Robust Multiple-Measurement Sparsity-Aware STAP with Bayesian Variational Autoencoder
Due to the shortage of independent and identically distributed (i.i.d.) training samples, space−time adaptive processing (STAP) often suffers remarkable performance degradation in the heterogeneous clutter environment. Sparse recovery (SR) techniques have been introduced into STAP for the benefit of...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 14; číslo 15; s. 3800 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.08.2022
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Due to the shortage of independent and identically distributed (i.i.d.) training samples, space−time adaptive processing (STAP) often suffers remarkable performance degradation in the heterogeneous clutter environment. Sparse recovery (SR) techniques have been introduced into STAP for the benefit of the drastically reduced training requirement, but they are incompletely robust for involving the tricky selection of hyper−parameters or the undesirable point estimation for parameters. Given this issue, we incorporate the Multiple−measurement Complex−valued Variational relevance vector machines (MCV) to model the space−time echoes and provide a Gibbs−sampling−based method to estimate posterior distributions of parameters accurately. However, the Gibbs sampler require quantities of iterations, as unattractive as traditional Bayesian type SR−STAP algorithms when the real−time processing is desired. To address this problem, we further develop the Bayesian Autoencoding MCV for STAP (BAMCV−STAP), which builds the generative model according to MCV and approximates posterior distributions of parameters with an inference network pre−trained off−line, to realize fast reconstruction of measurements. Experimental results on simulated and measured data demonstrate that BAMCV−STAP can achieve suboptimal clutter suppression in terms of the output signal to interference plus noise ratio (SINR) loss, as well as the attractive real−time processing property in terms of the convergence rate and computational loads. |
|---|---|
| AbstractList | Due to the shortage of independent and identically distributed (i.i.d.) training samples, space−time adaptive processing (STAP) often suffers remarkable performance degradation in the heterogeneous clutter environment. Sparse recovery (SR) techniques have been introduced into STAP for the benefit of the drastically reduced training requirement, but they are incompletely robust for involving the tricky selection of hyper−parameters or the undesirable point estimation for parameters. Given this issue, we incorporate the Multiple−measurement Complex−valued Variational relevance vector machines (MCV) to model the space−time echoes and provide a Gibbs−sampling−based method to estimate posterior distributions of parameters accurately. However, the Gibbs sampler require quantities of iterations, as unattractive as traditional Bayesian type SR−STAP algorithms when the real−time processing is desired. To address this problem, we further develop the Bayesian Autoencoding MCV for STAP (BAMCV−STAP), which builds the generative model according to MCV and approximates posterior distributions of parameters with an inference network pre−trained off−line, to realize fast reconstruction of measurements. Experimental results on simulated and measured data demonstrate that BAMCV−STAP can achieve suboptimal clutter suppression in terms of the output signal to interference plus noise ratio (SINR) loss, as well as the attractive real−time processing property in terms of the convergence rate and computational loads. |
| Author | Liu, Hongwei Zhao, Huiliang Chen, Wenchao Jia, Changrui Zhang, Chenxi Wang, Penghui Chen, Bo |
| Author_xml | – sequence: 1 givenname: Chenxi orcidid: 0000-0002-2472-1860 surname: Zhang fullname: Zhang, Chenxi – sequence: 2 givenname: Huiliang surname: Zhao fullname: Zhao, Huiliang – sequence: 3 givenname: Wenchao surname: Chen fullname: Chen, Wenchao – sequence: 4 givenname: Bo surname: Chen fullname: Chen, Bo – sequence: 5 givenname: Penghui surname: Wang fullname: Wang, Penghui – sequence: 6 givenname: Changrui surname: Jia fullname: Jia, Changrui – sequence: 7 givenname: Hongwei surname: Liu fullname: Liu, Hongwei |
| BookMark | eNptkVtrFEEQhRtJwJjkxV8w4IsIY_re049riBpIMOTia1PTXaO9zE6v3T2E_ffuZg1KsF6qKL46UOe8IQdTmpCQt4x-FMLSs1yYZEp0lL4iR5wa3kpu-cE_82tyWsqSbksIZqk8Ig-3qZ9Lba7nscb1iO01QpkzrnCqzd0acol10y4eIWNzd7-4aR5j_dl8gg2WCFPzHXKEGtMEY7OYa8LJp4D5hBwOMBY8_dOPycPni_vzr-3Vty-X54ur1gsra-sDgPcWmUeQRsmea9Ad5SAHq42i3ghNB8WlVkzxEFgHwvdCdDLoTgwgjsnlXjckWLp1jivIG5cguqdFyj8c5Br9iM7LXgtvzCC0kNraHnwIKDmiDUJavdV6v9da5_RrxlLdKhaP4wgTprk4blgntFRmh757gS7TnLce7ChKjVZU7Si6p3xOpWQcnI_1yayaIY6OUbeLzf2NbXvy4cXJ80__gX8DPhCY4A |
| CitedBy_id | crossref_primary_10_1109_TAES_2023_3337769 |
| Cites_doi | 10.1109/TASSP.1987.1165054 10.1049/iet-rsn.2014.0285 10.1109/TAES.2013.120145 10.1109/TSP.2007.916124 10.1109/TSP.2019.2957640 10.1109/TGRS.2015.2470518 10.1109/MSP.2008.929620 10.1109/MSP.2006.1593336 10.1007/978-1-4757-4286-2 10.1109/7.845255 10.1109/TAES.2011.5751261 10.1023/A:1007665907178 10.1109/TAES.2011.5937257 10.3390/rs13163195 10.1049/rsn2.12186 10.1109/TSP.2019.2954504 10.1109/TSP.2006.881263 10.1109/IGARSS.2009.5417664 10.1137/060657704 10.1109/MSP.2010.936023 10.1109/TAES.2019.2921141 10.1016/j.sigpro.2016.06.023 10.1049/rsn2.12176 10.1109/TAES.2006.248199 10.1016/j.neucom.2021.04.089 10.1109/ICASSP.2014.6854226 10.1109/7.135446 10.1111/j.1467-9868.2011.00771.x 10.1109/TGRS.2019.2937965 10.1109/IBCAST51254.2021.9393224 10.1109/TSP.2016.2569471 10.1049/rsn2.12034 10.1016/j.aiopen.2021.10.001 10.1049/iet-rsn.2014.0226 10.1109/7.7181 10.1137/S003614450037906X 10.1109/78.258082 10.1049/rsn2.12152 10.1109/TSP.2007.894265 10.3390/s22010077 10.1109/TSP.2005.849172 10.1016/j.dsp.2022.103418 10.1109/TSP.2011.2172435 10.1109/TAES.2017.2649678 10.1109/ACCESS.2020.2963838 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs14153800 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_c4b63c77f3634699bacdde42ee9d3496 10_3390_rs14153800 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 |
| ID | FETCH-LOGICAL-c394t-cdaacc9e1cea4754b26a6802a4f96750c7360f52465152dd18a3cb3384d683fa3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000839789600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:40:53 EDT 2025 Sun Nov 09 10:48:53 EST 2025 Fri Jul 25 12:02:48 EDT 2025 Sat Nov 29 07:16:46 EST 2025 Tue Nov 18 19:58:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-cdaacc9e1cea4754b26a6802a4f96750c7360f52465152dd18a3cb3384d683fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2472-1860 |
| OpenAccessLink | https://doaj.org/article/c4b63c77f3634699bacdde42ee9d3496 |
| PQID | 2700765056 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c4b63c77f3634699bacdde42ee9d3496 proquest_miscellaneous_2718364576 proquest_journals_2700765056 crossref_citationtrail_10_3390_rs14153800 crossref_primary_10_3390_rs14153800 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Fa (ref_12) 2011; 47 Capraro (ref_16) 2006; 42 Cui (ref_17) 2021; 15 ref_55 Liu (ref_18) 2020; 8 ref_54 ref_53 ref_52 Chen (ref_31) 2001; 43 ref_51 Li (ref_2) 2022; 123 Guerci (ref_11) 2000; 36 Yang (ref_20) 2012; 60 Wei (ref_32) 2020; 58 Yifeng (ref_5) 2015; 9 Guerci (ref_15) 2006; 23 Ding (ref_43) 2022; 3 Zhou (ref_42) 2021; 453 Zhang (ref_10) 2020; 56 ref_61 ref_60 Cox (ref_58) 1987; 35 Bruckstein (ref_28) 2009; 51 Jordan (ref_48) 1999; 37 ref_25 ref_21 Yang (ref_23) 2016; 64 Xiao (ref_4) 2021; 15 Wipf (ref_37) 2007; 55 Wang (ref_34) 2017; 130 Yang (ref_13) 2022; 16 Worley (ref_49) 2019; 67 Wu (ref_22) 2016; 54 Tipping (ref_36) 2001; 1 Carlson (ref_57) 1988; 24 Blumensath (ref_27) 2008; 56 Liu (ref_6) 2017; 53 Cotter (ref_26) 2005; 53 ref_33 Tibshirani (ref_29) 2011; 73 Zhang (ref_8) 2015; 9 ref_39 Wang (ref_9) 2020; 68 Chen (ref_59) 2006; 54 Zhang (ref_7) 2014; 50 Poli (ref_35) 2013; 61 Tzikas (ref_50) 2008; 25 Duan (ref_38) 2022; 16 ref_47 Sarkar (ref_14) 2001; 49 ref_46 ref_45 ref_44 ref_41 ref_40 ref_1 Mallat (ref_24) 1993; 41 ref_3 Zibulevsky (ref_30) 2010; 27 Zhu (ref_19) 2011; 47 Robey (ref_56) 1992; 28 |
| References_xml | – volume: 35 start-page: 1365 year: 1987 ident: ref_58 article-title: Robust adaptive beamforming publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1987.1165054 – volume: 9 start-page: 778 year: 2015 ident: ref_5 article-title: Robust training samples selection algorithm based on spectral similarity for space–time adaptive processing in heterogeneous interference environments publication-title: IET Radar Sonar Nav. doi: 10.1049/iet-rsn.2014.0285 – volume: 50 start-page: 254 year: 2014 ident: ref_7 article-title: A method for finding best channels in beam-space post-Doppler reduced-dimension STAP publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2013.120145 – ident: ref_55 – ident: ref_51 – volume: 56 start-page: 2370 year: 2008 ident: ref_27 article-title: Gradient Pursuits publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.916124 – volume: 68 start-page: 81 year: 2020 ident: ref_9 article-title: Robust two-stage reduced-dimension sparsity-aware STAP for airborne radar With coprime arrays publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2019.2957640 – volume: 54 start-page: 944 year: 2016 ident: ref_22 article-title: Space-Time Adaptive Processing and Motion Parameter Estimation in Multistatic Passive Radar Using Sparse Bayesian Learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2470518 – volume: 25 start-page: 131 year: 2008 ident: ref_50 article-title: The variational approximation for Bayesian inference publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2008.929620 – volume: 23 start-page: 41 year: 2006 ident: ref_15 article-title: Knowledge-aided adaptive radar at DARPA: An overview publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2006.1593336 – ident: ref_39 – ident: ref_47 doi: 10.1007/978-1-4757-4286-2 – volume: 36 start-page: 647 year: 2000 ident: ref_11 article-title: Optimal and adaptive reduced-rank STAP publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.845255 – ident: ref_61 – volume: 47 start-page: 1325 year: 2011 ident: ref_19 article-title: Knowledge-aided space-time adaptive processing publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2011.5751261 – volume: 37 start-page: 183 year: 1999 ident: ref_48 article-title: An Introduction to Variational Methods for Graphical Models publication-title: Mach. Learn. doi: 10.1023/A:1007665907178 – volume: 47 start-page: 1668 year: 2011 ident: ref_12 article-title: Reduced-Rank STAP Algorithms using Joint Iterative Optimization of Filters publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2011.5937257 – volume: 49 start-page: 91 year: 2001 ident: ref_14 article-title: A deterministic least-squares approach to space-time adaptive processing (STAP) publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 61 start-page: 4722 year: 2013 ident: ref_35 article-title: MT–BCS-based microwave imaging approach through minimum-norm current expansion publication-title: IEEE Trans. Aerosp. Electron. Syst. – ident: ref_1 doi: 10.3390/rs13163195 – volume: 16 start-page: 327 year: 2022 ident: ref_13 article-title: Reduced-rank space-time adaptive processing algorithm based on multistage selections of angle-Doppler filters publication-title: IET Radar Sonar Nav. doi: 10.1049/rsn2.12186 – ident: ref_52 – volume: 67 start-page: 6314 year: 2019 ident: ref_49 article-title: Scalable Mean-Field Sparse Bayesian Learning publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2019.2954504 – volume: 54 start-page: 4634 year: 2006 ident: ref_59 article-title: Theoretical Results on Sparse Representations of Multiple-Measurement Vectors publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.881263 – ident: ref_41 – ident: ref_21 doi: 10.1109/IGARSS.2009.5417664 – ident: ref_45 – volume: 1 start-page: 211 year: 2001 ident: ref_36 article-title: Sparse Bayesian Learning and the Relevance Vector Machine publication-title: J. Mach. Learn. Res. – volume: 51 start-page: 34 year: 2009 ident: ref_28 article-title: From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images publication-title: SIAM Rev. doi: 10.1137/060657704 – volume: 27 start-page: 76 year: 2010 ident: ref_30 article-title: L1-L2 Optimization in Signal and Image Processing publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2010.936023 – ident: ref_53 – volume: 56 start-page: 785 year: 2020 ident: ref_10 article-title: Reduced dimension STAP based on sparse recovery in heterogeneous clutter environments publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2019.2921141 – volume: 130 start-page: 159 year: 2017 ident: ref_34 article-title: Clutter suppression algorithm based on fast converging sparse Bayesian learning for airborne radar publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.06.023 – volume: 16 start-page: 193 year: 2022 ident: ref_38 article-title: Deep learning for high-resolution estimation of clutter angle-Doppler spectrum in STAP publication-title: IET Radar Sonar Nav. doi: 10.1049/rsn2.12176 – volume: 42 start-page: 1080 year: 2006 ident: ref_16 article-title: Implementing digital terrain data in knowledge-aided space-time adaptive processing publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2006.248199 – volume: 453 start-page: 131 year: 2021 ident: ref_42 article-title: VAE-based Deep SVDD for anomaly detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.04.089 – ident: ref_40 – ident: ref_33 doi: 10.1109/ICASSP.2014.6854226 – volume: 28 start-page: 208 year: 1992 ident: ref_56 article-title: A CFAR adaptive matched filter detector publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.135446 – volume: 73 start-page: 273 year: 2011 ident: ref_29 article-title: Regression shrinkage and selection via the lasso: A retrospective publication-title: J. R. Stat. Soc. Series B Stat. Methodol. doi: 10.1111/j.1467-9868.2011.00771.x – volume: 58 start-page: 546 year: 2020 ident: ref_32 article-title: Sparse Frequency Waveform Optimization for High-Resolution ISAR Imaging publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2937965 – ident: ref_44 doi: 10.1109/IBCAST51254.2021.9393224 – volume: 64 start-page: 4550 year: 2016 ident: ref_23 article-title: Fast STAP Method Based on PAST with Sparse Constraint for Airborne Phased Array Radar publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2569471 – ident: ref_25 – volume: 15 start-page: 310 year: 2021 ident: ref_4 article-title: A robust refined training sample reweighting space–time adaptive processing method for airborne radar in heterogeneous environment publication-title: IET Radar Sonar Nav. doi: 10.1049/rsn2.12034 – ident: ref_54 – volume: 3 start-page: 29 year: 2022 ident: ref_43 article-title: The road from MLE to EM to VAE: A brief tutorial publication-title: AI Open doi: 10.1016/j.aiopen.2021.10.001 – volume: 9 start-page: 772 year: 2015 ident: ref_8 article-title: Beamspace reduced-dimension space–time adaptive processing for multiple-input multiple-output radar based on maximum cross-correlation energy publication-title: IET Radar Sonar Nav. doi: 10.1049/iet-rsn.2014.0226 – ident: ref_46 – volume: 24 start-page: 397 year: 1988 ident: ref_57 article-title: Covariance matrix estimation errors and diagonal loading in adaptive arrays publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.7181 – volume: 43 start-page: 129 year: 2001 ident: ref_31 article-title: Atomic Decomposition by Basis Pursuit publication-title: SIAM Rev. doi: 10.1137/S003614450037906X – volume: 41 start-page: 3397 year: 1993 ident: ref_24 article-title: Matching pursuits with time-frequency dictionaries publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.258082 – volume: 15 start-page: 1628 year: 2021 ident: ref_17 article-title: Knowledge-aided block sparse Bayesian learning STAP for phased-array MIMO airborne radar publication-title: IET Radar Sonar Navig. doi: 10.1049/rsn2.12152 – volume: 55 start-page: 3704 year: 2007 ident: ref_37 article-title: An Empirical Bayesian Strategy for Solving the Simultaneous Sparse Approximation Problem publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.894265 – ident: ref_3 doi: 10.3390/s22010077 – ident: ref_60 – volume: 53 start-page: 2477 year: 2005 ident: ref_26 article-title: Sparse solutions to linear inverse problems with multiple measurement vectors publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2005.849172 – volume: 123 start-page: 103418 year: 2022 ident: ref_2 article-title: Sub-CPI STAP based clutter suppression and target refocusing with airborne radar system publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2022.103418 – volume: 60 start-page: 674 year: 2012 ident: ref_20 article-title: L1 regularized STAP algorithms With a generalized sidelobe canceler architecture for airborne radar publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2011.2172435 – volume: 53 start-page: 135 year: 2017 ident: ref_6 article-title: A simpler proof of rapid convergence rate in adaptive arrays publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2017.2649678 – volume: 8 start-page: 5970 year: 2020 ident: ref_18 article-title: Knowledge Aided Covariance Matrix Estimation via Gaussian Kernel Function for Airborne SR-STAP publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2963838 |
| SSID | ssj0000331904 |
| Score | 2.3321443 |
| Snippet | Due to the shortage of independent and identically distributed (i.i.d.) training samples, space−time adaptive processing (STAP) often suffers remarkable... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3800 |
| SubjectTerms | Adaptive sampling Airborne radar Algorithms Bayesian analysis Bayesian theory Clutter clutter plus noise covariance matrix (CCM) clutter suppression Computer applications Dictionaries Echoes Machine learning Mathematical models Methods Parameters Performance degradation Remote sensing Robustness space and time Space-time adaptive processing space−time adaptive processing (STAP) sparse recovery (SR) Sparsity Training variational autoencoder (VAE) |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQaKX8q0uFGQEFw5RndjrrE_VFlFxaVWxLeotssc2VKo2S5IF9d_j8Xp3kUBcuEXJKIoynhm_mfEbgHchxsSx9nVhMYhCWq7jFUaw4ji60oQIgEIaNlGfnU2urvR5Trj1ua1y7ROTo3YtUo78kAqktaJ4fbT4XtDUKKqu5hEad-EesSSUqXVvtsmxcBEXGJcrVlIR0f1h15eSbJwOtP0WhxJd_x_eOIWYk4f_-3GPYC9vLtl0tRoewx0_fwIP8pzzb7dP4fJza5f9wE5zG2Fxuk0RstnCpA6NYvrTdJ7NLqbnjNK07Njcejpryb5EYJ2Th2y6HFoiwXS-ewaXJx8vPnwq8mCFAoWWQ4HOGETtS_RG1mNpK2XUhFdGBh0BBMdaKB7GVZqTXjlXToxAG8GsdGoighHPYWfezv0-sGDiHoo7a6vSSxuxjFUctXC6FNYrJUfwfv2bG8ys4zT84qaJ6INU0mxVMoK3G9nFimvjr1LHpK2NBPFjpxtt97XJ5tagtEpgXQehhFRaW4PRj8vKe-2IIn8EB2tFNtlo-2arxRG82TyO5kY1FDP37ZJkog9UMqK0F_9-xUvYreikROoVPICdoVv6V3AffwzXffc6rdNf_yvyzA priority: 102 providerName: ProQuest |
| Title | Robust Multiple-Measurement Sparsity-Aware STAP with Bayesian Variational Autoencoder |
| URI | https://www.proquest.com/docview/2700765056 https://www.proquest.com/docview/2718364576 https://doaj.org/article/c4b63c77f3634699bacdde42ee9d3496 |
| Volume | 14 |
| WOSCitedRecordID | wos000839789600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hggQXxFMESmQEFw6reteONz4mKBUcEq2aFhUuKz9VJJRUm02rXvjtzHi3aSSQuHCxVus5WDOesT97_A3Ah4hr4kiHMrMuikxarvHLIVjx3PncRARAMRWbKBeL8fm5rvZKfVFOWEcP3CnuyEmrhCvLKJRAKKetceiRsghBeyI7p-jLS70HplIMFji1uOz4SAXi-qNmk0vybnrKtrcCJaL-P-JwWlyOn8DjflfIJt1onsK9sHoGD_sC5Rc3z-HsZG23m5bN-_y_bH53tseWlyalVmSTa9MEtjydVIzOV9nU3AR6JMm-IiLuT_3YZNuuib3Sh-YFnB3PTj99zvqKCJkTWraZ88Y4p0PugpHlSNpCGTXmhZFR486fu1IoHkdFKnBeeJ-PjXAWUaj0aiyiES_hYLVehVfAosHND_fWFnmQFkGIVdxp4XUubFBKDuDjrZZq19OFU9WKnzXCBtJofafRAbzfyV52JBl_lZqSsncSRGydfqC5697c9b_MPYDDW1PVvbdtaro8LxXt5QbwbteNfkKXH2YV1luSweClJMKr1_9jHG_gUUEPIVIq4CEctM02vIUH7qr9sWmGcH86W1QnwzQph5RPuqT21wzbavQd-6sv8-rbb69G69o |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFKlc-EYECiwCDhysrr2bdfaAUApUjdpEEU1RezL7ZaiE4mA7VPlT_EZ2nHWCBOLWAzfLHq1k7_ObndmdeQAvc-8Te9KlkTY5i7im0l8ZH6xYamysch8A5Y3YRDoe98_O5GQLfra1MHissuXEhqhtYTBHvocbpKlAf_12_j1C1SjcXW0lNFawOHLLSx-yVW-G7_38vkqSgw_Td4dRUBWIDJO8joxVyhjpYuMUT3tcJ0KJPk0Uz6VfPVOTMkHzXtKIhCfWxn3FjPaRHLeiz3LF_LjXYJsj2DuwPRmOJufrrA5lHtKUr_qgMibpXlnFHFkFS-h-83yNQMAf_N84tYNb_9vnuA03w_KZDFZ4vwNbbnYXdoKS-9flPTj9WOhFVZNROCgZjTZJUHIyV80ZlGhwqUpHTqaDCcFENNlXS4fVpOSTKi9CepQMFnWBbT6tK-_D6ZW81QPozIqZewgkV36VSK3WSey49tGaFtRIZmXMtBOCd-F1O62ZCX3VUd7jW-bjK4RAtoFAF16sbeerbiJ_tdpHdKwtsAN4c6Mov2SBUDLDtWAmTXMmGBdSamW8p-KJc9KiCEAXdlvgZIGWqmyDmi48Xz_2hIK7RGrmigXaeJYX3Mehj_49xDPYOZyOjrPj4fjoMdxIsC6kORm5C526XLgncN38qC-q8mn4Swh8vmok_gJB9lDi |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VgoAL34hAgUXAgYOVtXezzh4QSikRVWkU0RZVvZj9clsJxcF2qPLX-HXMOE6CBOLWAzfLHlmy9-3MvtnZeQCvcoyJPR3SyLpcRNJyjVcOyYrnzscmRwKUN2IT6WjUPz7W4w34uTwLQ2WVS5_YOGpfOMqRd2mDNFUUr7t5WxYx3hm-m36PSEGKdlqXchoLiOyF-QXSt-rt7g6O9eskGX44fP8xahUGIie0rCPnjXFOh9gFI9OetIkyqs8TI3ONK2nuUqF43ksawfDE-7hvhLPI6qRXfZEbge-9AldT5JhUTjjunazyO1wguLlcdEQVQvNuWcWS_AsdpvstBjZSAX9Egia8DW__zz_mDtxqF9VssJgFd2EjTO7BjVbf_Wx-H44-F3ZW1Wy_LZ-M9tepUXYwNU1lSjS4MGVgB4eDMaP0NNs280BnTNkXU563SVM2mNUFNf_0oXwAR5fyVQ9hc1JMwiNgucG1I_fWJnGQFjmcVdxp4XUsbFBKduDNcogz13ZbJ9GPbxmyLoJDtoZDB16ubKeLHiN_tdompKwsqC94c6MoT7PWzWROWiVcmuZCCQSltsZh_JJJCNqTNEAHtpYgylpnVWVrBHXgxeoxuhnaOzKTUMzIBn2_kshOH__7Fc_hOsIv-7Q72nsCNxM6LNKUS27BZl3OwlO45n7U51X5rJkuDL5eNgx_AVaWWEU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Multiple-Measurement+Sparsity-Aware+STAP+with+Bayesian+Variational+Autoencoder&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Chenxi&rft.au=Zhao%2C+Huiliang&rft.au=Chen%2C+Wenchao&rft.au=Chen%2C+Bo&rft.date=2022-08-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=15&rft.spage=3800&rft_id=info:doi/10.3390%2Frs14153800&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14153800 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |