Robust Multiple-Measurement Sparsity-Aware STAP with Bayesian Variational Autoencoder

Due to the shortage of independent and identically distributed (i.i.d.) training samples, space−time adaptive processing (STAP) often suffers remarkable performance degradation in the heterogeneous clutter environment. Sparse recovery (SR) techniques have been introduced into STAP for the benefit of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 14; číslo 15; s. 3800
Hlavní autoři: Zhang, Chenxi, Zhao, Huiliang, Chen, Wenchao, Chen, Bo, Wang, Penghui, Jia, Changrui, Liu, Hongwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.08.2022
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to the shortage of independent and identically distributed (i.i.d.) training samples, space−time adaptive processing (STAP) often suffers remarkable performance degradation in the heterogeneous clutter environment. Sparse recovery (SR) techniques have been introduced into STAP for the benefit of the drastically reduced training requirement, but they are incompletely robust for involving the tricky selection of hyper−parameters or the undesirable point estimation for parameters. Given this issue, we incorporate the Multiple−measurement Complex−valued Variational relevance vector machines (MCV) to model the space−time echoes and provide a Gibbs−sampling−based method to estimate posterior distributions of parameters accurately. However, the Gibbs sampler require quantities of iterations, as unattractive as traditional Bayesian type SR−STAP algorithms when the real−time processing is desired. To address this problem, we further develop the Bayesian Autoencoding MCV for STAP (BAMCV−STAP), which builds the generative model according to MCV and approximates posterior distributions of parameters with an inference network pre−trained off−line, to realize fast reconstruction of measurements. Experimental results on simulated and measured data demonstrate that BAMCV−STAP can achieve suboptimal clutter suppression in terms of the output signal to interference plus noise ratio (SINR) loss, as well as the attractive real−time processing property in terms of the convergence rate and computational loads.
AbstractList Due to the shortage of independent and identically distributed (i.i.d.) training samples, space−time adaptive processing (STAP) often suffers remarkable performance degradation in the heterogeneous clutter environment. Sparse recovery (SR) techniques have been introduced into STAP for the benefit of the drastically reduced training requirement, but they are incompletely robust for involving the tricky selection of hyper−parameters or the undesirable point estimation for parameters. Given this issue, we incorporate the Multiple−measurement Complex−valued Variational relevance vector machines (MCV) to model the space−time echoes and provide a Gibbs−sampling−based method to estimate posterior distributions of parameters accurately. However, the Gibbs sampler require quantities of iterations, as unattractive as traditional Bayesian type SR−STAP algorithms when the real−time processing is desired. To address this problem, we further develop the Bayesian Autoencoding MCV for STAP (BAMCV−STAP), which builds the generative model according to MCV and approximates posterior distributions of parameters with an inference network pre−trained off−line, to realize fast reconstruction of measurements. Experimental results on simulated and measured data demonstrate that BAMCV−STAP can achieve suboptimal clutter suppression in terms of the output signal to interference plus noise ratio (SINR) loss, as well as the attractive real−time processing property in terms of the convergence rate and computational loads.
Author Liu, Hongwei
Zhao, Huiliang
Chen, Wenchao
Jia, Changrui
Zhang, Chenxi
Wang, Penghui
Chen, Bo
Author_xml – sequence: 1
  givenname: Chenxi
  orcidid: 0000-0002-2472-1860
  surname: Zhang
  fullname: Zhang, Chenxi
– sequence: 2
  givenname: Huiliang
  surname: Zhao
  fullname: Zhao, Huiliang
– sequence: 3
  givenname: Wenchao
  surname: Chen
  fullname: Chen, Wenchao
– sequence: 4
  givenname: Bo
  surname: Chen
  fullname: Chen, Bo
– sequence: 5
  givenname: Penghui
  surname: Wang
  fullname: Wang, Penghui
– sequence: 6
  givenname: Changrui
  surname: Jia
  fullname: Jia, Changrui
– sequence: 7
  givenname: Hongwei
  surname: Liu
  fullname: Liu, Hongwei
BookMark eNptkVtrFEEQhRtJwJjkxV8w4IsIY_re049riBpIMOTia1PTXaO9zE6v3T2E_ffuZg1KsF6qKL46UOe8IQdTmpCQt4x-FMLSs1yYZEp0lL4iR5wa3kpu-cE_82tyWsqSbksIZqk8Ig-3qZ9Lba7nscb1iO01QpkzrnCqzd0acol10y4eIWNzd7-4aR5j_dl8gg2WCFPzHXKEGtMEY7OYa8LJp4D5hBwOMBY8_dOPycPni_vzr-3Vty-X54ur1gsra-sDgPcWmUeQRsmea9Ad5SAHq42i3ghNB8WlVkzxEFgHwvdCdDLoTgwgjsnlXjckWLp1jivIG5cguqdFyj8c5Br9iM7LXgtvzCC0kNraHnwIKDmiDUJavdV6v9da5_RrxlLdKhaP4wgTprk4blgntFRmh757gS7TnLce7ChKjVZU7Si6p3xOpWQcnI_1yayaIY6OUbeLzf2NbXvy4cXJ80__gX8DPhCY4A
CitedBy_id crossref_primary_10_1109_TAES_2023_3337769
Cites_doi 10.1109/TASSP.1987.1165054
10.1049/iet-rsn.2014.0285
10.1109/TAES.2013.120145
10.1109/TSP.2007.916124
10.1109/TSP.2019.2957640
10.1109/TGRS.2015.2470518
10.1109/MSP.2008.929620
10.1109/MSP.2006.1593336
10.1007/978-1-4757-4286-2
10.1109/7.845255
10.1109/TAES.2011.5751261
10.1023/A:1007665907178
10.1109/TAES.2011.5937257
10.3390/rs13163195
10.1049/rsn2.12186
10.1109/TSP.2019.2954504
10.1109/TSP.2006.881263
10.1109/IGARSS.2009.5417664
10.1137/060657704
10.1109/MSP.2010.936023
10.1109/TAES.2019.2921141
10.1016/j.sigpro.2016.06.023
10.1049/rsn2.12176
10.1109/TAES.2006.248199
10.1016/j.neucom.2021.04.089
10.1109/ICASSP.2014.6854226
10.1109/7.135446
10.1111/j.1467-9868.2011.00771.x
10.1109/TGRS.2019.2937965
10.1109/IBCAST51254.2021.9393224
10.1109/TSP.2016.2569471
10.1049/rsn2.12034
10.1016/j.aiopen.2021.10.001
10.1049/iet-rsn.2014.0226
10.1109/7.7181
10.1137/S003614450037906X
10.1109/78.258082
10.1049/rsn2.12152
10.1109/TSP.2007.894265
10.3390/s22010077
10.1109/TSP.2005.849172
10.1016/j.dsp.2022.103418
10.1109/TSP.2011.2172435
10.1109/TAES.2017.2649678
10.1109/ACCESS.2020.2963838
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14153800
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_c4b63c77f3634699bacdde42ee9d3496
10_3390_rs14153800
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c394t-cdaacc9e1cea4754b26a6802a4f96750c7360f52465152dd18a3cb3384d683fa3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000839789600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:40:53 EDT 2025
Sun Nov 09 10:48:53 EST 2025
Fri Jul 25 12:02:48 EDT 2025
Sat Nov 29 07:16:46 EST 2025
Tue Nov 18 19:58:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-cdaacc9e1cea4754b26a6802a4f96750c7360f52465152dd18a3cb3384d683fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2472-1860
OpenAccessLink https://doaj.org/article/c4b63c77f3634699bacdde42ee9d3496
PQID 2700765056
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_c4b63c77f3634699bacdde42ee9d3496
proquest_miscellaneous_2718364576
proquest_journals_2700765056
crossref_citationtrail_10_3390_rs14153800
crossref_primary_10_3390_rs14153800
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Fa (ref_12) 2011; 47
Capraro (ref_16) 2006; 42
Cui (ref_17) 2021; 15
ref_55
Liu (ref_18) 2020; 8
ref_54
ref_53
ref_52
Chen (ref_31) 2001; 43
ref_51
Li (ref_2) 2022; 123
Guerci (ref_11) 2000; 36
Yang (ref_20) 2012; 60
Wei (ref_32) 2020; 58
Yifeng (ref_5) 2015; 9
Guerci (ref_15) 2006; 23
Ding (ref_43) 2022; 3
Zhou (ref_42) 2021; 453
Zhang (ref_10) 2020; 56
ref_61
ref_60
Cox (ref_58) 1987; 35
Bruckstein (ref_28) 2009; 51
Jordan (ref_48) 1999; 37
ref_25
ref_21
Yang (ref_23) 2016; 64
Xiao (ref_4) 2021; 15
Wipf (ref_37) 2007; 55
Wang (ref_34) 2017; 130
Yang (ref_13) 2022; 16
Worley (ref_49) 2019; 67
Wu (ref_22) 2016; 54
Tipping (ref_36) 2001; 1
Carlson (ref_57) 1988; 24
Blumensath (ref_27) 2008; 56
Liu (ref_6) 2017; 53
Cotter (ref_26) 2005; 53
ref_33
Tibshirani (ref_29) 2011; 73
Zhang (ref_8) 2015; 9
ref_39
Wang (ref_9) 2020; 68
Chen (ref_59) 2006; 54
Zhang (ref_7) 2014; 50
Poli (ref_35) 2013; 61
Tzikas (ref_50) 2008; 25
Duan (ref_38) 2022; 16
ref_47
Sarkar (ref_14) 2001; 49
ref_46
ref_45
ref_44
ref_41
ref_40
ref_1
Mallat (ref_24) 1993; 41
ref_3
Zibulevsky (ref_30) 2010; 27
Zhu (ref_19) 2011; 47
Robey (ref_56) 1992; 28
References_xml – volume: 35
  start-page: 1365
  year: 1987
  ident: ref_58
  article-title: Robust adaptive beamforming
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1987.1165054
– volume: 9
  start-page: 778
  year: 2015
  ident: ref_5
  article-title: Robust training samples selection algorithm based on spectral similarity for space–time adaptive processing in heterogeneous interference environments
  publication-title: IET Radar Sonar Nav.
  doi: 10.1049/iet-rsn.2014.0285
– volume: 50
  start-page: 254
  year: 2014
  ident: ref_7
  article-title: A method for finding best channels in beam-space post-Doppler reduced-dimension STAP
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2013.120145
– ident: ref_55
– ident: ref_51
– volume: 56
  start-page: 2370
  year: 2008
  ident: ref_27
  article-title: Gradient Pursuits
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.916124
– volume: 68
  start-page: 81
  year: 2020
  ident: ref_9
  article-title: Robust two-stage reduced-dimension sparsity-aware STAP for airborne radar With coprime arrays
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2957640
– volume: 54
  start-page: 944
  year: 2016
  ident: ref_22
  article-title: Space-Time Adaptive Processing and Motion Parameter Estimation in Multistatic Passive Radar Using Sparse Bayesian Learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2470518
– volume: 25
  start-page: 131
  year: 2008
  ident: ref_50
  article-title: The variational approximation for Bayesian inference
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.929620
– volume: 23
  start-page: 41
  year: 2006
  ident: ref_15
  article-title: Knowledge-aided adaptive radar at DARPA: An overview
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2006.1593336
– ident: ref_39
– ident: ref_47
  doi: 10.1007/978-1-4757-4286-2
– volume: 36
  start-page: 647
  year: 2000
  ident: ref_11
  article-title: Optimal and adaptive reduced-rank STAP
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.845255
– ident: ref_61
– volume: 47
  start-page: 1325
  year: 2011
  ident: ref_19
  article-title: Knowledge-aided space-time adaptive processing
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2011.5751261
– volume: 37
  start-page: 183
  year: 1999
  ident: ref_48
  article-title: An Introduction to Variational Methods for Graphical Models
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007665907178
– volume: 47
  start-page: 1668
  year: 2011
  ident: ref_12
  article-title: Reduced-Rank STAP Algorithms using Joint Iterative Optimization of Filters
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2011.5937257
– volume: 49
  start-page: 91
  year: 2001
  ident: ref_14
  article-title: A deterministic least-squares approach to space-time adaptive processing (STAP)
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 61
  start-page: 4722
  year: 2013
  ident: ref_35
  article-title: MT–BCS-based microwave imaging approach through minimum-norm current expansion
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– ident: ref_1
  doi: 10.3390/rs13163195
– volume: 16
  start-page: 327
  year: 2022
  ident: ref_13
  article-title: Reduced-rank space-time adaptive processing algorithm based on multistage selections of angle-Doppler filters
  publication-title: IET Radar Sonar Nav.
  doi: 10.1049/rsn2.12186
– ident: ref_52
– volume: 67
  start-page: 6314
  year: 2019
  ident: ref_49
  article-title: Scalable Mean-Field Sparse Bayesian Learning
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2954504
– volume: 54
  start-page: 4634
  year: 2006
  ident: ref_59
  article-title: Theoretical Results on Sparse Representations of Multiple-Measurement Vectors
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881263
– ident: ref_41
– ident: ref_21
  doi: 10.1109/IGARSS.2009.5417664
– ident: ref_45
– volume: 1
  start-page: 211
  year: 2001
  ident: ref_36
  article-title: Sparse Bayesian Learning and the Relevance Vector Machine
  publication-title: J. Mach. Learn. Res.
– volume: 51
  start-page: 34
  year: 2009
  ident: ref_28
  article-title: From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
  publication-title: SIAM Rev.
  doi: 10.1137/060657704
– volume: 27
  start-page: 76
  year: 2010
  ident: ref_30
  article-title: L1-L2 Optimization in Signal and Image Processing
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2010.936023
– ident: ref_53
– volume: 56
  start-page: 785
  year: 2020
  ident: ref_10
  article-title: Reduced dimension STAP based on sparse recovery in heterogeneous clutter environments
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2019.2921141
– volume: 130
  start-page: 159
  year: 2017
  ident: ref_34
  article-title: Clutter suppression algorithm based on fast converging sparse Bayesian learning for airborne radar
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.06.023
– volume: 16
  start-page: 193
  year: 2022
  ident: ref_38
  article-title: Deep learning for high-resolution estimation of clutter angle-Doppler spectrum in STAP
  publication-title: IET Radar Sonar Nav.
  doi: 10.1049/rsn2.12176
– volume: 42
  start-page: 1080
  year: 2006
  ident: ref_16
  article-title: Implementing digital terrain data in knowledge-aided space-time adaptive processing
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2006.248199
– volume: 453
  start-page: 131
  year: 2021
  ident: ref_42
  article-title: VAE-based Deep SVDD for anomaly detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.089
– ident: ref_40
– ident: ref_33
  doi: 10.1109/ICASSP.2014.6854226
– volume: 28
  start-page: 208
  year: 1992
  ident: ref_56
  article-title: A CFAR adaptive matched filter detector
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.135446
– volume: 73
  start-page: 273
  year: 2011
  ident: ref_29
  article-title: Regression shrinkage and selection via the lasso: A retrospective
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2011.00771.x
– volume: 58
  start-page: 546
  year: 2020
  ident: ref_32
  article-title: Sparse Frequency Waveform Optimization for High-Resolution ISAR Imaging
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2937965
– ident: ref_44
  doi: 10.1109/IBCAST51254.2021.9393224
– volume: 64
  start-page: 4550
  year: 2016
  ident: ref_23
  article-title: Fast STAP Method Based on PAST with Sparse Constraint for Airborne Phased Array Radar
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2569471
– ident: ref_25
– volume: 15
  start-page: 310
  year: 2021
  ident: ref_4
  article-title: A robust refined training sample reweighting space–time adaptive processing method for airborne radar in heterogeneous environment
  publication-title: IET Radar Sonar Nav.
  doi: 10.1049/rsn2.12034
– ident: ref_54
– volume: 3
  start-page: 29
  year: 2022
  ident: ref_43
  article-title: The road from MLE to EM to VAE: A brief tutorial
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.10.001
– volume: 9
  start-page: 772
  year: 2015
  ident: ref_8
  article-title: Beamspace reduced-dimension space–time adaptive processing for multiple-input multiple-output radar based on maximum cross-correlation energy
  publication-title: IET Radar Sonar Nav.
  doi: 10.1049/iet-rsn.2014.0226
– ident: ref_46
– volume: 24
  start-page: 397
  year: 1988
  ident: ref_57
  article-title: Covariance matrix estimation errors and diagonal loading in adaptive arrays
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.7181
– volume: 43
  start-page: 129
  year: 2001
  ident: ref_31
  article-title: Atomic Decomposition by Basis Pursuit
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450037906X
– volume: 41
  start-page: 3397
  year: 1993
  ident: ref_24
  article-title: Matching pursuits with time-frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.258082
– volume: 15
  start-page: 1628
  year: 2021
  ident: ref_17
  article-title: Knowledge-aided block sparse Bayesian learning STAP for phased-array MIMO airborne radar
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/rsn2.12152
– volume: 55
  start-page: 3704
  year: 2007
  ident: ref_37
  article-title: An Empirical Bayesian Strategy for Solving the Simultaneous Sparse Approximation Problem
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.894265
– ident: ref_3
  doi: 10.3390/s22010077
– ident: ref_60
– volume: 53
  start-page: 2477
  year: 2005
  ident: ref_26
  article-title: Sparse solutions to linear inverse problems with multiple measurement vectors
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.849172
– volume: 123
  start-page: 103418
  year: 2022
  ident: ref_2
  article-title: Sub-CPI STAP based clutter suppression and target refocusing with airborne radar system
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2022.103418
– volume: 60
  start-page: 674
  year: 2012
  ident: ref_20
  article-title: L1 regularized STAP algorithms With a generalized sidelobe canceler architecture for airborne radar
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2172435
– volume: 53
  start-page: 135
  year: 2017
  ident: ref_6
  article-title: A simpler proof of rapid convergence rate in adaptive arrays
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2017.2649678
– volume: 8
  start-page: 5970
  year: 2020
  ident: ref_18
  article-title: Knowledge Aided Covariance Matrix Estimation via Gaussian Kernel Function for Airborne SR-STAP
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2963838
SSID ssj0000331904
Score 2.3321443
Snippet Due to the shortage of independent and identically distributed (i.i.d.) training samples, space−time adaptive processing (STAP) often suffers remarkable...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3800
SubjectTerms Adaptive sampling
Airborne radar
Algorithms
Bayesian analysis
Bayesian theory
Clutter
clutter plus noise covariance matrix (CCM)
clutter suppression
Computer applications
Dictionaries
Echoes
Machine learning
Mathematical models
Methods
Parameters
Performance degradation
Remote sensing
Robustness
space and time
Space-time adaptive processing
space−time adaptive processing (STAP)
sparse recovery (SR)
Sparsity
Training
variational autoencoder (VAE)
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQaKX8q0uFGQEFw5RndjrrE_VFlFxaVWxLeotssc2VKo2S5IF9d_j8Xp3kUBcuEXJKIoynhm_mfEbgHchxsSx9nVhMYhCWq7jFUaw4ji60oQIgEIaNlGfnU2urvR5Trj1ua1y7ROTo3YtUo78kAqktaJ4fbT4XtDUKKqu5hEad-EesSSUqXVvtsmxcBEXGJcrVlIR0f1h15eSbJwOtP0WhxJd_x_eOIWYk4f_-3GPYC9vLtl0tRoewx0_fwIP8pzzb7dP4fJza5f9wE5zG2Fxuk0RstnCpA6NYvrTdJ7NLqbnjNK07Njcejpryb5EYJ2Th2y6HFoiwXS-ewaXJx8vPnwq8mCFAoWWQ4HOGETtS_RG1mNpK2XUhFdGBh0BBMdaKB7GVZqTXjlXToxAG8GsdGoighHPYWfezv0-sGDiHoo7a6vSSxuxjFUctXC6FNYrJUfwfv2bG8ys4zT84qaJ6INU0mxVMoK3G9nFimvjr1LHpK2NBPFjpxtt97XJ5tagtEpgXQehhFRaW4PRj8vKe-2IIn8EB2tFNtlo-2arxRG82TyO5kY1FDP37ZJkog9UMqK0F_9-xUvYreikROoVPICdoVv6V3AffwzXffc6rdNf_yvyzA
  priority: 102
  providerName: ProQuest
Title Robust Multiple-Measurement Sparsity-Aware STAP with Bayesian Variational Autoencoder
URI https://www.proquest.com/docview/2700765056
https://www.proquest.com/docview/2718364576
https://doaj.org/article/c4b63c77f3634699bacdde42ee9d3496
Volume 14
WOSCitedRecordID wos000839789600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hggQXxFMESmQEFw6reteONz4mKBUcEq2aFhUuKz9VJJRUm02rXvjtzHi3aSSQuHCxVus5WDOesT97_A3Ah4hr4kiHMrMuikxarvHLIVjx3PncRARAMRWbKBeL8fm5rvZKfVFOWEcP3CnuyEmrhCvLKJRAKKetceiRsghBeyI7p-jLS70HplIMFji1uOz4SAXi-qNmk0vybnrKtrcCJaL-P-JwWlyOn8DjflfIJt1onsK9sHoGD_sC5Rc3z-HsZG23m5bN-_y_bH53tseWlyalVmSTa9MEtjydVIzOV9nU3AR6JMm-IiLuT_3YZNuuib3Sh-YFnB3PTj99zvqKCJkTWraZ88Y4p0PugpHlSNpCGTXmhZFR486fu1IoHkdFKnBeeJ-PjXAWUaj0aiyiES_hYLVehVfAosHND_fWFnmQFkGIVdxp4XUubFBKDuDjrZZq19OFU9WKnzXCBtJofafRAbzfyV52JBl_lZqSsncSRGydfqC5697c9b_MPYDDW1PVvbdtaro8LxXt5QbwbteNfkKXH2YV1luSweClJMKr1_9jHG_gUUEPIVIq4CEctM02vIUH7qr9sWmGcH86W1QnwzQph5RPuqT21wzbavQd-6sv8-rbb69G69o
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFKlc-EYECiwCDhysrr2bdfaAUApUjdpEEU1RezL7ZaiE4mA7VPlT_EZ2nHWCBOLWAzfLHq1k7_ObndmdeQAvc-8Te9KlkTY5i7im0l8ZH6xYamysch8A5Y3YRDoe98_O5GQLfra1MHissuXEhqhtYTBHvocbpKlAf_12_j1C1SjcXW0lNFawOHLLSx-yVW-G7_38vkqSgw_Td4dRUBWIDJO8joxVyhjpYuMUT3tcJ0KJPk0Uz6VfPVOTMkHzXtKIhCfWxn3FjPaRHLeiz3LF_LjXYJsj2DuwPRmOJufrrA5lHtKUr_qgMibpXlnFHFkFS-h-83yNQMAf_N84tYNb_9vnuA03w_KZDFZ4vwNbbnYXdoKS-9flPTj9WOhFVZNROCgZjTZJUHIyV80ZlGhwqUpHTqaDCcFENNlXS4fVpOSTKi9CepQMFnWBbT6tK-_D6ZW81QPozIqZewgkV36VSK3WSey49tGaFtRIZmXMtBOCd-F1O62ZCX3VUd7jW-bjK4RAtoFAF16sbeerbiJ_tdpHdKwtsAN4c6Mov2SBUDLDtWAmTXMmGBdSamW8p-KJc9KiCEAXdlvgZIGWqmyDmi48Xz_2hIK7RGrmigXaeJYX3Mehj_49xDPYOZyOjrPj4fjoMdxIsC6kORm5C526XLgncN38qC-q8mn4Swh8vmok_gJB9lDi
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VgoAL34hAgUXAgYOVtXezzh4QSikRVWkU0RZVvZj9clsJxcF2qPLX-HXMOE6CBOLWAzfLHlmy9-3MvtnZeQCvcoyJPR3SyLpcRNJyjVcOyYrnzscmRwKUN2IT6WjUPz7W4w34uTwLQ2WVS5_YOGpfOMqRd2mDNFUUr7t5WxYx3hm-m36PSEGKdlqXchoLiOyF-QXSt-rt7g6O9eskGX44fP8xahUGIie0rCPnjXFOh9gFI9OetIkyqs8TI3ONK2nuUqF43ksawfDE-7hvhLPI6qRXfZEbge-9AldT5JhUTjjunazyO1wguLlcdEQVQvNuWcWS_AsdpvstBjZSAX9Egia8DW__zz_mDtxqF9VssJgFd2EjTO7BjVbf_Wx-H44-F3ZW1Wy_LZ-M9tepUXYwNU1lSjS4MGVgB4eDMaP0NNs280BnTNkXU563SVM2mNUFNf_0oXwAR5fyVQ9hc1JMwiNgucG1I_fWJnGQFjmcVdxp4XUsbFBKduDNcogz13ZbJ9GPbxmyLoJDtoZDB16ubKeLHiN_tdompKwsqC94c6MoT7PWzWROWiVcmuZCCQSltsZh_JJJCNqTNEAHtpYgylpnVWVrBHXgxeoxuhnaOzKTUMzIBn2_kshOH__7Fc_hOsIv-7Q72nsCNxM6LNKUS27BZl3OwlO45n7U51X5rJkuDL5eNgx_AVaWWEU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Multiple-Measurement+Sparsity-Aware+STAP+with+Bayesian+Variational+Autoencoder&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Chenxi&rft.au=Zhao%2C+Huiliang&rft.au=Chen%2C+Wenchao&rft.au=Chen%2C+Bo&rft.date=2022-08-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=15&rft.spage=3800&rft_id=info:doi/10.3390%2Frs14153800&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14153800
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon