Integrating National Ecological Observatory Network (NEON) Airborne Remote Sensing and In-Situ Data for Optimal Tree Species Classification
Accurately mapping tree species composition and diversity is a critical step towards spatially explicit and species-specific ecological understanding. The National Ecological Observatory Network (NEON) is a valuable source of open ecological data across the United States. Freely available NEON data...
Saved in:
| Published in: | Remote sensing (Basel, Switzerland) Vol. 12; no. 9; p. 1414 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.05.2020
|
| Subjects: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurately mapping tree species composition and diversity is a critical step towards spatially explicit and species-specific ecological understanding. The National Ecological Observatory Network (NEON) is a valuable source of open ecological data across the United States. Freely available NEON data include in-situ measurements of individual trees, including stem locations, species, and crown diameter, along with the NEON Airborne Observation Platform (AOP) airborne remote sensing imagery, including hyperspectral, multispectral, and light detection and ranging (LiDAR) data products. An important aspect of predicting species using remote sensing data is creating high-quality training sets for optimal classification purposes. Ultimately, manually creating training data is an expensive and time-consuming task that relies on human analyst decisions and may require external data sets or information. We combine in-situ and airborne remote sensing NEON data to evaluate the impact of automated training set preparation and a novel data preprocessing workflow on classifying the four dominant subalpine coniferous tree species at the Niwot Ridge Mountain Research Station forested NEON site in Colorado, USA. We trained pixel-based Random Forest (RF) machine learning models using a series of training data sets along with remote sensing raster data as descriptive features. The highest classification accuracies, 69% and 60% based on internal RF error assessment and an independent validation set, respectively, were obtained using circular tree crown polygons created with half the maximum crown diameter per tree. LiDAR-derived data products were the most important features for species classification, followed by vegetation indices. This work contributes to the open development of well-labeled training data sets for forest composition mapping using openly available NEON data without requiring external data collection, manual delineation steps, or site-specific parameters. |
|---|---|
| AbstractList | Accurately mapping tree species composition and diversity is a critical step towards spatially explicit and species-specific ecological understanding. The National Ecological Observatory Network (NEON) is a valuable source of open ecological data across the United States. Freely available NEON data include in-situ measurements of individual trees, including stem locations, species, and crown diameter, along with the NEON Airborne Observation Platform (AOP) airborne remote sensing imagery, including hyperspectral, multispectral, and light detection and ranging (LiDAR) data products. An important aspect of predicting species using remote sensing data is creating high-quality training sets for optimal classification purposes. Ultimately, manually creating training data is an expensive and time-consuming task that relies on human analyst decisions and may require external data sets or information. We combine in-situ and airborne remote sensing NEON data to evaluate the impact of automated training set preparation and a novel data preprocessing workflow on classifying the four dominant subalpine coniferous tree species at the Niwot Ridge Mountain Research Station forested NEON site in Colorado, USA. We trained pixel-based Random Forest (RF) machine learning models using a series of training data sets along with remote sensing raster data as descriptive features. The highest classification accuracies, 69% and 60% based on internal RF error assessment and an independent validation set, respectively, were obtained using circular tree crown polygons created with half the maximum crown diameter per tree. LiDAR-derived data products were the most important features for species classification, followed by vegetation indices. This work contributes to the open development of well-labeled training data sets for forest composition mapping using openly available NEON data without requiring external data collection, manual delineation steps, or site-specific parameters. |
| Author | Balch, Jennifer Joseph, Maxwell Scholl, Victoria Cattau, Megan |
| Author_xml | – sequence: 1 givenname: Victoria orcidid: 0000-0002-2085-1449 surname: Scholl fullname: Scholl, Victoria – sequence: 2 givenname: Megan orcidid: 0000-0003-2164-3809 surname: Cattau fullname: Cattau, Megan – sequence: 3 givenname: Maxwell orcidid: 0000-0002-7745-9990 surname: Joseph fullname: Joseph, Maxwell – sequence: 4 givenname: Jennifer surname: Balch fullname: Balch, Jennifer |
| BookMark | eNptkc1uEzEQx1eoSJTSC09giUtBWvDXZneOVQgQqUokWs7W2DsbOWzWwXZAfQZeGqcBgSrmMqPRb_7z9bw6m8JEVfVS8LdKAX8Xk5AchBb6SXUueStrLUGe_RM_qy5T2vJiSgng-rz6uZwybSJmP23Yqrgw4cgWLoxh410J1zZR_I45xHu2ovwjxK_sarVYr16zax9tiBOxz7QLmdgtTekog1PPllN96_OBvceMbAiRrffZ74reXaRC7sl5Smw-Ykp-KI2OjV9UTwccE13-9hfVlw-Lu_mn-mb9cTm_vqmdAp1rh0JDz6XqwcEgh7IwiEYJ11quLHALGpoWO6mAlFCuBQkosReNbhUnrS6q5Um3D7g1-1jmivcmoDcPiRA3BmP2biRjkXcAuhVCzLTmtmtabi3MyPY40xaL1tVJax_DtwOlbHY-ORpHnCgckpHQzaDjjVYFffUI3YZDLOculIJO8JaL43D8RLkYUoo0GOfzw3lyRD8awc3x2ebvs0vJm0clf3b6D_wLKdqqEg |
| CitedBy_id | crossref_primary_10_1002_ecs2_3833 crossref_primary_10_3390_rs15123179 crossref_primary_10_1016_j_scitotenv_2022_153059 crossref_primary_10_1109_ACCESS_2020_2998806 crossref_primary_10_3390_rs15010098 crossref_primary_10_3390_rs16234365 crossref_primary_10_1080_2150704X_2022_2116296 crossref_primary_10_7717_peerj_11790 crossref_primary_10_1080_01431161_2021_2019850 crossref_primary_10_1111_1365_2435_70083 crossref_primary_10_3390_s24030798 crossref_primary_10_1145_3705863 crossref_primary_10_1016_j_rse_2022_113264 crossref_primary_10_1002_ecs2_3640 crossref_primary_10_1016_j_rse_2021_112571 crossref_primary_10_1016_j_rse_2022_113244 crossref_primary_10_3390_rs16173313 crossref_primary_10_1016_j_isprsjprs_2022_07_004 crossref_primary_10_1016_j_ufug_2022_127558 crossref_primary_10_1002_ecs2_3989 crossref_primary_10_3390_rs15010060 crossref_primary_10_1002_rse2_335 crossref_primary_10_3390_f16010145 crossref_primary_10_3390_s22093157 crossref_primary_10_3390_su151310434 crossref_primary_10_3390_su16051735 crossref_primary_10_3390_rs15030700 crossref_primary_10_3390_su142114034 crossref_primary_10_3390_app10186151 crossref_primary_10_3390_rs17132224 crossref_primary_10_1029_2020EF001631 crossref_primary_10_1016_j_compag_2025_110691 crossref_primary_10_1002_ecy_3590 crossref_primary_10_1002_ecs2_4206 crossref_primary_10_1007_s41651_025_00220_9 crossref_primary_10_3390_f15111992 |
| Cites_doi | 10.1002/fee.2152 10.1080/01431160701469099 10.1007/978-94-017-8663-8_5 10.1080/014311600210993 10.1016/S0034-4257(02)00011-1 10.1109/MGRS.2017.2762307 10.1016/j.rse.2016.08.013 10.1016/0034-4257(80)90044-9 10.1016/j.ecoinf.2020.101061 10.1080/01431161.2011.607195 10.1016/j.rse.2017.04.007 10.1080/01431160412331269698 10.3390/f11010032 10.1016/j.rse.2007.09.009 10.1016/j.rse.2003.12.013 10.3390/rs12040661 10.1016/j.rse.2019.111232 10.1016/j.rse.2017.09.037 10.1016/j.isprsjprs.2012.03.005 10.1080/01431161.2018.1433343 10.1126/science.aaj1987 10.3390/rs8050363 10.1016/j.rse.2014.03.018 10.3390/f10010001 10.3390/rs4092661 10.1101/532952 10.20944/preprints202002.0334.v1 10.3390/rs9020108 10.1109/IGARSS.2010.5654121 10.1038/s41559-017-0194 10.3390/rs11222629 10.1109/TGRS.2008.916480 10.1117/1.3361375 10.1890/ES12-00196.1 10.1126/science.331.6018.698 10.1016/S0034-4257(98)00035-2 10.1016/0034-4257(92)90059-S 10.1016/j.rse.2012.06.012 10.1016/S0034-4257(02)00096-2 10.5721/EuJRS20164902 10.1023/A:1010933404324 10.1177/001316446002000104 10.7717/peerj.5843 10.1126/science.1244693 10.3390/rs10081218 10.1016/j.ecoinf.2015.06.010 10.1016/0034-4257(88)90106-X 10.3390/rs11182078 10.3390/rs9111180 10.1109/36.134076 10.3390/rs9090875 10.3390/rs4040950 10.1093/biosci/bix025 10.3390/rs8060445 10.1890/1540-9295(2008)6[282:ACSFTN]2.0.CO;2 10.1890/120150 10.1016/j.rse.2017.08.010 10.1109/JSTSP.2011.2105244 10.3390/rs11192326 10.1201/9780429052729 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs12091414 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Ecology |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_ba0899471116440b8570bb96ebda64ba 10_3390_rs12091414 |
| GeographicLocations | United States--US Colorado |
| GeographicLocations_xml | – name: Colorado – name: United States--US |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c394t-ca149d023d9c9f2f14191531c7b03b90b94957a8239e313c7929a2ad154730e43 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000543394000061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:50:37 EDT 2025 Thu Sep 04 19:28:37 EDT 2025 Mon Oct 20 02:54:56 EDT 2025 Tue Nov 18 22:21:03 EST 2025 Sat Nov 29 07:15:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-ca149d023d9c9f2f14191531c7b03b90b94957a8239e313c7929a2ad154730e43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2085-1449 0000-0002-7745-9990 0000-0003-2164-3809 |
| OpenAccessLink | https://doaj.org/article/ba0899471116440b8570bb96ebda64ba |
| PQID | 2398107014 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ba0899471116440b8570bb96ebda64ba proquest_miscellaneous_2986980543 proquest_journals_2398107014 crossref_citationtrail_10_3390_rs12091414 crossref_primary_10_3390_rs12091414 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-01 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Stavros (ref_9) 2017; 1 Michener (ref_39) 2015; 29 Keller (ref_40) 2008; 6 Naidoo (ref_20) 2012; 69 Maxwell (ref_33) 2018; 39 Ghiyamat (ref_38) 2016; 49 Liu (ref_15) 2017; 200 ref_13 Liaw (ref_58) 2002; 2 Anderson (ref_2) 2008; 112 ref_10 Cohen (ref_60) 1960; 20 Anderson (ref_11) 2013; 11 Hansen (ref_8) 2013; 342 Kaartinen (ref_5) 2012; 4 ref_17 ref_16 ref_59 Kaufman (ref_52) 1992; 30 Kao (ref_43) 2012; 3 Hampton (ref_45) 2017; 67 Gamon (ref_53) 1992; 41 ref_61 Bajorski (ref_49) 2011; 5 Balch (ref_44) 2020; 18 Immitzer (ref_23) 2012; 4 Budei (ref_22) 2018; 204 Dalponte (ref_3) 2008; 46 ref_25 ref_24 Sankey (ref_12) 2017; 195 ref_21 Zhu (ref_32) 2017; 5 Graves (ref_47) 2018; 6 Weinstein (ref_62) 2020; 56 Huete (ref_55) 1988; 25 ref_28 ref_27 ref_26 Rouse (ref_50) 1974; 351 Huete (ref_51) 2002; 83 Marconi (ref_37) 2019; 6 Asner (ref_4) 2017; 355 Martin (ref_1) 1998; 65 Carpenter (ref_46) 2011; 331 ref_36 ref_34 ref_31 Franklin (ref_35) 2000; 21 Lin (ref_19) 2016; 46 Serrano (ref_54) 2002; 81 Haboudane (ref_64) 2004; 90 Kampe (ref_41) 2010; 4 Pal (ref_29) 2005; 26 Vescovo (ref_65) 2012; 33 Ghosh (ref_30) 2014; 26 Walsh (ref_56) 1980; 9 Breiman (ref_57) 2001; 45 Fassnacht (ref_6) 2016; 186 Asner (ref_14) 2012; 124 ref_42 Wietecha (ref_18) 2019; 231 ref_48 Alonzo (ref_63) 2014; 148 Jollineau (ref_66) 2008; 29 ref_7 |
| References_xml | – volume: 18 start-page: 3 year: 2020 ident: ref_44 article-title: NEON is seeding the next revolution in ecology publication-title: Front. Ecol. Environ. doi: 10.1002/fee.2152 – volume: 29 start-page: 3609 year: 2008 ident: ref_66 article-title: Mapping an inland wetland complex using hyperspectral imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701469099 – ident: ref_61 doi: 10.1007/978-94-017-8663-8_5 – volume: 21 start-page: 61 year: 2000 ident: ref_35 article-title: Incorporating texture into classification of forest species composition from airborne multispectral images publication-title: Int. J. Remote Sens. doi: 10.1080/014311600210993 – volume: 81 start-page: 355 year: 2002 ident: ref_54 article-title: Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00011-1 – volume: 5 start-page: 8 year: 2017 ident: ref_32 article-title: Deep learning in remote sensing: A comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2017.2762307 – volume: 186 start-page: 64 year: 2016 ident: ref_6 article-title: Review of studies on tree species classification from remotely sensed data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.08.013 – volume: 9 start-page: 11 year: 1980 ident: ref_56 article-title: Coniferous tree species mapping using Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(80)90044-9 – volume: 56 start-page: 101061 year: 2020 ident: ref_62 article-title: Cross-site learning in deep learning RGB tree crown detection publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2020.101061 – volume: 33 start-page: 2178 year: 2012 ident: ref_65 article-title: New spectral vegetation indices based on the near-infrared shoulder wavelengths for remote detection of grassland phytomass publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2011.607195 – volume: 195 start-page: 30 year: 2017 ident: ref_12 article-title: UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.04.007 – volume: 26 start-page: 217 year: 2005 ident: ref_29 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431160412331269698 – ident: ref_25 doi: 10.3390/f11010032 – volume: 112 start-page: 1856 year: 2008 ident: ref_2 article-title: Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.09.009 – volume: 90 start-page: 337 year: 2004 ident: ref_64 article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.12.013 – ident: ref_17 doi: 10.3390/rs12040661 – volume: 231 start-page: 111232 year: 2019 ident: ref_18 article-title: The capability of species-related forest stand characteristics determination with the use of hyperspectral data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111232 – volume: 204 start-page: 632 year: 2018 ident: ref_22 article-title: Identifying the genus or species of individual trees using a three-wavelength airborne lidar system publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.09.037 – volume: 69 start-page: 167 year: 2012 ident: ref_20 article-title: Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2012.03.005 – volume: 39 start-page: 2784 year: 2018 ident: ref_33 article-title: Implementation of machine-learning classification in remote sensing: An applied review publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1433343 – volume: 355 start-page: 385 year: 2017 ident: ref_4 article-title: Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation publication-title: Science doi: 10.1126/science.aaj1987 – ident: ref_26 doi: 10.3390/rs8050363 – ident: ref_48 – volume: 148 start-page: 70 year: 2014 ident: ref_63 article-title: Urban tree species mapping using hyperspectral and lidar data fusion publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.018 – ident: ref_7 doi: 10.3390/f10010001 – volume: 4 start-page: 2661 year: 2012 ident: ref_23 article-title: Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data publication-title: Remote Sens. doi: 10.3390/rs4092661 – ident: ref_28 doi: 10.1101/532952 – ident: ref_13 doi: 10.20944/preprints202002.0334.v1 – ident: ref_21 doi: 10.3390/rs9020108 – ident: ref_42 doi: 10.1109/IGARSS.2010.5654121 – volume: 1 start-page: 0194 year: 2017 ident: ref_9 article-title: ISS observations offer insights into plant function publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-017-0194 – ident: ref_27 doi: 10.3390/rs11222629 – volume: 46 start-page: 1416 year: 2008 ident: ref_3 article-title: Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.916480 – volume: 4 start-page: 043510 year: 2010 ident: ref_41 article-title: NEON: The first continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry and structure publication-title: J. Appl. Remote Sens. doi: 10.1117/1.3361375 – volume: 3 start-page: 1 year: 2012 ident: ref_43 article-title: NEON terrestrial field observations: Designing continental-scale, standardized sampling publication-title: Ecosphere doi: 10.1890/ES12-00196.1 – volume: 331 start-page: 698 year: 2011 ident: ref_46 article-title: May the Best Analyst Win publication-title: Science doi: 10.1126/science.331.6018.698 – volume: 65 start-page: 249 year: 1998 ident: ref_1 article-title: Determining forest species composition using high spectral resolution remote sensing data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(98)00035-2 – volume: 41 start-page: 35 year: 1992 ident: ref_53 article-title: A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(92)90059-S – volume: 124 start-page: 454 year: 2012 ident: ref_14 article-title: Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.06.012 – volume: 83 start-page: 195 year: 2002 ident: ref_51 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 – volume: 49 start-page: 15 year: 2016 ident: ref_38 article-title: Influence of tree species complexity on discrimination performance of vegetation Indices publication-title: Eur. J. Remote Sens. doi: 10.5721/EuJRS20164902 – volume: 45 start-page: 5 year: 2001 ident: ref_57 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 20 start-page: 37 year: 1960 ident: ref_60 article-title: A coefficient of agreement for nominal scales publication-title: Educ. Psychol. Meas. doi: 10.1177/001316446002000104 – volume: 26 start-page: 49 year: 2014 ident: ref_30 article-title: A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 6 start-page: e5843 year: 2019 ident: ref_37 article-title: A data science challenge for converting airborne remote sensing data into ecological information publication-title: PeerJ doi: 10.7717/peerj.5843 – volume: 6 start-page: e27182v1 year: 2018 ident: ref_47 article-title: A digital mapping method for linking high-resolution remote sensing images to individual tree crowns publication-title: PeerJ Prepr. – volume: 342 start-page: 850 year: 2013 ident: ref_8 article-title: High-resolution global maps of 21st-century forest cover change publication-title: Science doi: 10.1126/science.1244693 – ident: ref_36 doi: 10.3390/rs10081218 – volume: 29 start-page: 33 year: 2015 ident: ref_39 article-title: Ecological data sharing publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2015.06.010 – volume: 25 start-page: 295 year: 1988 ident: ref_55 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – ident: ref_10 doi: 10.3390/rs11182078 – ident: ref_16 doi: 10.3390/rs9111180 – volume: 351 start-page: 309 year: 1974 ident: ref_50 article-title: Monitoring vegetation systems in the Great Plains with ERTS publication-title: NASA Spec. Publ. – volume: 30 start-page: 261 year: 1992 ident: ref_52 article-title: Atmospherically resistant vegetation index (ARVI) for EOS-MODIS publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.134076 – ident: ref_31 doi: 10.3390/rs9090875 – volume: 2 start-page: 18 year: 2002 ident: ref_58 article-title: Classification and regression by randomForest publication-title: R News – volume: 4 start-page: 950 year: 2012 ident: ref_5 article-title: An international comparison of individual tree detection and extraction using airborne laser scanning publication-title: Remote Sens. doi: 10.3390/rs4040950 – volume: 46 start-page: 45 year: 2016 ident: ref_19 article-title: A comprehensive but efficient framework of proposing and validating feature parameters from airborne LiDAR data for tree species classification publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 67 start-page: 546 year: 2017 ident: ref_45 article-title: Skills and knowledge for data-intensive environmental research publication-title: BioScience doi: 10.1093/biosci/bix025 – ident: ref_24 doi: 10.3390/rs8060445 – volume: 6 start-page: 282 year: 2008 ident: ref_40 article-title: A continental strategy for the National Ecological Observatory Network publication-title: Front. Ecol. Environ. doi: 10.1890/1540-9295(2008)6[282:ACSFTN]2.0.CO;2 – volume: 11 start-page: 138 year: 2013 ident: ref_11 article-title: Lightweight unmanned aerial vehicles will revolutionize spatial ecology publication-title: Front. Ecol. Environ. doi: 10.1890/120150 – volume: 200 start-page: 170 year: 2017 ident: ref_15 article-title: Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.08.010 – volume: 5 start-page: 438 year: 2011 ident: ref_49 article-title: Statistical inference in PCA for hyperspectral images publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2011.2105244 – ident: ref_34 doi: 10.3390/rs11192326 – ident: ref_59 doi: 10.1201/9780429052729 |
| SSID | ssj0000331904 |
| Score | 2.4371643 |
| Snippet | Accurately mapping tree species composition and diversity is a critical step towards spatially explicit and species-specific ecological understanding. The... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1414 |
| SubjectTerms | Accuracy Airborne observation airborne remote sensing Airborne sensing Algorithms artificial intelligence automation Biodiversity Classification Colorado Composition Coniferous trees Data collection Datasets Decision analysis Decision trees Detection Diameters Ecology forests hyperspectral Image detection labor Learning algorithms Lidar Machine learning Mapping Mountains multispectral National Ecological Observatory Network Neon Neural networks Observatories Plant species Polygons prediction raster data Remote observing Remote sensing Remote sensing systems Species classification Species composition Species diversity Support vector machines Training tree crown tree species classification Trees Vegetation vegetation index Workflow |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFgSXAgXE0oKM4EAPUZPYTeJT1Zat6CVbtUXqLfJry0olKUkWaX8Df5oZx7sVAnHhkkMyciLPeB725PsAPph9I5I0ldG-41mE8VhGhbE6UlxZqXORJU57som8LIurK3kWNty60Fa58oneUdvG0B75HuHUYamCGf3B7feIWKPodDVQaNyHDUIqEyPYOJqUZ-frXZaYo4nFYsAl5Vjf77Ud_S2aiET8Fok8YP8f_tgHmZMn__t5T2EzpJfscLCHZ3DP1VvwcOKhqZdb8Chwnn9dPoefpwEpAoMXC_DYN2wQJc2xqR52bJt2ycqhW5x9LCfTcpcdzlu0ndqxc4eqduyC2uBxGFVbdlpHF_N-wT6pXjFMidkUvdI3HO-ydShJfPeuY56Mk9qU_ItfwJeTyeXx5yhQM0SGS9FHRmFlZTHeW2nkLJ3hfEr0nYnJdcy1jLXEwitXBU6L4wk3OWZhKlU2Iarj2An-EkZ1U7tXwFQaa6wx81jJGWUTeHVpbp2a8bww0oxhd6WmygTccqLPuKmwfiGVVncqHcP7teztgNbxV6kj0vZaghC2_Y2mva7CgsUkgg5EMXQnWFCKWBMRgNYyc9qqTGg1hp2VIVRh2XfVnRWM4d36MS5YOoVRtWsWKCOLTBaYKfPX_x5iGx6nVNz77sodGPXtwr2BB-ZHP-_at8HSfwHdswfC priority: 102 providerName: ProQuest |
| Title | Integrating National Ecological Observatory Network (NEON) Airborne Remote Sensing and In-Situ Data for Optimal Tree Species Classification |
| URI | https://www.proquest.com/docview/2398107014 https://www.proquest.com/docview/2986980543 https://doaj.org/article/ba0899471116440b8570bb96ebda64ba |
| Volume | 12 |
| WOSCitedRecordID | wos000543394000061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBYlLWyX0XUby5oGle7QHkxsS7GtY9K5NIc6Jkmh28VIssICnVMcp5BL_4H903tPdrKODXbpRQf7YQm95_fDev4-Qj7rvuae7wunb1jgQDwWTqRz5Ugmc6FCHnhGWbKJMEmiuzuRPqP6wp6wGh643riekngwBS7Ug8SeuwoB2ZUSgVG5DLiyqRFkPc-KKeuDGZiWy2s8UgZ1fa9c4V-iHvf4HxHIAvX_5YdtcLk6JG-arJAO6tW8JXumOCKvGoLy75t35OeogXWASEMbLOt7Guut66JjVX9eXZYbmtSt3fQ8icfJBR0sSlB0YejEgF4MnWLPOjxGFjkdFc50Ua3pF1lJCvkrHYML-QHPm5UGJJGc3qyoZc7EniI78XtyexXPLq-dhkfB0UzwytESyqAcgnMutJj7c9gEAY7O06FymRKuElAlhTLymTDMYzqElEn6MveQl9g1nH0grWJZmI-ESt9VUBCGrhRzDP0wGj_MjZyzMNJCt8nFdm8z3YCMI9fFfQbFBuoh-62HNjnbyT7U0Br_lBqiinYSCIdtL4CRZI2RZP8zkjbpbBWcNe_oKkPkQyh-XZzjdHcb3i48MpGFWa5BRkSBiCCtZZ9eYh3H5LWP9bptmOyQVlWuzQk50I_VYlV2yf4wTtJJ15pyF7tQpzg-xTCm_W9wPx3dpF9_AQHN-5M |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLahc-CggFgoYARI9RE1idxMfECp0q0Ztsyu6SOUUbMcLK5VkSbKg_Q38F34jM_nYCoG49cAlh2RkS8nLzDx7PA_gudk1wvN96exaPnAwHksnNKl2FFep1IEYeFbXYhNBHIdnZ3K8Bj-7szBUVtn5xNpRp7mhNfId6lOHVAUz-tfzrw6pRtHuaieh0cDiyC6_I2UrX0X7-H1f-P7BcPL20GlVBRzDpagco5AUpBiqUmnk1J96AikLItEE2uVauloiZwhUiBNa7nETYAKhfJV6pNLrWsFx3CuwLhDsYQ_Wx9HJ-MNqVcflCGlXNH1QOZfuTlHS6VScRPwW-WqBgD_8fx3UDm7-b6_jFtxo02e21-D9NqzZbBOuDevW28tN2Gg13T8v78CPqO2EgcGZte2_z1ljSshkI92sSOfFksVNNTx7GQ9H8TbbmxX4b2SWvbMIZctOqcwfh1FZyqLMOZ1VC7avKsUw5Wcj9LpfcLxJYdFybtFblqwWG6UyrHriu_D-Ut7KPehleWbvA1O-q5FDB66SU8qW8Gr9ILVqyoPQSNOH7Q4WiWn7spM8yHmC_IwglFxAqA_PVrbzphvJX63eELpWFtRBvL6RF5-S1iFhkkQbvpiaeEiYhatJ6EBrObA6VQOhVR-2OuAlrVsrkwvU9eHp6jE6JNplUpnNF2gjw4EMkQnwB_8e4glsHE5OjpPjKD56CNd9WsioK0m3oFcVC_sIrppv1awsHrd_GYOPl43kXzWkYSs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLV8XPgqIhQJGgEQP0SZ2msQHhLbdXbEqyq7aIvUWbMeBlUqyJFnQ_gb-Eb-OceJshUDceuCSQzKypeR5Zp49mQfwUu0r36OUO_uaBQ7GY-5EKpWOYCLlMvQDT8tGbCKM4-jsjM-34Gf3L4wpq-x8YuOo00KZPfKB6VOHVAUz-kFmyyLmo8nb5VfHKEiZk9ZOTqOFyJFef0f6Vr2ZjvBbv6J0Mj49fOdYhQFHMe7XjhJIEFIMWylXPKOZ5yN9QVSqULpMcldy5A-hiHByzTymQkwmBBWpZxR7Xe0zHPcKbEdB6NIebM8PD4bHmx0elyG8Xb_ticoYdwdlZf5UxUn836JgIxbwRyxoAtzk9v_8au7ALZtWk2G7Du7Cls534Nq4acm93oEbVuv98_oe_JjaDhkYtIltC35OWlODWDKT7U51Ua5J3FbJk9fxeBbvkeGixDWTa3KsEeKanJjyfxxG5CmZ5s7Jol6RkagFQSpAZuiNv-B4p6VGy6VGL1qRRoTUlGc1E9-HD5fyVh5ALy9y_RCIoK5Ebh26gmcmi8KrpmGqRcbCSHHVh70OIomy_dqNbMh5grzNwCm5gFMfXmxsl22Xkr9aHRikbSxMZ_HmRlF-SqyjwuTJHARjyuIhkfZdaQQQpOSBlqkIfCn6sNuBMLHurkouENiH55vH6KjM6ZPIdbFCGx4FPEKGwB79e4hncB3hm7yfxkeP4SY1-xtNgeku9OpypZ_AVfWtXlTlU7vgCHy8bCD_AnRyaZs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+National+Ecological+Observatory+Network+%28NEON%29+Airborne+Remote+Sensing+and+In-Situ+Data+for+Optimal+Tree+Species+Classification&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Victoria+M.+Scholl&rft.au=Megan+E.+Cattau&rft.au=Maxwell+B.+Joseph&rft.au=Jennifer+K.+Balch&rft.date=2020-05-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=9&rft.spage=1414&rft_id=info:doi/10.3390%2Frs12091414&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ba0899471116440b8570bb96ebda64ba |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |