Particle size and metal composition of gouging and lancing fumes
Metal gouging and lancing liberate particles of an unknown size and composition. Fumes are formed when vaporized materials condense in air, creating fine and ultrafine particles which can agglomerate. Particle sizes may be <1 µm in diameter. Inhalation of this mixture of metal fumes can lead to a...
Uloženo v:
| Vydáno v: | Journal of occupational and environmental hygiene Ročník 16; číslo 9; s. 643 - 655 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Taylor & Francis
02.09.2019
Taylor & Francis LLC |
| Témata: | |
| ISSN: | 1545-9624, 1545-9632, 1545-9632 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Metal gouging and lancing liberate particles of an unknown size and composition. Fumes are formed when vaporized materials condense in air, creating fine and ultrafine particles which can agglomerate. Particle sizes may be <1 µm in diameter. Inhalation of this mixture of metal fumes can lead to adverse health effects. This study characterized fumes by particle size fractions and metal composition. As particles may be in the submicron range, the nano-size fraction was included. Randomized, side-by-side area samples of fumes liberated during gouging and lancing were collected. Samplers included the conductive plastic Institute of Occupational Medicine (IOM) samplers (inhalable fraction), GK2.69 stainless steel thoracic cyclones (thoracic fraction), aluminum respirable cyclones (respirable fraction), Nanoparticle Respiratory Deposition (NRD) samplers (nano-size fraction), and open-face filter cassettes (particle size distribution-PSD). Samplers were mounted at a height of between 1.3 m and 1.7 m, in the worst-case scenario area (down-wind). Forty-six samples were collected during gouging and 26 during lancing. Mass concentrations per fraction ranges (excluding nano-size) were found to be 1.27-17.27 mg/m
3
(inhalable), 1.83-13.96 mg/m
3
(thoracic) and 0.88-15.82 mg/m
3
(respirable) for gouging; and 2.34-5.60 mg/m
3
(inhalable), 2.82-4.01 mg/m
3
(thoracic), and 1.89-3.24 mg/m
3
(respirable) for lancing. PSD analysis confirmed the presence of nano-size particles with a mean size of 171.76 (±56.27) nm during gouging and 32.33 (±7.17) nm during lancing. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis of samples indicated the presence of chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and tin (Sn) in the respective particle size fractions (including nano-size) of both processes. Negative health effects associated with metal inhalation are well known, while nanoparticles' unique properties enable them to cause further detrimental health effects. The nano-size fraction should be included in personal exposure assessments and control measures. |
|---|---|
| AbstractList | Metal gouging and lancing liberate particles of an unknown size and composition. Fumes are formed when vaporized materials condense in air, creating fine and ultrafine particles which can agglomerate. Particle sizes may be <1 µm in diameter. Inhalation of this mixture of metal fumes can lead to adverse health effects. This study characterized fumes by particle size fractions and metal composition. As particles may be in the submicron range, the nano-size fraction was included. Randomized, side-by-side area samples of fumes liberated during gouging and lancing were collected. Samplers included the conductive plastic Institute of Occupational Medicine (IOM) samplers (inhalable fraction), GK2.69 stainless steel thoracic cyclones (thoracic fraction), aluminum respirable cyclones (respirable fraction), Nanoparticle Respiratory Deposition (NRD) samplers (nano-size fraction), and open-face filter cassettes (particle size distribution-PSD). Samplers were mounted at a height of between 1.3 m and 1.7 m, in the worst-case scenario area (down-wind). Forty-six samples were collected during gouging and 26 during lancing. Mass concentrations per fraction ranges (excluding nano-size) were found to be 1.27-17.27 mg/m3 (inhalable), 1.83-13.96 mg/m3 (thoracic) and 0.88-15.82 mg/m3 (respirable) for gouging; and 2.34-5.60 mg/m3 (inhalable), 2.82-4.01 mg/m3 (thoracic), and 1.89-3.24 mg/m3 (respirable) for lancing. PSD analysis confirmed the presence of nano-size particles with a mean size of 171.76 (±56.27) nm during gouging and 32.33 (±7.17) nm during lancing. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis of samples indicated the presence of chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and tin (Sn) in the respective particle size fractions (including nano-size) of both processes. Negative health effects associated with metal inhalation are well known, while nanoparticles' unique properties enable them to cause further detrimental health effects. The nano-size fraction should be included in personal exposure assessments and control measures. Metal gouging and lancing liberate particles of an unknown size and composition. Fumes are formed when vaporized materials condense in air, creating fine and ultrafine particles which can agglomerate. Particle sizes may be <1 µm in diameter. Inhalation of this mixture of metal fumes can lead to adverse health effects. This study characterized fumes by particle size fractions and metal composition. As particles may be in the submicron range, the nano-size fraction was included. Randomized, side-by-side area samples of fumes liberated during gouging and lancing were collected. Samplers included the conductive plastic Institute of Occupational Medicine (IOM) samplers (inhalable fraction), GK2.69 stainless steel thoracic cyclones (thoracic fraction), aluminum respirable cyclones (respirable fraction), Nanoparticle Respiratory Deposition (NRD) samplers (nano-size fraction), and open-face filter cassettes (particle size distribution-PSD). Samplers were mounted at a height of between 1.3 m and 1.7 m, in the worst-case scenario area (down-wind). Forty-six samples were collected during gouging and 26 during lancing. Mass concentrations per fraction ranges (excluding nano-size) were found to be 1.27-17.27 mg/m (inhalable), 1.83-13.96 mg/m (thoracic) and 0.88-15.82 mg/m (respirable) for gouging; and 2.34-5.60 mg/m (inhalable), 2.82-4.01 mg/m (thoracic), and 1.89-3.24 mg/m (respirable) for lancing. PSD analysis confirmed the presence of nano-size particles with a mean size of 171.76 (±56.27) nm during gouging and 32.33 (±7.17) nm during lancing. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis of samples indicated the presence of chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and tin (Sn) in the respective particle size fractions (including nano-size) of both processes. Negative health effects associated with metal inhalation are well known, while nanoparticles' unique properties enable them to cause further detrimental health effects. The nano-size fraction should be included in personal exposure assessments and control measures. Metal gouging and lancing liberate particles of an unknown size and composition. Fumes are formed when vaporized materials condense in air, creating fine and ultrafine particles which can agglomerate. Particle sizes may be <1 µm in diameter. Inhalation of this mixture of metal fumes can lead to adverse health effects. This study characterized fumes by particle size fractions and metal composition. As particles may be in the submicron range, the nano-size fraction was included. Randomized, side-by-side area samples of fumes liberated during gouging and lancing were collected. Samplers included the conductive plastic Institute of Occupational Medicine (IOM) samplers (inhalable fraction), GK2.69 stainless steel thoracic cyclones (thoracic fraction), aluminum respirable cyclones (respirable fraction), Nanoparticle Respiratory Deposition (NRD) samplers (nano-size fraction), and open-face filter cassettes (particle size distribution-PSD). Samplers were mounted at a height of between 1.3 m and 1.7 m, in the worst-case scenario area (down-wind). Forty-six samples were collected during gouging and 26 during lancing. Mass concentrations per fraction ranges (excluding nano-size) were found to be 1.27-17.27 mg/m 3 (inhalable), 1.83-13.96 mg/m 3 (thoracic) and 0.88-15.82 mg/m 3 (respirable) for gouging; and 2.34-5.60 mg/m 3 (inhalable), 2.82-4.01 mg/m 3 (thoracic), and 1.89-3.24 mg/m 3 (respirable) for lancing. PSD analysis confirmed the presence of nano-size particles with a mean size of 171.76 (±56.27) nm during gouging and 32.33 (±7.17) nm during lancing. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis of samples indicated the presence of chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and tin (Sn) in the respective particle size fractions (including nano-size) of both processes. Negative health effects associated with metal inhalation are well known, while nanoparticles' unique properties enable them to cause further detrimental health effects. The nano-size fraction should be included in personal exposure assessments and control measures. Metal gouging and lancing liberate particles of an unknown size and composition. Fumes are formed when vaporized materials condense in air, creating fine and ultrafine particles which can agglomerate. Particle sizes may be <1 µm in diameter. Inhalation of this mixture of metal fumes can lead to adverse health effects. This study characterized fumes by particle size fractions and metal composition. As particles may be in the submicron range, the nano-size fraction was included. Randomized, side-by-side area samples of fumes liberated during gouging and lancing were collected. Samplers included the conductive plastic Institute of Occupational Medicine (IOM) samplers (inhalable fraction), GK2.69 stainless steel thoracic cyclones (thoracic fraction), aluminum respirable cyclones (respirable fraction), Nanoparticle Respiratory Deposition (NRD) samplers (nano-size fraction), and open-face filter cassettes (particle size distribution-PSD). Samplers were mounted at a height of between 1.3 m and 1.7 m, in the worst-case scenario area (down-wind). Forty-six samples were collected during gouging and 26 during lancing. Mass concentrations per fraction ranges (excluding nano-size) were found to be 1.27-17.27 mg/m3 (inhalable), 1.83-13.96 mg/m3 (thoracic) and 0.88-15.82 mg/m3 (respirable) for gouging; and 2.34-5.60 mg/m3 (inhalable), 2.82-4.01 mg/m3 (thoracic), and 1.89-3.24 mg/m3 (respirable) for lancing. PSD analysis confirmed the presence of nano-size particles with a mean size of 171.76 (±56.27) nm during gouging and 32.33 (±7.17) nm during lancing. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis of samples indicated the presence of chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and tin (Sn) in the respective particle size fractions (including nano-size) of both processes. Negative health effects associated with metal inhalation are well known, while nanoparticles' unique properties enable them to cause further detrimental health effects. The nano-size fraction should be included in personal exposure assessments and control measures.Metal gouging and lancing liberate particles of an unknown size and composition. Fumes are formed when vaporized materials condense in air, creating fine and ultrafine particles which can agglomerate. Particle sizes may be <1 µm in diameter. Inhalation of this mixture of metal fumes can lead to adverse health effects. This study characterized fumes by particle size fractions and metal composition. As particles may be in the submicron range, the nano-size fraction was included. Randomized, side-by-side area samples of fumes liberated during gouging and lancing were collected. Samplers included the conductive plastic Institute of Occupational Medicine (IOM) samplers (inhalable fraction), GK2.69 stainless steel thoracic cyclones (thoracic fraction), aluminum respirable cyclones (respirable fraction), Nanoparticle Respiratory Deposition (NRD) samplers (nano-size fraction), and open-face filter cassettes (particle size distribution-PSD). Samplers were mounted at a height of between 1.3 m and 1.7 m, in the worst-case scenario area (down-wind). Forty-six samples were collected during gouging and 26 during lancing. Mass concentrations per fraction ranges (excluding nano-size) were found to be 1.27-17.27 mg/m3 (inhalable), 1.83-13.96 mg/m3 (thoracic) and 0.88-15.82 mg/m3 (respirable) for gouging; and 2.34-5.60 mg/m3 (inhalable), 2.82-4.01 mg/m3 (thoracic), and 1.89-3.24 mg/m3 (respirable) for lancing. PSD analysis confirmed the presence of nano-size particles with a mean size of 171.76 (±56.27) nm during gouging and 32.33 (±7.17) nm during lancing. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis of samples indicated the presence of chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and tin (Sn) in the respective particle size fractions (including nano-size) of both processes. Negative health effects associated with metal inhalation are well known, while nanoparticles' unique properties enable them to cause further detrimental health effects. The nano-size fraction should be included in personal exposure assessments and control measures. |
| Author | Franken, Anja Keyter, Marelé Van Der Merwe, Alicia |
| Author_xml | – sequence: 1 givenname: Marelé orcidid: 0000-0002-9301-6305 surname: Keyter fullname: Keyter, Marelé – sequence: 2 givenname: Alicia orcidid: 0000-0001-7641-4638 surname: Van Der Merwe fullname: Van Der Merwe, Alicia email: alicia.vandermerwe@nwu.ac.za organization: Occupational Hygiene and Health Research Initiative (OHHRI), Faculty of Health Sciences, North-West University – sequence: 3 givenname: Anja orcidid: 0000-0001-9774-4759 surname: Franken fullname: Franken, Anja organization: Occupational Hygiene and Health Research Initiative (OHHRI), Faculty of Health Sciences, North-West University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31361583$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctOwzAQRS1URB_wCaBIbNik-BG7jtgUVbykSrCAteU4k8pVEhc7ESpfT0JbFixg4xlZ585czR2jQe1qQOic4CnBEl8TnvBU0GRKMUmnRLB0RtIjNOr_41QwOvjpaTJE4xDWGFNBmDhBQ9YVwiUbofmL9o01JUTBfkKk6zyqoNFlZFy1ccE21tWRK6KVa1e2Xn0Dpa5N3xdtBeEUHRe6DHC2rxP0dn_3uniMl88PT4vbZWxYmjSxybEUswSDpIkBXIhZZgwTggJjHHhBc5PrjOZgJGiNE2KMFAbLVGdpxrVgE3S1m7vx7r2F0KjKBgNlZwZcGxSl_XgmeY9e_kLXrvV1566jJKaM8-6ZoIs91WYV5GrjbaX9Vh1u0wE3O8B4F4KHQhnb6P4gjde2VASrPgl1SEL1Sah9Ep2a_1IfFvynm-90ti6cr_SH82WuGr0tnS98f_nQWfxzxBfu0Z4m |
| CitedBy_id | crossref_primary_10_1136_oemed_2020_106883 crossref_primary_10_1016_j_jobe_2024_109796 crossref_primary_10_3390_ijerph17186820 crossref_primary_10_1038_s41598_024_64277_0 crossref_primary_10_1177_1420326X241240112 crossref_primary_10_1093_annweh_wxab011 |
| Cites_doi | 10.1183/16000617.0080-2017 10.1016/j.taap.2007.06.020 10.1093/annweh/wxw031 10.1007/s11051-013-2052-0 10.1021/es201379a 10.1289/ehp.7339 10.3109/1547691X.2011.652783 10.1289/ehp.1002508 10.1093/annweh/wxy033 10.1016/j.jaerosci.2009.08.004 10.1016/j.shaw.2015.12.003 10.1016/j.jaerosci.2011.10.004 10.1080/15287394.2012.688489 10.1016/j.jaerosci.2013.06.006 10.1093/annhyg/mev093 10.1007/978-3-211-98811-4_65 10.1093/annhyg/mep033 10.1016/j.tox.2014.12.015 10.1016/j.microc.2017.06.021 10.1016/j.yrtph.2006.12.002 10.1016/j.toxlet.2014.09.008 10.1093/annhyg/mes070 10.1080/15459620701718867 10.1080/15459624.2014.919393 10.1080/15459624.2019.1600703 10.1093/annhyg/meq015 10.1016/S1470-2045(17)30255-3 10.1080/15459620802275387 10.1039/C2EM30505D 10.1007/s11356-017-8657-6 10.1007/s11051-006-9181-7 10.1007/s11051-009-9649-3 10.1097/JOM.0b013e31827cbabe 10.1136/oem.56.11.747 10.1016/j.jaerosci.2017.09.010 10.1080/713611032 10.1007/s00216-010-4185-7 10.1080/15459624.2011.640302 10.1080/15459624.2015.1043055 10.1080/15459624.2019.1587172 10.3390/nano7100307 10.1080/15459620801907840 10.1016/S0079-6123(06)62013-X 10.1080/15459621003609713 10.1080/15459624.2015.1047022 10.1186/1743-8977-8-10 10.1007/s41810-017-0010-4 10.1093/annhyg/mes018 10.1016/j.ijheh.2013.04.008 10.1080/15459624.2019.1594841 10.1080/02786826.2015.1128525 |
| ContentType | Journal Article |
| Copyright | 2019 JOEH, LLC 2019 2019 JOEH, LLC |
| Copyright_xml | – notice: 2019 JOEH, LLC 2019 – notice: 2019 JOEH, LLC |
| DBID | AAYXX CITATION NPM 7QF 7QQ 7SC 7SE 7SP 7SR 7ST 7T2 7TA 7TB 7U5 7U7 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ SOI 7X8 |
| DOI | 10.1080/15459624.2019.1639719 |
| DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Health and Safety Science Abstracts (Full archive) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Environment Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Health & Safety Science Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Environment Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1545-9632 |
| EndPage | 655 |
| ExternalDocumentID | 31361583 10_1080_15459624_2019_1639719 1639719 |
| Genre | Article Journal Article |
| GroupedDBID | --- -~X .7F .QJ 04C 0BK 0R~ 29L 30N 36B 4.4 4P2 53G 5GY 5RE 5VS 6PF 85S AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAWTL ABCCY ABFIM ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACPRK ACTIO ADBBV ADCVX ADGTB ADOJX ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFRAH AFRVT AGDLA AGMYJ AHDZW AHMBA AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA BMSDO CCCUG CE4 CS3 DGEBU DKSSO DU5 EBD EBS ECT EDH EIHBH EJD E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEI TEN TFL TFT TFW TQWBC TTHFI TUROJ TWF TWQ UT3 UT5 UU3 ZE2 ZGOLN ~S~ AAYXX BANNL CITATION 8WZ A6W AAGME ABFMO ACDHJ ACZPZ ADOPC ADYSH AFOSN AURDB BFWEY CAG COF CWRZV H~9 NPM PCLFJ VXZ WHG 7QF 7QQ 7SC 7SE 7SP 7SR 7ST 7T2 7TA 7TB 7U5 7U7 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ SOI 7X8 |
| ID | FETCH-LOGICAL-c394t-cd086740e824ce0f67bcc3662e335e5f2dcdab2dec8eaa041cc86c089ab9b5a63 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484069800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-9624 1545-9632 |
| IngestDate | Thu Sep 04 15:06:28 EDT 2025 Mon Oct 06 16:54:18 EDT 2025 Wed Feb 19 02:31:14 EST 2025 Sat Nov 29 05:42:20 EST 2025 Tue Nov 18 21:24:57 EST 2025 Mon Oct 20 23:49:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | respirable fraction nanoparticles Maintenance metalwork thermal metal cutting NRD sampler |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-cd086740e824ce0f67bcc3662e335e5f2dcdab2dec8eaa041cc86c089ab9b5a63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9301-6305 0000-0001-7641-4638 0000-0001-9774-4759 |
| PMID | 31361583 |
| PQID | 2280235502 |
| PQPubID | 29159 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1080_15459624_2019_1639719 crossref_primary_10_1080_15459624_2019_1639719 proquest_journals_2280235502 proquest_miscellaneous_2267403856 pubmed_primary_31361583 informaworld_taylorfrancis_310_1080_15459624_2019_1639719 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-02 |
| PublicationDateYYYYMMDD | 2019-09-02 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Philadelphia |
| PublicationTitle | Journal of occupational and environmental hygiene |
| PublicationTitleAlternate | J Occup Environ Hyg |
| PublicationYear | 2019 |
| Publisher | Taylor & Francis Taylor & Francis LLC |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
| References | CIT0072 CIT0030 CIT0074 International Agency for Research on Cancer (CIT0002) 2018; 118 CIT0073 CIT0032 CIT0076 CIT0031 CIT0075 CIT0034 CIT0078 CIT0077 International Agency for Research on Cancer (CIT0070) 2012; 100 CIT0036 CIT0038 CIT0039 Oberdörster G (CIT0035) 2013 CIT0041 CIT0042 CIT0001 CIT0045 CIT0044 Tokar E.J (CIT0043) 2013 Plog B.A. (CIT0017) 2002 Zefon International Inc. (CIT0055) 2019 CIT0047 CIT0046 CIT0005 CIT0049 CIT0007 CIT0006 CIT0009 CIT0008 Precisa Gravimetrics AG (CIT0057) 2012 Bartley D.L. (CIT0037) 2011; 55 CIT0050 National Institute for Occupational Safety and Health (NIOSH) (CIT0053) 1998 CIT0010 CIT0054 CIT0012 CIT0011 Health and Safety Executive (HSE) (CIT0052) 2014 Lehman-McKeeman L.D (CIT0040) 2013 International Organization for Standardization (ISO) (CIT0033) 1995 CIT0014 CIT0013 CIT0016 Horiba Ltd. (CIT0062) 2019 CIT0015 CIT0018 CIT0019 Horiba Ltd. (CIT0061) 2019 CIT0021 Harris I.D (CIT0004) 2004 CIT0020 CIT0064 CIT0023 CIT0067 CIT0066 National Institute for Occupational Safety and Health (NIOSH) (CIT0059) 2003 Thermo Fisher Scientific Inc. (CIT0060) 2019 National Institute for Occupational Safety and Health (NIOSH) (CIT0056) 1994 Lehnert M. (CIT0022) 2012; 56 Del Castillo A.M.P (CIT0079) 2014 CIT0025 CIT0069 CIT0024 CIT0068 CIT0027 CIT0026 CIT0029 CIT0028 Occupational Safety and Health Administration (OSHA) (CIT0058) 2002 |
| References_xml | – ident: CIT0010 doi: 10.1183/16000617.0080-2017 – ident: CIT0027 doi: 10.1016/j.taap.2007.06.020 – ident: CIT0015 doi: 10.1093/annweh/wxw031 – start-page: 981 volume-title: Casarett & Doull's Toxicology: The Basic Science of Poison year: 2013 ident: CIT0043 – volume: 56 start-page: 557 issue: 5 year: 2012 ident: CIT0022 publication-title: Ann. Occup. Hyg. – volume-title: “Precisa 360 EP Operating Instructions.” year: 2012 ident: CIT0057 – ident: CIT0041 doi: 10.1007/s11051-013-2052-0 – ident: CIT0038 doi: 10.1021/es201379a – ident: CIT0034 doi: 10.1289/ehp.7339 – ident: CIT0008 doi: 10.3109/1547691X.2011.652783 – ident: CIT0039 doi: 10.1289/ehp.1002508 – volume-title: Manual of Analytical Methods year: 2003 ident: CIT0059 – ident: CIT0054 doi: 10.1093/annweh/wxy033 – ident: CIT0026 doi: 10.1016/j.jaerosci.2009.08.004 – ident: CIT0049 doi: 10.1016/j.shaw.2015.12.003 – ident: CIT0029 doi: 10.1016/j.jaerosci.2011.10.004 – ident: CIT0075 doi: 10.1080/15287394.2012.688489 – ident: CIT0030 doi: 10.1016/j.jaerosci.2013.06.006 – ident: CIT0032 doi: 10.1093/annhyg/mev093 – start-page: 153 volume-title: Casarett & Doull's Toxicology: The Basic Science of Poison year: 2013 ident: CIT0040 – ident: CIT0045 doi: 10.1007/978-3-211-98811-4_65 – volume-title: “Dynamic Light Scattering Particle Size Distribution Analyzer LB-550.” year: 2019 ident: CIT0061 – ident: CIT0066 doi: 10.1093/annhyg/mep033 – volume-title: Methods for Determining Hazardous Substances (MDHS 14/4) year: 2014 ident: CIT0052 – ident: CIT0025 doi: 10.1016/j.tox.2014.12.015 – ident: CIT0012 doi: 10.1016/j.microc.2017.06.021 – ident: CIT0047 doi: 10.1016/j.yrtph.2006.12.002 – ident: CIT0024 doi: 10.1016/j.toxlet.2014.09.008 – ident: CIT0036 doi: 10.1093/annhyg/mes070 – volume-title: “Dynamic Light Scattering Particle Size Analyzer LB-550.” year: 2019 ident: CIT0062 – volume-title: Small and smarter electronics, big impact: The importance of micro- and nanoelectronics in our digital economy and society year: 2014 ident: CIT0079 – ident: CIT0014 doi: 10.1080/15459620701718867 – volume-title: Air Quality – Particle size fraction definitions for health-related sampling (ISO 7708) year: 1995 ident: CIT0033 – volume: 100 start-page: 1 volume-title: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans year: 2012 ident: CIT0070 – ident: CIT0007 doi: 10.1080/15459624.2014.919393 – ident: CIT0011 doi: 10.1080/15459624.2019.1600703 – ident: CIT0050 doi: 10.1093/annhyg/meq015 – ident: CIT0006 doi: 10.1016/S1470-2045(17)30255-3 – ident: CIT0077 doi: 10.1080/15459620802275387 – ident: CIT0042 doi: 10.1039/C2EM30505D – volume-title: “Thermo Scientific™ Element 2™ High Resolution ICP-MS.” year: 2019 ident: CIT0060 – ident: CIT0068 doi: 10.1007/s11356-017-8657-6 – ident: CIT0067 doi: 10.1007/s11051-006-9181-7 – volume: 55 start-page: 696 issue: 7 year: 2011 ident: CIT0037 publication-title: Ann. Occup. Hyg. – ident: CIT0078 doi: 10.1007/s11051-009-9649-3 – start-page: 651 volume-title: Welding Handbook Volume 2: Welding Processes, Part 1 year: 2004 ident: CIT0004 – volume-title: “Zefon NRD Samplers Operating Instructions.” year: 2019 ident: CIT0055 – volume: 118 start-page: 37 volume-title: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans year: 2018 ident: CIT0002 – ident: CIT0019 doi: 10.1097/JOM.0b013e31827cbabe – ident: CIT0031 doi: 10.1136/oem.56.11.747 – volume-title: Manual of Analytical Methods year: 1994 ident: CIT0056 – ident: CIT0013 doi: 10.1016/j.jaerosci.2017.09.010 – ident: CIT0016 doi: 10.1080/713611032 – start-page: 3 volume-title: Fundamentals of Industrial Hygiene year: 2002 ident: CIT0017 – ident: CIT0020 doi: 10.1007/s00216-010-4185-7 – ident: CIT0073 doi: 10.1080/15459624.2011.640302 – ident: CIT0028 doi: 10.1080/15459624.2015.1043055 – ident: CIT0018 – ident: CIT0009 doi: 10.1080/15459624.2019.1587172 – start-page: 1189 volume-title: Casarett & Doull's Toxicology: The Basic Science of Poison year: 2013 ident: CIT0035 – ident: CIT0069 doi: 10.3390/nano7100307 – ident: CIT0076 doi: 10.1080/15459620801907840 – ident: CIT0046 doi: 10.1016/S0079-6123(06)62013-X – ident: CIT0064 doi: 10.1080/15459621003609713 – ident: CIT0021 doi: 10.1080/15459624.2015.1047022 – ident: CIT0044 doi: 10.1186/1743-8977-8-10 – volume-title: Manual of Analytical Methods year: 1998 ident: CIT0053 – ident: CIT0072 doi: 10.1007/s41810-017-0010-4 – ident: CIT0001 doi: 10.1093/annhyg/mes018 – ident: CIT0023 doi: 10.1016/j.ijheh.2013.04.008 – volume-title: ID-125G: Metal and Metalloid Particulates in Workplace Atmospheres (ICP Analysis) year: 2002 ident: CIT0058 – ident: CIT0005 doi: 10.1080/15459624.2019.1594841 – ident: CIT0074 doi: 10.1080/02786826.2015.1128525 |
| SSID | ssj0026136 |
| Score | 2.2205622 |
| Snippet | Metal gouging and lancing liberate particles of an unknown size and composition. Fumes are formed when vaporized materials condense in air, creating fine and... |
| SourceID | proquest pubmed crossref informaworld |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 643 |
| SubjectTerms | Aluminum Cassettes Chromium Composition Copper Cyclones Fumes Gouging Health risks Inductively coupled plasma mass spectrometry Inhalation Maintenance Manganese Mass spectrometry Mass spectroscopy Metals metalwork Molybdenum Nanoparticles Nickel NRD sampler Particle size Particle size distribution respirable fraction Respiration Samplers Size distribution Stainless steel Stainless steels thermal metal cutting Thorax Tin Titanium nitride Ultrafines |
| Title | Particle size and metal composition of gouging and lancing fumes |
| URI | https://www.tandfonline.com/doi/abs/10.1080/15459624.2019.1639719 https://www.ncbi.nlm.nih.gov/pubmed/31361583 https://www.proquest.com/docview/2280235502 https://www.proquest.com/docview/2267403856 |
| Volume | 16 |
| WOSCitedRecordID | wos000484069800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1545-9632 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026136 issn: 1545-9624 databaseCode: TFW dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4BQhWX8uiDBYqCxDU08SOxbyDUVQ-AOPDYW2RP7AqJ7iKy9NBf37HjrOCAOJRbongSZzzjmbHH3wAcatl6a7HNndA8F6hETl5Rm1c1RW6OTJaJ65A3Z_XFhZpM9GXKJuxSWmWIoX0PFBHn6qDcxnZDRtz3YPV1xcKKSKmPyrA1FYE_yfSHGgZX49tFyEXGKp4vIoo8kAxneF57ywvr9AK79HUPNFqi8fo7_MMGfExuaHbSy80mLLnpFnw4Txvtn-D4MolU1t39dRl9JvvtyE_PQgp6yvPKZj77Rf43Gb_Y4D5Ad9C1p-mu-wzX4x9Xpz_zVGwhR67FPMeWgptaFE4xga7wVW0ReVUxx7l00rMWW2NZ61A5QwNYIqoKC6WN1Vaain-Blels6rYh4wVaI41ETe08Q6O9rFtyXawVQkgzAjEwucGERB4KYtw3ZQIsHbjTBO40iTsjOFqQPfRQHG8R6Ocj2MzjGojvC5Y0_A3avWG4m6TVXROggxg5aAUbwcHiMelj2GQxUzd7Cm0CF7mS1Qi-9mKy6C0naSyl4jv_0bFdWAu3Mc2N7cHK_PHJfYNV_DO_6x73YbmeqP2oA_8AMOn_iA |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hFkEvLe8uFAgS15TEjyS-gSpWRWxXHBbozbInNqpUdqvutof--s4kzqo9VD3ALZI9iTOe8Tw8_gzw0eg2eo9tHpSRucJG5eQVtXlVU-QWyGS5Lg_5a1JPp83xsbl5FobLKjmGjj1QRLdWs3JzMnooifvEZt9UglMipdkveW-KkT83NdlalvLZ-Pc66CJz1Z0wIpKcaYZTPHe95pZ9uoVeercP2tmi8c7_-IsnsJ080exLLzpP4UGYP4NHR2mv_Tl8_pGkKlueXIWMvpP9DeSqZ1yFnkq9skXM_pALTvav63DK6B30HGnFW76An-Ovs4PDPN23kKM0apVjS_FNrYrQCIWhiFXtEWVViSClDjqKFlvnRRuwCY7msERsKiwa47zx2lXyJWzMF_OwC5ks0DvtNBrqFwU6E3XdkvfivVJKuxGogcsWExg534lxasuEWTpwxzJ3bOLOCPbXZGc9Gsd9BObmFNpVlwaJ_Z0lVt5DuzfMt02KvbSMHiTIRyvECD6sm0kleZ_FzcPigvswF2WjqxG86uVkPVpJ4ljqRr7-h4G9h8eHs6OJnXybfn8DW9zUVb2JPdhYnV-Et_AQL1cny_N3nSpcA2P5Ato |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hgiouQMtroZRU4pqS-JX4RgWsqFpWeyjQm2WPbVSp7FbNlkN_PePEWdFD1QPcItmTOGOP5xt7_BngnZY-Ooe-DELzUmArSkJFvlQNRW6BXJbt1yG_HzezWXt6quc5m7DLaZUpho4DUUQ_VyfjvvBxzIh7n7y-ViytiNR6v05bU4n48z5BZ5Xir5Ppj3XMRd6qP2BEImWSGQ_x3PaaG-7pBnnp7RC0d0XTx__hJ57Ao4xDi4Nh4GzBvbDYhs2veaf9KXyY5zFVdGfXoaDPFL8CAfUi5aDnRK9iGYufBMDJ-_UVzhN3Bz1Hmu-6Z_Bt-vnk45cy37ZQItdiVaKn6KYRVWiZwFBF1ThErhQLnMsgI_PorWM-YBss9WCN2CqsWm2ddtIq_hw2FstFeAkFr9BZaSVqqhcZWh1l4wm7OCeEkHYCYlSywUxFnm7EODd1ZiwdtWOSdkzWzgT212IXAxfHXQL67x40q34RJA43lhh-h-zO2N0mm3VnEncQI4RWsQnsrYvJINMui12E5VWqk7TIW6km8GIYJuvWchqNtWz5q39o2FvYnH-amuPD2dFreJhK-pQ3tgMbq8ur8AYe4O_VWXe52xvCH0f0AYs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+size+and+metal+composition+of+gouging+and+lancing+fumes&rft.jtitle=Journal+of+occupational+and+environmental+hygiene&rft.au=Keyter%2C+Marel%C3%A9&rft.au=Van+Der+Merwe%2C+Alicia&rft.au=Franken%2C+Anja&rft.date=2019-09-02&rft.pub=Taylor+%26+Francis+LLC&rft.issn=1545-9624&rft.eissn=1545-9632&rft.volume=16&rft.issue=9&rft.spage=643&rft_id=info:doi/10.1080%2F15459624.2019.1639719&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-9624&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-9624&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-9624&client=summon |