_primary_10_1016_j_asoc_2025_113616 crossref_primary_10_1109_ACCESS_2020_3001013 crossref_primary_10_1109_JSEN_2022_3202606 crossref_primary_10_1177_09544054221124476 crossref_primary_10_1016_j_eswa_2023_119824 crossref_primary_10_1155_2022_9707940 crossref_primary_10_1109_TCYB_2019_2938244 crossref_primary_10_1109_JAS_2023_123369 crossref_primary_10_1016_j_ress_2021_108265 crossref_primary_10_1109_TAES_2021_3056086 crossref_primary_10_1007_s00521_025_10995_z crossref_primary_10_1016_j_compind_2022_103660 crossref_primary_10_1109_TIE_2019_2959492 crossref_primary_10_1016_j_inffus_2018_10_005 crossref_primary_10_3390_batteries9030177 crossref_primary_10_1109_TIM_2022_3162283 crossref_primary_10_1016_j_asoc_2022_109604 crossref_primary_10_1016_j_ymssp_2019_106330 crossref_primary_10_1177_14759217231202543 crossref_primary_10_3390_act10070146 crossref_primary_10_1016_j_aei_2024_103053 crossref_primary_10_3390_e20100747 crossref_primary_10_1016_j_aei_2022_101781 crossref_primary_10_1016_j_ymssp_2022_109611 crossref_primary_10_1088_1361_6501_ab8df9 crossref_primary_10_1109_ACCESS_2021_3116813 crossref_primary_10_1016_j_rineng_2025_106152 crossref_primary_10_3390_electronics10010039 crossref_primary_10_1016_j_asoc_2022_108507 crossref_primary_10_1016_j_ress_2021_107919 crossref_primary_10_1109_JSEN_2023_3246595 crossref_primary_10_1007_s43684_025_00099_9 crossref_primary_10_1109_TIM_2025_3568963 crossref_primary_10_1088_1742_6596_2361_1_012019 crossref_primary_10_3390_s24020518 crossref_primary_10_1007_s10994_023_06305_0 crossref_primary_10_1016_j_engappai_2024_108813 crossref_primary_10_1088_1742_6596_2181_1_012001 crossref_primary_10_3390_su142416810 crossref_primary_10_1016_j_asoc_2024_112325 crossref_primary_10_1109_ACCESS_2021_3110049 crossref_primary_10_1109_ACCESS_2019_2927011 crossref_primary_10_1108_IMDS_10_2018_0445 crossref_primary_10_1016_j_measurement_2023_114082 crossref_primary_10_1016_j_ymssp_2022_109608 crossref_primary_10_1080_24725854_2020_1766729 crossref_primary_10_3390_machines10070552 crossref_primary_10_1007_s11760_025_04150_3 crossref_primary_10_1109_JSYST_2022_3205179 crossref_primary_10_1109_TIM_2022_3200667 crossref_primary_10_1109_TMECH_2020_2992331 crossref_primary_10_1016_j_aei_2025_103795 crossref_primary_10_1016_j_apor_2024_104368 crossref_primary_10_1016_j_isatra_2022_04_042 crossref_primary_10_1109_TIM_2022_3149094 crossref_primary_10_1016_j_ress_2021_107927 crossref_primary_10_1016_j_jmsy_2020_12_020 crossref_primary_10_1007_s10845_021_01747_6 crossref_primary_10_1038_s41598_022_10191_2 crossref_primary_10_1016_j_asoc_2021_107379 crossref_primary_10_1088_1361_6501_ad0ad5 crossref_primary_10_1016_j_jmsy_2020_11_005 crossref_primary_10_1109_TSM_2022_3164578 crossref_primary_10_1007_s43684_022_00031_5 crossref_primary_10_3390_e24121818 crossref_primary_10_1016_j_ifacol_2020_12_853 crossref_primary_10_1016_j_asoc_2024_111459 crossref_primary_10_1088_1361_6501_ac90dc crossref_primary_10_1016_j_ress_2022_108482 crossref_primary_10_1109_TNNLS_2023_3257038 crossref_primary_10_1109_TIM_2022_3167778 crossref_primary_10_1109_JSEN_2024_3492019 crossref_primary_10_1002_qre_3256 crossref_primary_10_1155_2020_8888627 crossref_primary_10_1109_JSEN_2024_3420124 crossref_primary_10_1016_j_knosys_2022_109340 crossref_primary_10_1017_aer_2024_40 crossref_primary_10_1016_j_engappai_2025_110144 crossref_primary_10_1007_s10845_022_01916_1 crossref_primary_10_1109_TIV_2023_3294726 crossref_primary_10_1016_j_ifacol_2021_08_124 crossref_primary_10_1016_j_apenergy_2019_113841 crossref_primary_10_1109_JSEN_2022_3221753 crossref_primary_10_1088_1361_6501_abb917 crossref_primary_10_1016_j_aei_2024_103083 crossref_primary_10_3390_en17225538 crossref_primary_10_1016_j_measurement_2022_111782 crossref_primary_10_3390_s24030780 crossref_primary_10_1063_5_0225277 crossref_primary_10_1007_s10845_022_01929_w crossref_primary_10_1016_j_jmsy_2020_11_020 crossref_primary_10_1016_j_ress_2025_111085 crossref_primary_10_1007_s00170_021_08351_1 crossref_primary_10_1002_er_8596 crossref_primary_10_1016_j_ymssp_2023_110935 crossref_primary_10_1109_TPEL_2024_3410958 crossref_primary_10_1016_j_ress_2023_109456 crossref_primary_10_1109_TIM_2025_3551011 crossref_primary_10_1016_j_ress_2023_109696 crossref_primary_10_1016_j_jii_2023_100444 crossref_primary_10_1016_j_eswa_2025_127513 crossref_primary_10_1109_JSEN_2022_3185161 crossref_primary_10_1016_j_est_2024_113749 crossref_primary_10_1016_j_aei_2021_101247 crossref_primary_10_1016_j_knosys_2020_105843 crossref_primary_10_1145_3486252 crossref_primary_10_3390_s20010176 crossref_primary_10_1109_JSEN_2023_3323276 crossref_primary_10_1016_j_eswa_2023_121859 crossref_primary_10_1088_1361_6501_adc61e crossref_primary_10_1016_j_ress_2023_109666 crossref_primary_10_1016_j_ymssp_2025_112449 crossref_primary_10_3390_app13127186 crossref_primary_10_1016_j_compind_2019_04_013 crossref_primary_10_1016_j_neucom_2021_04_139 crossref_primary_10_1016_j_ress_2023_109662 crossref_primary_10_1177_09596518241269642 crossref_primary_10_1016_j_ifacol_2020_12_805 crossref_primary_10_1007_s42452_022_05114_9 crossref_primary_10_1109_JSEN_2023_3269030 crossref_primary_10_1155_2022_9930176 crossref_primary_10_1016_j_eswa_2023_119787 crossref_primary_10_1109_JSEN_2024_3479079 crossref_primary_10_1177_1748006X20935760 crossref_primary_10_1520_JTE20180849 crossref_primary_10_1007_s10489_021_03034_6 crossref_primary_10_1016_j_psep_2022_07_046 crossref_primary_10_3390_pr13082366 crossref_primary_10_3390_s23229190 crossref_primary_10_1145_3575637_3575651 crossref_primary_10_1016_j_neucom_2021_09_022 crossref_primary_10_1109_ACCESS_2020_3027349 crossref_primary_10_1109_TR_2023_3277332 crossref_primary_10_1016_j_ifacol_2024_07_582 crossref_primary_10_1007_s11192_021_04060_4 crossref_primary_10_1007_s40314_021_01752_8 crossref_primary_10_3390_s22166252 crossref_primary_10_1002_qre_3494 crossref_primary_10_3390_s23187840 crossref_primary_10_1080_08982112_2020_1754427 crossref_primary_10_1016_j_future_2025_107945 crossref_primary_10_3390_s21051712 crossref_primary_10_3390_aerospace7090132 crossref_primary_10_3390_en12203937 crossref_primary_10_1016_j_knosys_2020_106555 crossref_primary_10_1109_TVT_2023_3319377 crossref_primary_10_3390_s23041892 crossref_primary_10_1016_j_future_2021_11_006 crossref_primary_10_1109_JSEN_2021_3136622 crossref_primary_10_1016_j_ress_2020_107225 crossref_primary_10_1007_s10489_022_03670_6 crossref_primary_10_1016_j_ress_2023_109247 crossref_primary_10_1016_j_ress_2023_109244 crossref_primary_10_1109_JSEN_2022_3208753 crossref_primary_10_1016_j_energy_2025_137253 crossref_primary_10_3390_electronics12030580 crossref_primary_10_1016_j_advengsoft_2024_103645 crossref_primary_10_1016_j_compag_2020_105284 crossref_primary_10_1109_JSEN_2024_3485750 crossref_primary_10_1109_JSEN_2024_3404072 crossref_primary_10_1016_j_eswa_2021_114569 crossref_primary_10_1007_s10845_022_02015_x crossref_primary_10_1016_j_compind_2021_103554 crossref_primary_10_1016_j_aei_2023_101898 crossref_primary_10_3390_en14082135 crossref_primary_10_1007_s40435_020_00708_w crossref_primary_10_1109_TNNLS_2023_3305601 crossref_primary_10_1016_j_eswa_2025_127315 crossref_primary_10_1016_j_procs_2022_03_060 crossref_primary_10_1088_1742_6596_1754_1_012218 crossref_primary_10_1109_TMECH_2021_3079729 crossref_primary_10_1016_j_measurement_2024_116589 crossref_primary_10_1007_s00158_022_03425_4 crossref_primary_10_1016_j_measurement_2024_116345 crossref_primary_10_1016_j_neunet_2019_04_016 crossref_primary_10_1177_16878132221106609 crossref_primary_10_1109_TASE_2021_3072363 crossref_primary_10_1155_2021_5876299 crossref_primary_10_1016_j_ymssp_2022_109679 crossref_primary_10_3390_machines11030341 crossref_primary_10_1016_j_neucom_2022_04_055 crossref_primary_10_1109_TIM_2023_3318706 crossref_primary_10_3390_jsan9010008 crossref_primary_10_1002_qre_3445 crossref_primary_10_1016_j_cie_2023_109736 crossref_primary_10_1088_1361_6501_ac632d crossref_primary_10_1109_ACCESS_2020_3020356 crossref_primary_10_3390_en14154711 crossref_primary_10_3390_jmse11112128 crossref_primary_10_1109_TR_2020_2995724 crossref_primary_10_1109_JSEN_2023_3324330 crossref_primary_10_1016_j_ress_2021_107530 crossref_primary_10_1109_TIM_2025_3576953 crossref_primary_10_1109_TASE_2024_3504595 crossref_primary_10_1109_TNNLS_2020_2980004 crossref_primary_10_1016_j_ress_2023_109235 crossref_primary_10_1080_23307706_2024_2398536 crossref_primary_10_1016_j_ress_2024_110513 crossref_primary_10_3390_s25030837 crossref_primary_10_1109_TIM_2021_3084305 crossref_primary_10_1016_j_ifacol_2022_04_183 crossref_primary_10_1177_1748006X19868335 crossref_primary_10_3390_s22176472 crossref_primary_10_1016_j_ress_2021_107946 crossref_primary_10_1109_TII_2022_3210250 crossref_primary_10_1016_j_cie_2022_108559 crossref_primary_10_1016_j_aei_2023_102316 crossref_primary_10_3390_s21206841 crossref_primary_10_1016_j_ress_2022_108915 crossref_primary_10_1088_1361_6501_ac22f0 crossref_primary_10_7232_JKIIE_2025_51_3_217 crossref_primary_10_1080_24725854_2023_2222402 crossref_primary_10_1109_TII_2020_3017194 crossref_primary_10_1016_j_jmsy_2024_08_025 crossref_primary_10_1007_s00521_023_08507_y crossref_primary_10_3390_jmse12030387 crossref_primary_10_1088_1361_6501_ad9e12 crossref_primary_10_1016_j_neucom_2018_09_076 crossref_primary_10_1109_TR_2021_3124944 crossref_primary_10_1109_ACCESS_2022_3187702 crossref_primary_10_1016_j_compind_2020_103295 crossref_primary_10_1016_j_aei_2024_102608 crossref_primary_10_1016_j_ress_2022_108908 crossref_primary_10_1109_JSEN_2024_3494020 crossref_primary_10_1088_1361_6501_ad5c8c crossref_primary_10_1007_s40997_022_00526_9 crossref_primary_10_3390_app9224813 crossref_primary_10_3390_s21144676 crossref_primary_10_1016_j_engappai_2024_108186 crossref_primary_10_1016_j_isatra_2024_06_015 crossref_primary_10_1016_j_measurement_2021_110565 crossref_primary_10_1109_JIOT_2020_3004452 crossref_primary_10_1016_j_jestch_2023_101409 crossref_primary_10_1002_eng2_12291 crossref_primary_10_1080_24725854_2025_2561566 crossref_primary_10_3390_s25123702 crossref_primary_10_1016_j_ress_2024_110540 crossref_primary_10_3390_aerospace12030259 crossref_primary_10_1016_j_jag_2021_102459 crossref_primary_10_3390_batteries10030106 crossref_primary_10_1088_1361_6501_acdf0d crossref_primary_10_1016_j_ress_2021_107961 crossref_primary_10_1109_TII_2023_3342885 crossref_primary_10_1016_j_measurement_2021_110354 crossref_primary_10_1016_j_compind_2019_02_004 crossref_primary_10_1088_1742_6596_2694_1_012045 crossref_primary_10_1109_JSEN_2025_3546498 crossref_primary_10_1016_j_ress_2024_110549 crossref_primary_10_1049_cth2_12315 crossref_primary_10_1016_j_jmsy_2022_05_014 crossref_primary_10_3390_en18081899 crossref_primary_10_1016_j_engappai_2023_105860 crossref_primary_10_1109_ACCESS_2021_3136235 crossref_primary_10_1016_j_asoc_2025_113067 crossref_primary_10_1016_j_engappai_2023_106956 crossref_primary_10_1109_ACCESS_2018_2859922 crossref_primary_10_3390_lubricants10040067 crossref_primary_10_1016_j_ijhydene_2024_08_285 crossref_primary_10_1016_j_ress_2025_110857 crossref_primary_10_1109_ACCESS_2022_3203406 crossref_primary_10_1016_j_isatra_2021_05_026 crossref_primary_10_1007_s13369_019_04008_0 crossref_primary_10_1016_j_engfailanal_2022_106791 crossref_primary_10_1016_j_ifacol_2022_07_353 crossref_primary_10_1007_s11227_023_05126_1 crossref_primary_10_1016_j_jmsy_2020_07_008 crossref_primary_10_3390_ai2010005 crossref_primary_10_1016_j_est_2022_104936 crossref_primary_10_1109_TR_2019_2957965 crossref_primary_10_1016_j_asoc_2020_106344 crossref_primary_10_3390_s21124217 crossref_primary_10_1109_JPHOTOV_2023_3272071 crossref_primary_10_1016_j_knosys_2021_107652 crossref_primary_10_1109_JAS_2022_105746 crossref_primary_10_1002_qre_2651 crossref_primary_10_1002_qre_3740 crossref_primary_10_1016_j_ress_2024_110253 crossref_primary_10_1088_1742_6596_1881_3_032096 crossref_primary_10_3390_s21206772 crossref_primary_10_1109_JAS_2021_1004051 crossref_primary_10_3103_S0146411621010089 crossref_primary_10_1016_j_ymssp_2024_111924 crossref_primary_10_1016_j_pnucene_2022_104143 crossref_primary_10_1016_j_asoc_2022_109164 crossref_primary_10_1016_j_measurement_2018_11_040 crossref_primary_10_1109_ACCESS_2019_2958330 crossref_primary_10_1109_TASE_2023_3242355 crossref_primary_10_1016_j_ijhydene_2025_01_437 crossref_primary_10_1109_ACCESS_2020_2970444 crossref_primary_10_1109_ACCESS_2019_2960406 crossref_primary_10_3390_machines11020163 crossref_primary_10_1016_j_est_2022_104701 crossref_primary_10_1016_j_psep_2023_04_007 crossref_primary_10_1109_TIM_2023_3322481 crossref_primary_10_1088_1361_6501_ad1224 crossref_primary_10_1109_JSEN_2021_3060395 crossref_primary_10_1016_j_mlwa_2025_100704 crossref_primary_10_1016_j_rineng_2025_105513 crossref_primary_10_1109_ACCESS_2022_3214320 crossref_primary_10_3390_machines10090725 crossref_primary_10_1007_s00170_024_14000_0 crossref_primary_10_1007_s12204_022_2506_6 crossref_primary_10_1109_TNNLS_2023_3310482 crossref_primary_10_1109_ACCESS_2022_3226780 crossref_primary_10_1016_j_ress_2025_111635 crossref_primary_10_1016_j_ifacol_2022_09_182 crossref_primary_10_1109_TASE_2023_3267860 crossref_primary_10_1016_j_eswa_2025_127277 crossref_primary_10_1016_j_isatra_2019_07_004 crossref_primary_10_1109_TIM_2022_3190062 crossref_primary_10_1016_j_knosys_2024_111738 crossref_primary_10_1109_TR_2020_3010970 crossref_primary_10_1016_j_ssci_2023_106363 crossref_primary_10_1109_TIM_2023_3264027 crossref_primary_10_1109_ACCESS_2019_2959405 crossref_primary_10_3390_s20226626 crossref_primary_10_1016_j_ymssp_2020_107322 crossref_primary_10_1109_TIM_2025_3550613 crossref_primary_10_1016_j_eswa_2025_128370 crossref_primary_10_1016_j_ress_2018_08_010 crossref_primary_10_3390_agriculture12122119 crossref_primary_10_1016_j_ress_2023_109199 crossref_primary_10_1515_teme_2019_0082 crossref_primary_10_3103_S0146411623010030 crossref_primary_10_1016_j_ijfatigue_2022_107481 crossref_primary_10_1016_j_anucene_2020_107501 crossref_primary_10_1088_1361_6501_ad89ee crossref_primary_10_1016_j_ress_2024_110288 crossref_primary_10_1016_j_petrol_2019_04_030 crossref_primary_10_1007_s12206_024_0616_9 crossref_primary_10_3390_s23135970 crossref_primary_10_1109_ACCESS_2020_2973500 crossref_primary_10_1016_j_engappai_2024_108475 crossref_primary_10_1007_s11071_024_10815_4 crossref_primary_10_1109_TNNLS_2023_3347227 crossref_primary_10_1016_j_ress_2025_111413 crossref_primary_10_1109_TIE_2021_3086706 crossref_primary_10_1088_1361_6501_acf401 crossref_primary_10_1177_1748006X20965016 crossref_primary_10_1016_j_ress_2024_110296 crossref_primary_10_1016_j_ress_2024_110055 crossref_primary_10_1109_TR_2022_3190639 crossref_primary_10_1016_j_ijhydene_2024_09_266 crossref_primary_10_1080_00224065_2021_1960934 crossref_primary_10_1016_j_ress_2022_108869 crossref_primary_10_1016_j_engappai_2020_103849 crossref_primary_10_1007_s00500_022_07625_4 crossref_primary_10_1007_s42417_021_00286_x crossref_primary_10_1109_TIE_2019_2935987 crossref_primary_10_1109_TIM_2024_3522678 crossref_primary_10_3390_e25050798 crossref_primary_10_1109_JAS_2022_105935 crossref_primary_10_1016_j_jlp_2024_105343 crossref_primary_10_1016_j_compind_2021_103523 crossref_primary_10_1016_j_measurement_2021_110637 crossref_primary_10_1109_ACCESS_2022_3211258 crossref_primary_10_1007_s10845_024_02461_9 crossref_primary_10_1088_1361_6501_add044 crossref_primary_10_1007_s10845_023_02185_2 crossref_primary_10_1016_j_ast_2024_109065 crossref_primary_10_1109_TIM_2025_3595245 crossref_primary_10_1016_j_ress_2024_110030 crossref_primary_10_1016_j_eswa_2024_124752 crossref_primary_10_1016_j_scitotenv_2022_155886 crossref_primary_10_1016_j_ress_2025_111421 crossref_primary_10_1016_j_measurement_2019_05_057 crossref_primary_10_3390_electronics10202453 crossref_primary_10_1016_j_aei_2024_102422 crossref_primary_10_1088_1361_6501_ae0144 crossref_primary_10_1186_s10033_024_01055_z crossref_primary_10_1155_2024_6465566 crossref_primary_10_1016_j_jclepro_2020_122804 crossref_primary_10_1155_2020_8814658 crossref_primary_10_1016_j_knosys_2024_111783 crossref_primary_10_1016_j_asoc_2020_106113 crossref_primary_10_1016_j_ress_2025_111451 crossref_primary_10_1080_00207543_2024_2349257 crossref_primary_10_3390_math11244972 crossref_primary_10_1109_TIM_2025_3569885 crossref_primary_10_1016_j_asoc_2023_110041 crossref_primary_10_1016_j_measurement_2024_115714 crossref_primary_10_3390_s25134224 crossref_primary_10_1007_s00170_022_09894_7 crossref_primary_10_1016_j_aei_2023_102195 crossref_primary_10_1016_j_cma_2024_117219 crossref_primary_10_1016_j_asoc_2021_108401 crossref_primary_10_1109_ACCESS_2022_3188681 crossref_primary_10_1109_ACCESS_2025_3607733 crossref_primary_10_1155_2020_2792481 crossref_primary_10_1109_TII_2021_3121326 crossref_primary_10_3390_app8071102 crossref_primary_10_1007_s10845_020_01630_w crossref_primary_10_1016_j_ijhydene_2020_10_108 crossref_primary_10_3390_e27010079 crossref_primary_10_1155_2021_2122655 crossref_primary_10_1109_TIM_2024_3413142 crossref_primary_10_1016_j_eswa_2024_124538 crossref_primary_10_1109_TII_2022_3217758 crossref_primary_10_3390_app10031062 crossref_primary_10_1016_j_ress_2020_106926 crossref_primary_10_1109_JSEN_2024_3514168 crossref_primary_10_3233_IDA_227099 crossref_primary_10_1038_s41598_025_08515_z crossref_primary_10_1080_24725854_2023_2223245 crossref_primary_10_1016_j_rcim_2019_101924 crossref_primary_10_1016_j_neucom_2021_04_109 crossref_primary_10_1016_j_cie_2018_09_015 crossref_primary_10_1016_j_strusafe_2022_102186 crossref_primary_10_1007_s00521_022_07378_z crossref_primary_10_1109_TNNLS_2023_3330487 crossref_primary_10_3390_app11115180 crossref_primary_10_3390_machines10110974 crossref_primary_10_1007_s00170_023_12020_w crossref_primary_10_3390_machines10100927 crossref_primary_10_1016_j_ress_2021_108179 crossref_primary_10_1109_ACCESS_2020_2982800 crossref_primary_10_1016_j_ymssp_2020_107183 crossref_primary_10_1007_s00521_024_09791_y crossref_primary_10_1016_j_ymssp_2024_111551 crossref_primary_10_1109_ACCESS_2020_2976595 crossref_primary_10_1088_1361_6501_ad8946 crossref_primary_10_1038_s41598_024_74989_y crossref_primary_10_1088_1361_6501_ad8940 crossref_primary_10_1177_1748006X19866546 crossref_primary_10_1016_j_aei_2021_101318 crossref_primary_10_1109_ACCESS_2019_2933676 crossref_primary_10_1080_0951192X_2019_1686173 crossref_primary_10_1016_j_ress_2022_108646 crossref_primary_10_3390_app10010368 crossref_primary_10_1016_j_ress_2022_108405 crossref_primary_10_1016_j_rineng_2025_105137 crossref_primary_10_1016_j_ress_2022_108886 crossref_primary_10_1109_ACCESS_2024_3390234 crossref_primary_10_1109_TIM_2024_3428643 crossref_primary_10_1007_s40430_022_03856_6 crossref_primary_10_1016_j_scitotenv_2022_154902 crossref_primary_10_1109_TCE_2024_3510786 crossref_primary_10_1007_s40815_023_01564_4 crossref_primary_10_3390_aerospace10010080 crossref_primary_10_1007_s10845_023_02215_z crossref_primary_10_3390_s22145174 crossref_primary_10_1002_cpe_5762 crossref_primary_10_1007_s11760_023_02800_y crossref_primary_10_1109_TMECH_2021_3094986 crossref_primary_10_1109_JSEN_2023_3342884 crossref_primary_10_3390_app14209439 crossref_primary_10_1007_s10462_020_09934_2 crossref_primary_10_1016_j_ress_2023_109605 crossref_primary_10_1016_j_neucom_2020_07_088 crossref_primary_10_1109_TII_2019_2956220 crossref_primary_10_3390_e24121733 crossref_primary_10_1063_5_0065792 crossref_primary_10_1088_1361_6501_acda52 crossref_primary_10_2196_49113 crossref_primary_10_1007_s00170_023_10811_9 crossref_primary_10_1016_j_neucom_2019_05_052 crossref_primary_10_1155_2021_9937846 crossref_primary_10_1016_j_knosys_2021_107216 crossref_primary_10_1016_j_jmsy_2020_06_014 crossref_primary_10_1109_TR_2019_2907402 crossref_primary_10_1186_s10033_021_00570_7 crossref_primary_10_1016_j_atmosres_2022_106037 crossref_primary_10_3390_pr13041232 crossref_primary_10_1016_j_measen_2023_100944 crossref_primary_10_1109_ACCESS_2019_2895394 crossref_primary_10_1016_j_ymssp_2020_107592 crossref_primary_10_1088_1742_6596_2853_1_012068 crossref_primary_10_1016_j_ress_2021_108123 crossref_primary_10_3390_machines12110766 crossref_primary_10_1016_j_ress_2023_109854 crossref_primary_10_1109_JSEN_2023_3279365 crossref_primary_10_3390_app13169194 crossref_primary_10_1109_TIE_2019_2891463 crossref_primary_10_1109_ACCESS_2020_3010066 crossref_primary_10_1109_JIOT_2023_3303188 crossref_primary_10_3389_fnbot_2024_1448482 crossref_primary_10_1016_j_cnsns_2025_109083 crossref_primary_10_1016_j_ifacol_2022_07_133 crossref_primary_10_1109_TIM_2020_3031113 crossref_primary_10_1016_j_neucom_2020_06_052 crossref_primary_10_1109_TNNLS_2021_3070840 crossref_primary_10_1007_s42835_024_02036_x crossref_primary_10_1016_j_measurement_2020_108878 crossref_primary_10_1016_j_engappai_2023_107241 crossref_primary_10_1016_j_measurement_2020_107788 crossref_primary_10_1016_j_ymssp_2023_111037 crossref_primary_10_1177_0954408920974141 crossref_primary_10_1007_s11227_023_05404_y crossref_primary_10_1109_TIE_2019_2907440 crossref_primary_10_1016_j_compchemeng_2020_107197 crossref_primary_10_1016_j_conengprac_2021_104969 crossref_primary_10_1109_TII_2022_3218665 crossref_primary_10_1109_TII_2023_3254656 crossref_primary_10_1016_j_ress_2019_106706 crossref_primary_10_1016_j_ress_2022_108444 crossref_primary_10_1016_j_ress_2021_108140 crossref_primary_10_3390_su15010029 |
| Cites_doi | 10.1016/j.measurement.2016.07.054 10.1109/TIE.2004.824875 10.1177/0142331208092031 10.1109/TIE.2016.2586442 10.1016/j.neucom.2017.02.045 10.1016/j.ymssp.2008.06.009 10.1016/j.ymssp.2013.07.010 10.1126/science.1127647 10.1109/TIM.2010.2078296 10.1016/j.ress.2015.12.003 10.1109/JSEN.2013.2293517 10.1016/j.jmsy.2017.02.013 10.1016/j.ymssp.2013.06.004 10.1016/j.ymssp.2010.11.018 10.1016/j.engappai.2013.02.006 10.1016/j.measurement.2016.04.007 10.1016/j.ymssp.2006.10.001 10.1016/j.ymssp.2016.06.031 10.1016/j.ress.2015.04.009 10.1007/s10845-009-0356-9 10.1016/j.ymssp.2011.10.019 10.1016/j.ress.2013.08.004 10.1016/S0888-3270(03)00079-7 10.1016/j.ress.2017.02.007 10.1016/j.ymssp.2005.11.008 10.1016/j.ymssp.2015.11.008 10.1038/323533a0 10.1109/MSP.2012.2205597 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Apr 2018 |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Apr 2018 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI |
| DOI | 10.1016/j.ress.2017.11.021 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0836 |
| EndPage | 11 |
| ExternalDocumentID | 10_1016_j_ress_2017_11_021 S0951832017307779 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7ST 7TB 8FD AGCQF C1K FR3 SOI |
| ID | FETCH-LOGICAL-c394t-d54054a38ff9cefd8f17b92136b838cc995b8544a5fab8f8e056ea6b11ac778d3 |
| ISICitedReferencesCount | 1209 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424960000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0951-8320 |
| IngestDate | Wed Aug 13 06:27:07 EDT 2025 Sat Nov 29 07:08:14 EST 2025 Tue Nov 18 22:32:40 EST 2025 Fri Feb 23 02:28:00 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Remaining useful life Convolution neural network Prognostics and health management |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c394t-d54054a38ff9cefd8f17b92136b838cc995b8544a5fab8f8e056ea6b11ac778d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2024404141 |
| PQPubID | 2045406 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2024404141 crossref_primary_10_1016_j_ress_2017_11_021 crossref_citationtrail_10_1016_j_ress_2017_11_021 elsevier_sciencedirect_doi_10_1016_j_ress_2017_11_021 |
| PublicationCentury | 2000 |
| PublicationDate | April 2018 2018-04-00 20180401 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: April 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Zhao, Wang, Yan, Mao (bib0023) 2016 Louen, Ding, Kandler (bib0050) 2013 Coble, Hines (bib0043) 2008 Jouin, Gouriveau, Hissel, Pra, Zerhouni (bib0008) 2016; 7273 Liu, Liu, Bai, Lu (bib0037) 2014 Guo, Chen, Shen (bib0045) 2016; 93 Kingma D., Ba J.. Adam: a method for stochastic optimization. arXiv preprint Tian (bib0017) 2012; 23 Ren, Liu, Zhang, Pan, Cao, Yang (bib0035) 2016 Sun, Shao, Zhao, Yan, Zhang, Chen (bib0036) 2016; 89 Hinton, Salakhutdinov (bib0024) 2006; 313 Zhang, Lim, Qin, Tan (bib0029) 2016; PP Wang, Youn, Hu (bib0044) 2012; 28 Qian, Yan, Gao (bib0007) 2017; 83 Ioffe, Szegedy (bib0048) 2015; 1 Azadeh, Asadzadeh, Salehi, Firoozi (bib0001) 2015; 142 Wang, Golnaraghi, Ismail (bib0020) 2004; 18 Zhao, Bin, Wang, Lu (bib0002) 2017; 164 Malhotra P., TV V., Ramakrishnan A., Anand G., Vig L., Agarwal P., et al. Multi-sensor prognostics using an unsupervised health index based on LSTM encoder-decoder. arXiv preprint Ren, Cui, Sun, Cheng (bib0027) 2017; 43, Part 2 Liao, Jin, Pavel (bib0028) 2016; 63 Saxena, Goebel (bib0041) 2008 Pecht, Gu (bib0004) 2009; 31 Huang, Xi, Li, Liu, Qiu, Lee (bib0016) 2007; 21 Xu, Wang, Xu (bib0032) 2014; 14 Yuan, Wu, Lin (bib0022) 2016 Glorot, Bengio (bib0038) 2010; 9 Rumelhart, Hinton, Williams (bib0039) 1986; 323 Ali, Chebel-Morello, Saidi, Malinowski, Fnaiech (bib0010) 2015; 5657 Szegedy, Liu, Yangqing, Sermanet, Reed, Anguelov (bib0034) 2015 Ramasso (bib0042) 2014; 5 Benkedjouh, Medjaher, Zerhouni, Rechak (bib0012) 2013; 26 Dong, He (bib0013) 2007; 21 Guo, Li, Jia, Lei, Lin (bib0046) 2017; 240 Hinton, Deng, Yu, Dahl, Mohamed, Jaitly (bib0026) 2012; 29 Heng, Zhang, Tan, Mathew (bib0006) 2009; 23 Gebraeel, Lawley, Liu, Parmeshwaran (bib0011) 2004; 51 Fink, Zio, Weidmann (bib0018) 2014; 121 Heimes (bib0005) 2008 Peng, Wang, Wang, Liu, Peng (bib0049) 2012 Jouin, Gouriveau, Hissel, Pra, Zerhouni (bib0009) 2016; 148 Khawaja, Vachtsevanos, Wu (bib0019) 2005 Sikorska, Hodkiewicz, Ma (bib0015) 2011; 25 Lim, Goh, Tan (bib0051) 2016 Babu, Zhao, Li (bib0031) 2016 Saxena, Goebel, Simon, Eklund (bib0030) 2008 Krizhevsky, Sutskever, Hinton (bib0025) 2012; 2 Malhi, Yan, Gao (bib0021) 2011; 60 Baraldi, Compare, Sauco, Zio (bib0014) 2013; 41 2014;. Lee, Wu, Zhao, Ghaffari, Liao, Siegel (bib0003) 2014; 42 2016;. Abdel-Hamid, Mohamed, Hui, Penn (bib0033) 2012 Glorot (10.1016/j.ress.2017.11.021_bib0038) 2010; 9 Tian (10.1016/j.ress.2017.11.021_bib0017) 2012; 23 Jouin (10.1016/j.ress.2017.11.021_bib0009) 2016; 148 Saxena (10.1016/j.ress.2017.11.021_sbref0040) 2008 Zhao (10.1016/j.ress.2017.11.021_bib0002) 2017; 164 Hinton (10.1016/j.ress.2017.11.021_bib0024) 2006; 313 10.1016/j.ress.2017.11.021_bib0040 Guo (10.1016/j.ress.2017.11.021_bib0045) 2016; 93 Sikorska (10.1016/j.ress.2017.11.021_bib0015) 2011; 25 10.1016/j.ress.2017.11.021_bib0047 Liao (10.1016/j.ress.2017.11.021_bib0028) 2016; 63 Zhang (10.1016/j.ress.2017.11.021_bib0029) 2016; PP Ren (10.1016/j.ress.2017.11.021_bib0027) 2017; 43, Part 2 Hinton (10.1016/j.ress.2017.11.021_bib0026) 2012; 29 Liu (10.1016/j.ress.2017.11.021_bib0037) 2014 Jouin (10.1016/j.ress.2017.11.021_bib0008) 2016; 7273 Ioffe (10.1016/j.ress.2017.11.021_sbref0046) 2015; 1 Pecht (10.1016/j.ress.2017.11.021_bib0004) 2009; 31 Peng (10.1016/j.ress.2017.11.021_bib0049) 2012 Qian (10.1016/j.ress.2017.11.021_bib0007) 2017; 83 Sun (10.1016/j.ress.2017.11.021_bib0036) 2016; 89 Ali (10.1016/j.ress.2017.11.021_bib0010) 2015; 5657 Dong (10.1016/j.ress.2017.11.021_bib0013) 2007; 21 Yuan (10.1016/j.ress.2017.11.021_bib0022) 2016 Ren (10.1016/j.ress.2017.11.021_bib0035) 2016 Louen (10.1016/j.ress.2017.11.021_bib0050) 2013 Babu (10.1016/j.ress.2017.11.021_bib0031) 2016 Szegedy (10.1016/j.ress.2017.11.021_bib0034) 2015 Wang (10.1016/j.ress.2017.11.021_bib0020) 2004; 18 Lee (10.1016/j.ress.2017.11.021_bib0003) 2014; 42 Benkedjouh (10.1016/j.ress.2017.11.021_bib0012) 2013; 26 Rumelhart (10.1016/j.ress.2017.11.021_bib0039) 1986; 323 Heimes (10.1016/j.ress.2017.11.021_bib0005) 2008 Fink (10.1016/j.ress.2017.11.021_bib0018) 2014; 121 Gebraeel (10.1016/j.ress.2017.11.021_bib0011) 2004; 51 Lim (10.1016/j.ress.2017.11.021_bib0051) 2016 Khawaja (10.1016/j.ress.2017.11.021_bib0019) 2005 Zhao (10.1016/j.ress.2017.11.021_bib0023) 2016 Krizhevsky (10.1016/j.ress.2017.11.021_bib0025) 2012; 2 Azadeh (10.1016/j.ress.2017.11.021_bib0001) 2015; 142 Baraldi (10.1016/j.ress.2017.11.021_bib0014) 2013; 41 Huang (10.1016/j.ress.2017.11.021_bib0016) 2007; 21 Xu (10.1016/j.ress.2017.11.021_bib0032) 2014; 14 Abdel-Hamid (10.1016/j.ress.2017.11.021_bib0033) 2012 Guo (10.1016/j.ress.2017.11.021_bib0046) 2017; 240 Ramasso (10.1016/j.ress.2017.11.021_bib0042) 2014; 5 Coble (10.1016/j.ress.2017.11.021_bib0043) 2008 Malhi (10.1016/j.ress.2017.11.021_bib0021) 2011; 60 Saxena (10.1016/j.ress.2017.11.021_bib0030) 2008 Wang (10.1016/j.ress.2017.11.021_bib0044) 2012; 28 Heng (10.1016/j.ress.2017.11.021_bib0006) 2009; 23 |
| References_xml | – start-page: 1 year: 2008 end-page: 11 ident: bib0043 article-title: Prognostic algorithm categorization with PHM challenge application publication-title: Proceedings of international conference on prognostics and health management – volume: 25 start-page: 1803 year: 2011 end-page: 1836 ident: bib0015 article-title: Prognostic modelling options for remaining useful life estimation by industry publication-title: Mech Syst Signal Process – volume: 83 start-page: 549 year: 2017 end-page: 567 ident: bib0007 article-title: A multi-time scale approach to remaining useful life prediction in rolling bearing publication-title: Mech Syst Signal Process – volume: 89 start-page: 171 year: 2016 end-page: 178 ident: bib0036 article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification publication-title: Measurement – volume: 1 start-page: 448 year: 2015 end-page: 456 ident: bib0048 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proceedings of 32nd International Conference on Machine Learning – start-page: 228 year: 2013 end-page: 233 ident: bib0050 article-title: A new framework for remaining useful life estimation using support vector machine classifier publication-title: Proceedings of IEEE Conference on Control and Fault-Tolerant Systems – start-page: 214 year: 2016 end-page: 228 ident: bib0031 article-title: Deep convolutional neural network based regression approach for estimation of remaining useful life publication-title: Database systems for advanced applications: 21st international conference – volume: 93 start-page: 490 year: 2016 end-page: 502 ident: bib0045 article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis publication-title: Measurement – start-page: 1 year: 2015 end-page: 9 ident: bib0034 article-title: Going deeper with convolutions publication-title: Proceedings of IEEE conference on computer vision and pattern recognition – volume: 23 start-page: 724 year: 2009 end-page: 739 ident: bib0006 article-title: Rotating machinery prognostics: state of the art, challenges and opportunities publication-title: Mech Syst Signal Process – volume: 7273 start-page: 2 year: 2016 end-page: 31 ident: bib0008 article-title: Particle filter-based prognostics: review, discussion and perspectives publication-title: Mech Syst Signal Process – reference: 2016;. – start-page: 1 year: 2012 end-page: 7 ident: bib0049 article-title: A modified echo state network based remaining useful life estimation approach publication-title: Proceedings of IEEE Conference on Prognostics and Health Management – start-page: 1 year: 2008 end-page: 9 ident: bib0030 article-title: Damage propagation modeling for aircraft engine run-to-failure simulation publication-title: Proceedings of International Conference on Prognostics and Health Management – volume: 5657 start-page: 150 year: 2015 end-page: 172 ident: bib0010 article-title: Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network publication-title: Mech Syst Signal Process – start-page: 1 year: 2016 end-page: 6 ident: bib0023 article-title: Machine health monitoring with LSTM networks publication-title: Proceedings of 10th International Conference on Sensing Technology – start-page: 1746 year: 2016 end-page: 1753 ident: bib0051 article-title: A time window neural network based framework for remaining useful life estimation publication-title: Proceedings of International Joint Conference on Neural Networks – volume: 2 start-page: 1097 year: 2012 end-page: 1105 ident: bib0025 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proceedings of 26th Annual Conference on Neural Information Processing Systems – start-page: 4293 year: 2014 end-page: 4298 ident: bib0037 article-title: Regularized hierarchical feature learning with non-negative sparsity and selectivity for image classification publication-title: Proceedings of 22nd Int Conf Pattern Recognit – year: 2008 ident: bib0041 article-title: Turbofan engine degradation simulation data set publication-title: NASA Ames Prognostics Data Repository – volume: 164 start-page: 74 year: 2017 end-page: 83 ident: bib0002 article-title: Remaining useful life prediction of aircraft engine based on degradation pattern learning publication-title: Reliabil Eng Syst Saf – volume: 240 start-page: 98 year: 2017 end-page: 109 ident: bib0046 article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings publication-title: Neurocomputing – volume: 26 start-page: 1751 year: 2013 end-page: 1760 ident: bib0012 article-title: Remaining useful life estimation based on nonlinear feature reduction and support vector regression publication-title: Eng Appl Artif Intell – volume: 63 start-page: 7076 year: 2016 end-page: 7083 ident: bib0028 article-title: Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment publication-title: IEEE Trans Ind Electron – volume: 51 start-page: 694 year: 2004 end-page: 700 ident: bib0011 article-title: Residual life predictions from vibration-based degradation signals: a neural network approach publication-title: IEEE Trans Ind Electron – reference: Malhotra P., TV V., Ramakrishnan A., Anand G., Vig L., Agarwal P., et al. Multi-sensor prognostics using an unsupervised health index based on LSTM encoder-decoder. arXiv preprint – reference: Kingma D., Ba J.. Adam: a method for stochastic optimization. arXiv preprint – volume: 28 start-page: 622 year: 2012 end-page: 637 ident: bib0044 article-title: A generic probabilistic framework for structural health prognostics and uncertainty management publication-title: Mech Syst Signal Process – volume: 29 start-page: 82 year: 2012 end-page: 97 ident: bib0026 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Process Mag – start-page: 1 year: 2008 end-page: 6 ident: bib0005 article-title: Recurrent neural networks for remaining useful life estimation publication-title: Proceedings of international conference on prognostics and health management – volume: 5 start-page: 005 year: 2014 ident: bib0042 article-title: Investigating computational geometry for failure prognostics publication-title: Int J Prognostics Health Manage – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: bib0039 article-title: Learning representations by back-propagating errors publication-title: Nature – reference: 2014;. – volume: 42 start-page: 314 year: 2014 end-page: 334 ident: bib0003 article-title: Prognostics and health management design for rotary machinery systems - reviews, methodology and applications publication-title: Mech Syst Signal Process – volume: 14 start-page: 1124 year: 2014 end-page: 1132 ident: bib0032 article-title: PHM-oriented integrated fusion prognostics for aircraft engines based on sensor data publication-title: IEEE Sensors J – start-page: 7 year: 2005 end-page: 12 ident: bib0019 article-title: Reasoning about uncertainty in prognosis: a confidence prediction neural network approach publication-title: Proceedings of Annual Meeting of the North American Fuzzy Information Processing Society – volume: 121 start-page: 198 year: 2014 end-page: 206 ident: bib0018 article-title: Predicting component reliability and level of degradation with complex-valued neural networks publication-title: Reliabil Eng Syst Saf – volume: 313 start-page: 504 year: 2006 ident: bib0024 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 31 start-page: 309 year: 2009 end-page: 322 ident: bib0004 article-title: Physics-of-failure-based prognostics for electronic products publication-title: Trans Inst Meas Control – volume: PP start-page: 1 year: 2016 end-page: 13 ident: bib0029 article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics publication-title: IEEE Trans Neural Netw Learn Syst – start-page: 4277 year: 2012 end-page: 4280 ident: bib0033 article-title: Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition publication-title: Proceedings of IEEE international conference on acoustics, speech and signal processing – volume: 148 start-page: 78 year: 2016 end-page: 95 ident: bib0009 article-title: Degradations analysis and aging modeling for health assessment and prognostics of PEMFC publication-title: Reliabil Eng Syst Saf – volume: 21 start-page: 2248 year: 2007 end-page: 2266 ident: bib0013 article-title: A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology publication-title: Mech Syst Signal Process – volume: 142 start-page: 357 year: 2015 end-page: 368 ident: bib0001 article-title: Condition-based maintenance effectiveness for series-parallel power generation system - a combined Markovian simulation model publication-title: Reliabil Eng Syst Saf – volume: 23 start-page: 227 year: 2012 end-page: 237 ident: bib0017 article-title: An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring publication-title: J Intell Manuf – volume: 21 start-page: 193 year: 2007 end-page: 207 ident: bib0016 article-title: Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods publication-title: Mech Syst Signal Process – start-page: 135 year: 2016 end-page: 140 ident: bib0022 article-title: Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network publication-title: Proceedings of IEEE International Conference on Aircraft Utility Systems – volume: 9 start-page: 249 year: 2010 end-page: 256 ident: bib0038 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: J Mach Learn Res – volume: 60 start-page: 703 year: 2011 end-page: 711 ident: bib0021 article-title: Prognosis of defect propagation based on recurrent neural networks publication-title: IEEE Trans Instrum Meas – start-page: 154 year: 2016 end-page: 169 ident: bib0035 article-title: Single image dehazing via multi-scale convolutional neural networks publication-title: European conference on computer vision – volume: 41 start-page: 288 year: 2013 end-page: 300 ident: bib0014 article-title: Ensemble neural network-based particle filtering for prognostics publication-title: Mech Syst Signal Process – volume: 18 start-page: 813 year: 2004 end-page: 831 ident: bib0020 article-title: Prognosis of machine health condition using neuro-fuzzy systems publication-title: Mech Syst Signal Process – volume: 43, Part 2 start-page: 248 year: 2017 end-page: 256 ident: bib0027 article-title: Multi-bearing remaining useful life collaborative prediction: a deep learning approach publication-title: J Manuf Syst – volume: 93 start-page: 490 year: 2016 ident: 10.1016/j.ress.2017.11.021_bib0045 article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2016.07.054 – start-page: 4277 year: 2012 ident: 10.1016/j.ress.2017.11.021_bib0033 article-title: Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition – volume: 51 start-page: 694 issue: 3 year: 2004 ident: 10.1016/j.ress.2017.11.021_bib0011 article-title: Residual life predictions from vibration-based degradation signals: a neural network approach publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2004.824875 – volume: 31 start-page: 309 issue: 3–4 year: 2009 ident: 10.1016/j.ress.2017.11.021_bib0004 article-title: Physics-of-failure-based prognostics for electronic products publication-title: Trans Inst Meas Control doi: 10.1177/0142331208092031 – start-page: 4293 year: 2014 ident: 10.1016/j.ress.2017.11.021_bib0037 article-title: Regularized hierarchical feature learning with non-negative sparsity and selectivity for image classification – volume: 5657 start-page: 150 year: 2015 ident: 10.1016/j.ress.2017.11.021_bib0010 article-title: Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network publication-title: Mech Syst Signal Process – volume: 63 start-page: 7076 issue: 11 year: 2016 ident: 10.1016/j.ress.2017.11.021_bib0028 article-title: Enhanced restricted boltzmann machine with prognosability regularization for prognostics and health assessment publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2016.2586442 – start-page: 154 year: 2016 ident: 10.1016/j.ress.2017.11.021_bib0035 article-title: Single image dehazing via multi-scale convolutional neural networks – volume: 240 start-page: 98 year: 2017 ident: 10.1016/j.ress.2017.11.021_bib0046 article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.045 – volume: 23 start-page: 724 issue: 3 year: 2009 ident: 10.1016/j.ress.2017.11.021_bib0006 article-title: Rotating machinery prognostics: state of the art, challenges and opportunities publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2008.06.009 – volume: 41 start-page: 288 issue: 1–2 year: 2013 ident: 10.1016/j.ress.2017.11.021_bib0014 article-title: Ensemble neural network-based particle filtering for prognostics publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2013.07.010 – start-page: 1746 year: 2016 ident: 10.1016/j.ress.2017.11.021_bib0051 article-title: A time window neural network based framework for remaining useful life estimation – start-page: 228 year: 2013 ident: 10.1016/j.ress.2017.11.021_bib0050 article-title: A new framework for remaining useful life estimation using support vector machine classifier – start-page: 1 year: 2015 ident: 10.1016/j.ress.2017.11.021_bib0034 article-title: Going deeper with convolutions – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.ress.2017.11.021_bib0024 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 1 start-page: 448 year: 2015 ident: 10.1016/j.ress.2017.11.021_sbref0046 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – ident: 10.1016/j.ress.2017.11.021_bib0047 – volume: 60 start-page: 703 issue: 3 year: 2011 ident: 10.1016/j.ress.2017.11.021_bib0021 article-title: Prognosis of defect propagation based on recurrent neural networks publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2010.2078296 – volume: 148 start-page: 78 year: 2016 ident: 10.1016/j.ress.2017.11.021_bib0009 article-title: Degradations analysis and aging modeling for health assessment and prognostics of PEMFC publication-title: Reliabil Eng Syst Saf doi: 10.1016/j.ress.2015.12.003 – volume: 14 start-page: 1124 issue: 4 year: 2014 ident: 10.1016/j.ress.2017.11.021_bib0032 article-title: PHM-oriented integrated fusion prognostics for aircraft engines based on sensor data publication-title: IEEE Sensors J doi: 10.1109/JSEN.2013.2293517 – volume: 2 start-page: 1097 year: 2012 ident: 10.1016/j.ress.2017.11.021_bib0025 article-title: ImageNet classification with deep convolutional neural networks – volume: 43, Part 2 start-page: 248 year: 2017 ident: 10.1016/j.ress.2017.11.021_bib0027 article-title: Multi-bearing remaining useful life collaborative prediction: a deep learning approach publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2017.02.013 – volume: 42 start-page: 314 issue: 1–2 year: 2014 ident: 10.1016/j.ress.2017.11.021_bib0003 article-title: Prognostics and health management design for rotary machinery systems - reviews, methodology and applications publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2013.06.004 – volume: 25 start-page: 1803 issue: 5 year: 2011 ident: 10.1016/j.ress.2017.11.021_bib0015 article-title: Prognostic modelling options for remaining useful life estimation by industry publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2010.11.018 – volume: 26 start-page: 1751 issue: 7 year: 2013 ident: 10.1016/j.ress.2017.11.021_bib0012 article-title: Remaining useful life estimation based on nonlinear feature reduction and support vector regression publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2013.02.006 – start-page: 1 year: 2016 ident: 10.1016/j.ress.2017.11.021_bib0023 article-title: Machine health monitoring with LSTM networks – volume: 89 start-page: 171 year: 2016 ident: 10.1016/j.ress.2017.11.021_bib0036 article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification publication-title: Measurement doi: 10.1016/j.measurement.2016.04.007 – volume: 21 start-page: 2248 issue: 5 year: 2007 ident: 10.1016/j.ress.2017.11.021_bib0013 article-title: A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2006.10.001 – start-page: 1 year: 2008 ident: 10.1016/j.ress.2017.11.021_bib0005 article-title: Recurrent neural networks for remaining useful life estimation – volume: 83 start-page: 549 year: 2017 ident: 10.1016/j.ress.2017.11.021_bib0007 article-title: A multi-time scale approach to remaining useful life prediction in rolling bearing publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.06.031 – volume: 142 start-page: 357 year: 2015 ident: 10.1016/j.ress.2017.11.021_bib0001 article-title: Condition-based maintenance effectiveness for series-parallel power generation system - a combined Markovian simulation model publication-title: Reliabil Eng Syst Saf doi: 10.1016/j.ress.2015.04.009 – volume: 23 start-page: 227 issue: 2 year: 2012 ident: 10.1016/j.ress.2017.11.021_bib0017 article-title: An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring publication-title: J Intell Manuf doi: 10.1007/s10845-009-0356-9 – volume: 28 start-page: 622 year: 2012 ident: 10.1016/j.ress.2017.11.021_bib0044 article-title: A generic probabilistic framework for structural health prognostics and uncertainty management publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2011.10.019 – volume: 121 start-page: 198 year: 2014 ident: 10.1016/j.ress.2017.11.021_bib0018 article-title: Predicting component reliability and level of degradation with complex-valued neural networks publication-title: Reliabil Eng Syst Saf doi: 10.1016/j.ress.2013.08.004 – volume: 18 start-page: 813 issue: 4 year: 2004 ident: 10.1016/j.ress.2017.11.021_bib0020 article-title: Prognosis of machine health condition using neuro-fuzzy systems publication-title: Mech Syst Signal Process doi: 10.1016/S0888-3270(03)00079-7 – volume: 9 start-page: 249 year: 2010 ident: 10.1016/j.ress.2017.11.021_bib0038 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: J Mach Learn Res – start-page: 1 year: 2012 ident: 10.1016/j.ress.2017.11.021_bib0049 article-title: A modified echo state network based remaining useful life estimation approach – volume: 5 start-page: 005 issue: 1 year: 2014 ident: 10.1016/j.ress.2017.11.021_bib0042 article-title: Investigating computational geometry for failure prognostics publication-title: Int J Prognostics Health Manage – start-page: 135 year: 2016 ident: 10.1016/j.ress.2017.11.021_bib0022 article-title: Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network – start-page: 1 year: 2008 ident: 10.1016/j.ress.2017.11.021_bib0043 article-title: Prognostic algorithm categorization with PHM challenge application – volume: 164 start-page: 74 year: 2017 ident: 10.1016/j.ress.2017.11.021_bib0002 article-title: Remaining useful life prediction of aircraft engine based on degradation pattern learning publication-title: Reliabil Eng Syst Saf doi: 10.1016/j.ress.2017.02.007 – volume: 21 start-page: 193 issue: 1 year: 2007 ident: 10.1016/j.ress.2017.11.021_bib0016 article-title: Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2005.11.008 – volume: 7273 start-page: 2 year: 2016 ident: 10.1016/j.ress.2017.11.021_bib0008 article-title: Particle filter-based prognostics: review, discussion and perspectives publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2015.11.008 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.ress.2017.11.021_bib0039 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 29 start-page: 82 issue: 6 year: 2012 ident: 10.1016/j.ress.2017.11.021_bib0026 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2012.2205597 – volume: PP start-page: 1 issue: 99 year: 2016 ident: 10.1016/j.ress.2017.11.021_bib0029 article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics publication-title: IEEE Trans Neural Netw Learn Syst – start-page: 214 year: 2016 ident: 10.1016/j.ress.2017.11.021_bib0031 article-title: Deep convolutional neural network based regression approach for estimation of remaining useful life – start-page: 7 year: 2005 ident: 10.1016/j.ress.2017.11.021_bib0019 article-title: Reasoning about uncertainty in prognosis: a confidence prediction neural network approach – start-page: 1 year: 2008 ident: 10.1016/j.ress.2017.11.021_bib0030 article-title: Damage propagation modeling for aircraft engine run-to-failure simulation – ident: 10.1016/j.ress.2017.11.021_bib0040 – year: 2008 ident: 10.1016/j.ress.2017.11.021_sbref0040 article-title: Turbofan engine degradation simulation data set |
| SSID | ssj0004957 |
| Score | 2.6990469 |
| Snippet | •Propose a novel deep convolutional neural network-based method for remaining useful life predictions.•No prior expertise on prognostics and signal processing... Traditionally, system prognostics and health management (PHM) depends on sufficient prior knowledge of critical components degradation process in order to... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Components Convolution Convolution neural network Critical components Data processing Deep learning Feature extraction Information processing Neural networks Prognostics and health management Reliability engineering Remaining useful life Sample preparation Signal processing Studies Useful life Windows (intervals) |
| Title | Remaining useful life estimation in prognostics using deep convolution neural networks |
| URI | https://dx.doi.org/10.1016/j.ress.2017.11.021 https://www.proquest.com/docview/2024404141 |
| Volume | 172 |
| WOSCitedRecordID | wos000424960000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZQywEOiKcoFOQDtyjVOnFi-1ihIuBQ8Shob5Hj2GirNrva7KLy75mxnQeLWtEDlyjyxpaz82U8mXz-hpA3MwfraOlU6rJcpLwxKtXGubTMbeG4EqY02hebEKencj5Xn-IX086XExBtK6-u1Oq_mhrawNi4dfYW5h4GhQY4B6PDEcwOx38y_Bd7Gao-JNvOIgP5YuFsgmIaYZei542vl0iw8xLNW58taKxdeQp6nFuCQpdgvjbQxLtpEIs05iDv_Suxo56hR1FQhk467aLAiGf7eMrAHJD4YwicYy2VzxN4ft2GjSLQlEL7cpqRYHJCZOlTiywFTzH7w8uGCj3RT7LJghuc7V-uPGQVzo8w64AUPHGEaqsZGxeu_mP9zno2sAx7Att5hWNUOAa88FQz1B3Yz0ShwAvuH384mX8cd9KqoA3b30HcZhUYgbszuS6U2VnUfaRy9pA8iK8Y9DhA4xG5Y9vH5P5EePIJ-T6AhAaQUAQJHUFCFy2dgIR6kFAECZ2AhAaQ0B4kT8m3dydnb9-nscJGanLFN2mD8TrXuXROGesa6ZioVcbyspa5NEapopYF57pwupZOWgiXrS5rxrQRQjb5M7LXLlv7nFBTQKSdmcwZAx24koZx5uqZ4lq6xooDwvo_qzJRfh6roFxU15vpgCRDn1UQX7nx6qK3QRXDxxAWVgCpG_sd9gar4nOMv2eonAn38OJWk3hJ7o2PxCHZ26y39hW5a35uFt36dYTbb9h_n9M |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+useful+life+estimation+in+prognostics+using+deep+convolution+neural+networks&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Li%2C+Xiang&rft.au=Ding%2C+Qian&rft.au=Sun%2C+Jian-Qiao&rft.date=2018-04-01&rft.issn=0951-8320&rft.volume=172&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1016%2Fj.ress.2017.11.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2017_11_021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |