Integrating National Ecological Observatory Network (NEON) Airborne Remote Sensing and In-Situ Data for Optimal Tree Species Classification

Accurately mapping tree species composition and diversity is a critical step towards spatially explicit and species-specific ecological understanding. The National Ecological Observatory Network (NEON) is a valuable source of open ecological data across the United States. Freely available NEON data...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 12; no. 9; p. 1414
Main Authors: Scholl, Victoria, Cattau, Megan, Joseph, Maxwell, Balch, Jennifer
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.05.2020
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurately mapping tree species composition and diversity is a critical step towards spatially explicit and species-specific ecological understanding. The National Ecological Observatory Network (NEON) is a valuable source of open ecological data across the United States. Freely available NEON data include in-situ measurements of individual trees, including stem locations, species, and crown diameter, along with the NEON Airborne Observation Platform (AOP) airborne remote sensing imagery, including hyperspectral, multispectral, and light detection and ranging (LiDAR) data products. An important aspect of predicting species using remote sensing data is creating high-quality training sets for optimal classification purposes. Ultimately, manually creating training data is an expensive and time-consuming task that relies on human analyst decisions and may require external data sets or information. We combine in-situ and airborne remote sensing NEON data to evaluate the impact of automated training set preparation and a novel data preprocessing workflow on classifying the four dominant subalpine coniferous tree species at the Niwot Ridge Mountain Research Station forested NEON site in Colorado, USA. We trained pixel-based Random Forest (RF) machine learning models using a series of training data sets along with remote sensing raster data as descriptive features. The highest classification accuracies, 69% and 60% based on internal RF error assessment and an independent validation set, respectively, were obtained using circular tree crown polygons created with half the maximum crown diameter per tree. LiDAR-derived data products were the most important features for species classification, followed by vegetation indices. This work contributes to the open development of well-labeled training data sets for forest composition mapping using openly available NEON data without requiring external data collection, manual delineation steps, or site-specific parameters.
AbstractList Accurately mapping tree species composition and diversity is a critical step towards spatially explicit and species-specific ecological understanding. The National Ecological Observatory Network (NEON) is a valuable source of open ecological data across the United States. Freely available NEON data include in-situ measurements of individual trees, including stem locations, species, and crown diameter, along with the NEON Airborne Observation Platform (AOP) airborne remote sensing imagery, including hyperspectral, multispectral, and light detection and ranging (LiDAR) data products. An important aspect of predicting species using remote sensing data is creating high-quality training sets for optimal classification purposes. Ultimately, manually creating training data is an expensive and time-consuming task that relies on human analyst decisions and may require external data sets or information. We combine in-situ and airborne remote sensing NEON data to evaluate the impact of automated training set preparation and a novel data preprocessing workflow on classifying the four dominant subalpine coniferous tree species at the Niwot Ridge Mountain Research Station forested NEON site in Colorado, USA. We trained pixel-based Random Forest (RF) machine learning models using a series of training data sets along with remote sensing raster data as descriptive features. The highest classification accuracies, 69% and 60% based on internal RF error assessment and an independent validation set, respectively, were obtained using circular tree crown polygons created with half the maximum crown diameter per tree. LiDAR-derived data products were the most important features for species classification, followed by vegetation indices. This work contributes to the open development of well-labeled training data sets for forest composition mapping using openly available NEON data without requiring external data collection, manual delineation steps, or site-specific parameters.
Author Balch, Jennifer
Joseph, Maxwell
Scholl, Victoria
Cattau, Megan
Author_xml – sequence: 1
  givenname: Victoria
  orcidid: 0000-0002-2085-1449
  surname: Scholl
  fullname: Scholl, Victoria
– sequence: 2
  givenname: Megan
  orcidid: 0000-0003-2164-3809
  surname: Cattau
  fullname: Cattau, Megan
– sequence: 3
  givenname: Maxwell
  orcidid: 0000-0002-7745-9990
  surname: Joseph
  fullname: Joseph, Maxwell
– sequence: 4
  givenname: Jennifer
  surname: Balch
  fullname: Balch, Jennifer
BookMark eNptkc1uEzEQx1eoSJTSC09giUtBWvDXZneOVQgQqUokWs7W2DsbOWzWwXZAfQZeGqcBgSrmMqPRb_7z9bw6m8JEVfVS8LdKAX8Xk5AchBb6SXUueStrLUGe_RM_qy5T2vJiSgng-rz6uZwybSJmP23Yqrgw4cgWLoxh410J1zZR_I45xHu2ovwjxK_sarVYr16zax9tiBOxz7QLmdgtTekog1PPllN96_OBvceMbAiRrffZ74reXaRC7sl5Smw-Ykp-KI2OjV9UTwccE13-9hfVlw-Lu_mn-mb9cTm_vqmdAp1rh0JDz6XqwcEgh7IwiEYJ11quLHALGpoWO6mAlFCuBQkosReNbhUnrS6q5Um3D7g1-1jmivcmoDcPiRA3BmP2biRjkXcAuhVCzLTmtmtabi3MyPY40xaL1tVJax_DtwOlbHY-ORpHnCgckpHQzaDjjVYFffUI3YZDLOculIJO8JaL43D8RLkYUoo0GOfzw3lyRD8awc3x2ebvs0vJm0clf3b6D_wLKdqqEg
CitedBy_id crossref_primary_10_1002_ecs2_3833
crossref_primary_10_3390_rs15123179
crossref_primary_10_1016_j_scitotenv_2022_153059
crossref_primary_10_1109_ACCESS_2020_2998806
crossref_primary_10_3390_rs15010098
crossref_primary_10_3390_rs16234365
crossref_primary_10_1080_2150704X_2022_2116296
crossref_primary_10_7717_peerj_11790
crossref_primary_10_1080_01431161_2021_2019850
crossref_primary_10_1111_1365_2435_70083
crossref_primary_10_3390_s24030798
crossref_primary_10_1145_3705863
crossref_primary_10_1016_j_rse_2022_113264
crossref_primary_10_1002_ecs2_3640
crossref_primary_10_1016_j_rse_2021_112571
crossref_primary_10_1016_j_rse_2022_113244
crossref_primary_10_3390_rs16173313
crossref_primary_10_1016_j_isprsjprs_2022_07_004
crossref_primary_10_1016_j_ufug_2022_127558
crossref_primary_10_1002_ecs2_3989
crossref_primary_10_3390_rs15010060
crossref_primary_10_1002_rse2_335
crossref_primary_10_3390_f16010145
crossref_primary_10_3390_s22093157
crossref_primary_10_3390_su151310434
crossref_primary_10_3390_su16051735
crossref_primary_10_3390_rs15030700
crossref_primary_10_3390_su142114034
crossref_primary_10_3390_app10186151
crossref_primary_10_3390_rs17132224
crossref_primary_10_1029_2020EF001631
crossref_primary_10_1016_j_compag_2025_110691
crossref_primary_10_1002_ecy_3590
crossref_primary_10_1002_ecs2_4206
crossref_primary_10_1007_s41651_025_00220_9
crossref_primary_10_3390_f15111992
Cites_doi 10.1002/fee.2152
10.1080/01431160701469099
10.1007/978-94-017-8663-8_5
10.1080/014311600210993
10.1016/S0034-4257(02)00011-1
10.1109/MGRS.2017.2762307
10.1016/j.rse.2016.08.013
10.1016/0034-4257(80)90044-9
10.1016/j.ecoinf.2020.101061
10.1080/01431161.2011.607195
10.1016/j.rse.2017.04.007
10.1080/01431160412331269698
10.3390/f11010032
10.1016/j.rse.2007.09.009
10.1016/j.rse.2003.12.013
10.3390/rs12040661
10.1016/j.rse.2019.111232
10.1016/j.rse.2017.09.037
10.1016/j.isprsjprs.2012.03.005
10.1080/01431161.2018.1433343
10.1126/science.aaj1987
10.3390/rs8050363
10.1016/j.rse.2014.03.018
10.3390/f10010001
10.3390/rs4092661
10.1101/532952
10.20944/preprints202002.0334.v1
10.3390/rs9020108
10.1109/IGARSS.2010.5654121
10.1038/s41559-017-0194
10.3390/rs11222629
10.1109/TGRS.2008.916480
10.1117/1.3361375
10.1890/ES12-00196.1
10.1126/science.331.6018.698
10.1016/S0034-4257(98)00035-2
10.1016/0034-4257(92)90059-S
10.1016/j.rse.2012.06.012
10.1016/S0034-4257(02)00096-2
10.5721/EuJRS20164902
10.1023/A:1010933404324
10.1177/001316446002000104
10.7717/peerj.5843
10.1126/science.1244693
10.3390/rs10081218
10.1016/j.ecoinf.2015.06.010
10.1016/0034-4257(88)90106-X
10.3390/rs11182078
10.3390/rs9111180
10.1109/36.134076
10.3390/rs9090875
10.3390/rs4040950
10.1093/biosci/bix025
10.3390/rs8060445
10.1890/1540-9295(2008)6[282:ACSFTN]2.0.CO;2
10.1890/120150
10.1016/j.rse.2017.08.010
10.1109/JSTSP.2011.2105244
10.3390/rs11192326
10.1201/9780429052729
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs12091414
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Ecology
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_ba0899471116440b8570bb96ebda64ba
10_3390_rs12091414
GeographicLocations United States--US
Colorado
GeographicLocations_xml – name: Colorado
– name: United States--US
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-ca149d023d9c9f2f14191531c7b03b90b94957a8239e313c7929a2ad154730e43
IEDL.DBID DOA
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000543394000061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:50:37 EDT 2025
Thu Sep 04 19:28:37 EDT 2025
Mon Oct 20 02:54:56 EDT 2025
Tue Nov 18 22:21:03 EST 2025
Sat Nov 29 07:15:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-ca149d023d9c9f2f14191531c7b03b90b94957a8239e313c7929a2ad154730e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2085-1449
0000-0002-7745-9990
0000-0003-2164-3809
OpenAccessLink https://doaj.org/article/ba0899471116440b8570bb96ebda64ba
PQID 2398107014
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_ba0899471116440b8570bb96ebda64ba
proquest_miscellaneous_2986980543
proquest_journals_2398107014
crossref_citationtrail_10_3390_rs12091414
crossref_primary_10_3390_rs12091414
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Stavros (ref_9) 2017; 1
Michener (ref_39) 2015; 29
Keller (ref_40) 2008; 6
Naidoo (ref_20) 2012; 69
Maxwell (ref_33) 2018; 39
Ghiyamat (ref_38) 2016; 49
Liu (ref_15) 2017; 200
ref_13
Liaw (ref_58) 2002; 2
Anderson (ref_2) 2008; 112
ref_10
Cohen (ref_60) 1960; 20
Anderson (ref_11) 2013; 11
Hansen (ref_8) 2013; 342
Kaartinen (ref_5) 2012; 4
ref_17
ref_16
ref_59
Kaufman (ref_52) 1992; 30
Kao (ref_43) 2012; 3
Hampton (ref_45) 2017; 67
Gamon (ref_53) 1992; 41
ref_61
Bajorski (ref_49) 2011; 5
Balch (ref_44) 2020; 18
Immitzer (ref_23) 2012; 4
Budei (ref_22) 2018; 204
Dalponte (ref_3) 2008; 46
ref_25
ref_24
Sankey (ref_12) 2017; 195
ref_21
Zhu (ref_32) 2017; 5
Graves (ref_47) 2018; 6
Weinstein (ref_62) 2020; 56
Huete (ref_55) 1988; 25
ref_28
ref_27
ref_26
Rouse (ref_50) 1974; 351
Huete (ref_51) 2002; 83
Marconi (ref_37) 2019; 6
Asner (ref_4) 2017; 355
Martin (ref_1) 1998; 65
Carpenter (ref_46) 2011; 331
ref_36
ref_34
ref_31
Franklin (ref_35) 2000; 21
Lin (ref_19) 2016; 46
Serrano (ref_54) 2002; 81
Haboudane (ref_64) 2004; 90
Kampe (ref_41) 2010; 4
Pal (ref_29) 2005; 26
Vescovo (ref_65) 2012; 33
Ghosh (ref_30) 2014; 26
Walsh (ref_56) 1980; 9
Breiman (ref_57) 2001; 45
Fassnacht (ref_6) 2016; 186
Asner (ref_14) 2012; 124
ref_42
Wietecha (ref_18) 2019; 231
ref_48
Alonzo (ref_63) 2014; 148
Jollineau (ref_66) 2008; 29
ref_7
References_xml – volume: 18
  start-page: 3
  year: 2020
  ident: ref_44
  article-title: NEON is seeding the next revolution in ecology
  publication-title: Front. Ecol. Environ.
  doi: 10.1002/fee.2152
– volume: 29
  start-page: 3609
  year: 2008
  ident: ref_66
  article-title: Mapping an inland wetland complex using hyperspectral imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701469099
– ident: ref_61
  doi: 10.1007/978-94-017-8663-8_5
– volume: 21
  start-page: 61
  year: 2000
  ident: ref_35
  article-title: Incorporating texture into classification of forest species composition from airborne multispectral images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600210993
– volume: 81
  start-page: 355
  year: 2002
  ident: ref_54
  article-title: Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00011-1
– volume: 5
  start-page: 8
  year: 2017
  ident: ref_32
  article-title: Deep learning in remote sensing: A comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2017.2762307
– volume: 186
  start-page: 64
  year: 2016
  ident: ref_6
  article-title: Review of studies on tree species classification from remotely sensed data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.08.013
– volume: 9
  start-page: 11
  year: 1980
  ident: ref_56
  article-title: Coniferous tree species mapping using Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(80)90044-9
– volume: 56
  start-page: 101061
  year: 2020
  ident: ref_62
  article-title: Cross-site learning in deep learning RGB tree crown detection
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2020.101061
– volume: 33
  start-page: 2178
  year: 2012
  ident: ref_65
  article-title: New spectral vegetation indices based on the near-infrared shoulder wavelengths for remote detection of grassland phytomass
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2011.607195
– volume: 195
  start-page: 30
  year: 2017
  ident: ref_12
  article-title: UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.04.007
– volume: 26
  start-page: 217
  year: 2005
  ident: ref_29
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160412331269698
– ident: ref_25
  doi: 10.3390/f11010032
– volume: 112
  start-page: 1856
  year: 2008
  ident: ref_2
  article-title: Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.09.009
– volume: 90
  start-page: 337
  year: 2004
  ident: ref_64
  article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.12.013
– ident: ref_17
  doi: 10.3390/rs12040661
– volume: 231
  start-page: 111232
  year: 2019
  ident: ref_18
  article-title: The capability of species-related forest stand characteristics determination with the use of hyperspectral data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111232
– volume: 204
  start-page: 632
  year: 2018
  ident: ref_22
  article-title: Identifying the genus or species of individual trees using a three-wavelength airborne lidar system
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.09.037
– volume: 69
  start-page: 167
  year: 2012
  ident: ref_20
  article-title: Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2012.03.005
– volume: 39
  start-page: 2784
  year: 2018
  ident: ref_33
  article-title: Implementation of machine-learning classification in remote sensing: An applied review
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1433343
– volume: 355
  start-page: 385
  year: 2017
  ident: ref_4
  article-title: Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation
  publication-title: Science
  doi: 10.1126/science.aaj1987
– ident: ref_26
  doi: 10.3390/rs8050363
– ident: ref_48
– volume: 148
  start-page: 70
  year: 2014
  ident: ref_63
  article-title: Urban tree species mapping using hyperspectral and lidar data fusion
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.018
– ident: ref_7
  doi: 10.3390/f10010001
– volume: 4
  start-page: 2661
  year: 2012
  ident: ref_23
  article-title: Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data
  publication-title: Remote Sens.
  doi: 10.3390/rs4092661
– ident: ref_28
  doi: 10.1101/532952
– ident: ref_13
  doi: 10.20944/preprints202002.0334.v1
– ident: ref_21
  doi: 10.3390/rs9020108
– ident: ref_42
  doi: 10.1109/IGARSS.2010.5654121
– volume: 1
  start-page: 0194
  year: 2017
  ident: ref_9
  article-title: ISS observations offer insights into plant function
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-017-0194
– ident: ref_27
  doi: 10.3390/rs11222629
– volume: 46
  start-page: 1416
  year: 2008
  ident: ref_3
  article-title: Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.916480
– volume: 4
  start-page: 043510
  year: 2010
  ident: ref_41
  article-title: NEON: The first continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry and structure
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.3361375
– volume: 3
  start-page: 1
  year: 2012
  ident: ref_43
  article-title: NEON terrestrial field observations: Designing continental-scale, standardized sampling
  publication-title: Ecosphere
  doi: 10.1890/ES12-00196.1
– volume: 331
  start-page: 698
  year: 2011
  ident: ref_46
  article-title: May the Best Analyst Win
  publication-title: Science
  doi: 10.1126/science.331.6018.698
– volume: 65
  start-page: 249
  year: 1998
  ident: ref_1
  article-title: Determining forest species composition using high spectral resolution remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(98)00035-2
– volume: 41
  start-page: 35
  year: 1992
  ident: ref_53
  article-title: A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(92)90059-S
– volume: 124
  start-page: 454
  year: 2012
  ident: ref_14
  article-title: Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.06.012
– volume: 83
  start-page: 195
  year: 2002
  ident: ref_51
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– volume: 49
  start-page: 15
  year: 2016
  ident: ref_38
  article-title: Influence of tree species complexity on discrimination performance of vegetation Indices
  publication-title: Eur. J. Remote Sens.
  doi: 10.5721/EuJRS20164902
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_57
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 20
  start-page: 37
  year: 1960
  ident: ref_60
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316446002000104
– volume: 26
  start-page: 49
  year: 2014
  ident: ref_30
  article-title: A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 6
  start-page: e5843
  year: 2019
  ident: ref_37
  article-title: A data science challenge for converting airborne remote sensing data into ecological information
  publication-title: PeerJ
  doi: 10.7717/peerj.5843
– volume: 6
  start-page: e27182v1
  year: 2018
  ident: ref_47
  article-title: A digital mapping method for linking high-resolution remote sensing images to individual tree crowns
  publication-title: PeerJ Prepr.
– volume: 342
  start-page: 850
  year: 2013
  ident: ref_8
  article-title: High-resolution global maps of 21st-century forest cover change
  publication-title: Science
  doi: 10.1126/science.1244693
– ident: ref_36
  doi: 10.3390/rs10081218
– volume: 29
  start-page: 33
  year: 2015
  ident: ref_39
  article-title: Ecological data sharing
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2015.06.010
– volume: 25
  start-page: 295
  year: 1988
  ident: ref_55
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– ident: ref_10
  doi: 10.3390/rs11182078
– ident: ref_16
  doi: 10.3390/rs9111180
– volume: 351
  start-page: 309
  year: 1974
  ident: ref_50
  article-title: Monitoring vegetation systems in the Great Plains with ERTS
  publication-title: NASA Spec. Publ.
– volume: 30
  start-page: 261
  year: 1992
  ident: ref_52
  article-title: Atmospherically resistant vegetation index (ARVI) for EOS-MODIS
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.134076
– ident: ref_31
  doi: 10.3390/rs9090875
– volume: 2
  start-page: 18
  year: 2002
  ident: ref_58
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 4
  start-page: 950
  year: 2012
  ident: ref_5
  article-title: An international comparison of individual tree detection and extraction using airborne laser scanning
  publication-title: Remote Sens.
  doi: 10.3390/rs4040950
– volume: 46
  start-page: 45
  year: 2016
  ident: ref_19
  article-title: A comprehensive but efficient framework of proposing and validating feature parameters from airborne LiDAR data for tree species classification
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 67
  start-page: 546
  year: 2017
  ident: ref_45
  article-title: Skills and knowledge for data-intensive environmental research
  publication-title: BioScience
  doi: 10.1093/biosci/bix025
– ident: ref_24
  doi: 10.3390/rs8060445
– volume: 6
  start-page: 282
  year: 2008
  ident: ref_40
  article-title: A continental strategy for the National Ecological Observatory Network
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/1540-9295(2008)6[282:ACSFTN]2.0.CO;2
– volume: 11
  start-page: 138
  year: 2013
  ident: ref_11
  article-title: Lightweight unmanned aerial vehicles will revolutionize spatial ecology
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/120150
– volume: 200
  start-page: 170
  year: 2017
  ident: ref_15
  article-title: Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.08.010
– volume: 5
  start-page: 438
  year: 2011
  ident: ref_49
  article-title: Statistical inference in PCA for hyperspectral images
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2011.2105244
– ident: ref_34
  doi: 10.3390/rs11192326
– ident: ref_59
  doi: 10.1201/9780429052729
SSID ssj0000331904
Score 2.4371643
Snippet Accurately mapping tree species composition and diversity is a critical step towards spatially explicit and species-specific ecological understanding. The...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1414
SubjectTerms Accuracy
Airborne observation
airborne remote sensing
Airborne sensing
Algorithms
artificial intelligence
automation
Biodiversity
Classification
Colorado
Composition
Coniferous trees
Data collection
Datasets
Decision analysis
Decision trees
Detection
Diameters
Ecology
forests
hyperspectral
Image detection
labor
Learning algorithms
Lidar
Machine learning
Mapping
Mountains
multispectral
National Ecological Observatory Network
Neon
Neural networks
Observatories
Plant species
Polygons
prediction
raster data
Remote observing
Remote sensing
Remote sensing systems
Species classification
Species composition
Species diversity
Support vector machines
Training
tree crown
tree species classification
Trees
Vegetation
vegetation index
Workflow
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFgSXAgXE0oKM4EAPUZPYTeJT1Zat6CVbtUXqLfJry0olKUkWaX8Df5oZx7sVAnHhkkMyciLPeB725PsAPph9I5I0ldG-41mE8VhGhbE6UlxZqXORJU57som8LIurK3kWNty60Fa58oneUdvG0B75HuHUYamCGf3B7feIWKPodDVQaNyHDUIqEyPYOJqUZ-frXZaYo4nFYsAl5Vjf77Ud_S2aiET8Fok8YP8f_tgHmZMn__t5T2EzpJfscLCHZ3DP1VvwcOKhqZdb8Chwnn9dPoefpwEpAoMXC_DYN2wQJc2xqR52bJt2ycqhW5x9LCfTcpcdzlu0ndqxc4eqduyC2uBxGFVbdlpHF_N-wT6pXjFMidkUvdI3HO-ydShJfPeuY56Mk9qU_ItfwJeTyeXx5yhQM0SGS9FHRmFlZTHeW2nkLJ3hfEr0nYnJdcy1jLXEwitXBU6L4wk3OWZhKlU2Iarj2An-EkZ1U7tXwFQaa6wx81jJGWUTeHVpbp2a8bww0oxhd6WmygTccqLPuKmwfiGVVncqHcP7teztgNbxV6kj0vZaghC2_Y2mva7CgsUkgg5EMXQnWFCKWBMRgNYyc9qqTGg1hp2VIVRh2XfVnRWM4d36MS5YOoVRtWsWKCOLTBaYKfPX_x5iGx6nVNz77sodGPXtwr2BB-ZHP-_at8HSfwHdswfC
  priority: 102
  providerName: ProQuest
Title Integrating National Ecological Observatory Network (NEON) Airborne Remote Sensing and In-Situ Data for Optimal Tree Species Classification
URI https://www.proquest.com/docview/2398107014
https://www.proquest.com/docview/2986980543
https://doaj.org/article/ba0899471116440b8570bb96ebda64ba
Volume 12
WOSCitedRecordID wos000543394000061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBYlLWyX0XUby5oGle7QHkxsS7GtY9K5NIc6Jkmh28VIssICnVMcp5BL_4H903tPdrKODXbpRQf7YQm95_fDev4-Qj7rvuae7wunb1jgQDwWTqRz5Ugmc6FCHnhGWbKJMEmiuzuRPqP6wp6wGh643riekngwBS7Ug8SeuwoB2ZUSgVG5DLiyqRFkPc-KKeuDGZiWy2s8UgZ1fa9c4V-iHvf4HxHIAvX_5YdtcLk6JG-arJAO6tW8JXumOCKvGoLy75t35OeogXWASEMbLOt7Guut66JjVX9eXZYbmtSt3fQ8icfJBR0sSlB0YejEgF4MnWLPOjxGFjkdFc50Ua3pF1lJCvkrHYML-QHPm5UGJJGc3qyoZc7EniI78XtyexXPLq-dhkfB0UzwytESyqAcgnMutJj7c9gEAY7O06FymRKuElAlhTLymTDMYzqElEn6MveQl9g1nH0grWJZmI-ESt9VUBCGrhRzDP0wGj_MjZyzMNJCt8nFdm8z3YCMI9fFfQbFBuoh-62HNjnbyT7U0Br_lBqiinYSCIdtL4CRZI2RZP8zkjbpbBWcNe_oKkPkQyh-XZzjdHcb3i48MpGFWa5BRkSBiCCtZZ9eYh3H5LWP9bptmOyQVlWuzQk50I_VYlV2yf4wTtJJ15pyF7tQpzg-xTCm_W9wPx3dpF9_AQHN-5M
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLahc-CggFgoYARI9RE1idxMfECp0q0Ztsyu6SOUUbMcLK5VkSbKg_Q38F34jM_nYCoG49cAlh2RkS8nLzDx7PA_gudk1wvN96exaPnAwHksnNKl2FFep1IEYeFbXYhNBHIdnZ3K8Bj-7szBUVtn5xNpRp7mhNfId6lOHVAUz-tfzrw6pRtHuaieh0cDiyC6_I2UrX0X7-H1f-P7BcPL20GlVBRzDpagco5AUpBiqUmnk1J96AikLItEE2uVauloiZwhUiBNa7nETYAKhfJV6pNLrWsFx3CuwLhDsYQ_Wx9HJ-MNqVcflCGlXNH1QOZfuTlHS6VScRPwW-WqBgD_8fx3UDm7-b6_jFtxo02e21-D9NqzZbBOuDevW28tN2Gg13T8v78CPqO2EgcGZte2_z1ljSshkI92sSOfFksVNNTx7GQ9H8TbbmxX4b2SWvbMIZctOqcwfh1FZyqLMOZ1VC7avKsUw5Wcj9LpfcLxJYdFybtFblqwWG6UyrHriu_D-Ut7KPehleWbvA1O-q5FDB66SU8qW8Gr9ILVqyoPQSNOH7Q4WiWn7spM8yHmC_IwglFxAqA_PVrbzphvJX63eELpWFtRBvL6RF5-S1iFhkkQbvpiaeEiYhatJ6EBrObA6VQOhVR-2OuAlrVsrkwvU9eHp6jE6JNplUpnNF2gjw4EMkQnwB_8e4glsHE5OjpPjKD56CNd9WsioK0m3oFcVC_sIrppv1awsHrd_GYOPl43kXzWkYSs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLV8XPgqIhQJGgEQP0SZ2msQHhLbdXbEqyq7aIvUWbMeBlUqyJFnQ_gb-Eb-OceJshUDceuCSQzKypeR5Zp49mQfwUu0r36OUO_uaBQ7GY-5EKpWOYCLlMvQDT8tGbCKM4-jsjM-34Gf3L4wpq-x8YuOo00KZPfKB6VOHVAUz-kFmyyLmo8nb5VfHKEiZk9ZOTqOFyJFef0f6Vr2ZjvBbv6J0Mj49fOdYhQFHMe7XjhJIEFIMWylXPKOZ5yN9QVSqULpMcldy5A-hiHByzTymQkwmBBWpZxR7Xe0zHPcKbEdB6NIebM8PD4bHmx0elyG8Xb_ticoYdwdlZf5UxUn836JgIxbwRyxoAtzk9v_8au7ALZtWk2G7Du7Cls534Nq4acm93oEbVuv98_oe_JjaDhkYtIltC35OWlODWDKT7U51Ua5J3FbJk9fxeBbvkeGixDWTa3KsEeKanJjyfxxG5CmZ5s7Jol6RkagFQSpAZuiNv-B4p6VGy6VGL1qRRoTUlGc1E9-HD5fyVh5ALy9y_RCIoK5Ebh26gmcmi8KrpmGqRcbCSHHVh70OIomy_dqNbMh5grzNwCm5gFMfXmxsl22Xkr9aHRikbSxMZ_HmRlF-SqyjwuTJHARjyuIhkfZdaQQQpOSBlqkIfCn6sNuBMLHurkouENiH55vH6KjM6ZPIdbFCGx4FPEKGwB79e4hncB3hm7yfxkeP4SY1-xtNgeku9OpypZ_AVfWtXlTlU7vgCHy8bCD_AnRyaZs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+National+Ecological+Observatory+Network+%28NEON%29+Airborne+Remote+Sensing+and+In-Situ+Data+for+Optimal+Tree+Species+Classification&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Victoria+M.+Scholl&rft.au=Megan+E.+Cattau&rft.au=Maxwell+B.+Joseph&rft.au=Jennifer+K.+Balch&rft.date=2020-05-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=9&rft.spage=1414&rft_id=info:doi/10.3390%2Frs12091414&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ba0899471116440b8570bb96ebda64ba
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon