Selecting a Within- or Between-Subject Design for Mediation: Validity, Causality, and Statistical Power

Researchers with mediation hypotheses must consider which design to use: within-subject or between-subject? In this paper, I argue that three factors should influence design choice: validity, causality, and statistical power. Threats to validity include carry-over effects, participant awareness, mea...

Full description

Saved in:
Bibliographic Details
Published in:Multivariate behavioral research Vol. 58; no. 3; pp. 616 - 636
Main Author: Montoya, Amanda K.
Format: Journal Article
Language:English
Published: United States Routledge 04.05.2023
Taylor & Francis Ltd
Subjects:
ISSN:0027-3171, 1532-7906, 1532-7906
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Researchers with mediation hypotheses must consider which design to use: within-subject or between-subject? In this paper, I argue that three factors should influence design choice: validity, causality, and statistical power. Threats to validity include carry-over effects, participant awareness, measurement, and more. Causality is a core element of mediation, and the assumptions required for causal inference differ between the two designs. Between-subject designs require more restrictive no-confounder assumptions, but within-subject designs require the assumption of no carry-over effects. Statistical power should be higher in within-subject designs, but the degree and conditions of this advantage are unknown for mediation analysis. A Monte Carlo simulation compares designs under a broad range of sample sizes, effect sizes, and correlations among repeated measurements. The results show within-subject designs require about half the sample size of between-subject designs to detect indirect effects of the same size, but this difference can vary with population parameters. I provide an empirical example and R script for conducting power analysis for within-subject mediation analysis. Researchers interested in conducting mediation analysis should not select within-subject designs merely because of higher power, but they should also consider validity and causality in their decision, both of which can favor between-subject designs.
AbstractList Researchers with mediation hypotheses must consider which design to use: within-subject or between-subject? In this paper, I argue that three factors should influence design choice: validity, causality, and statistical power. Threats to validity include carry-over effects, participant awareness, measurement, and more. Causality is a core element of mediation, and the assumptions required for causal inference differ between the two designs. Between-subject designs require more restrictive no-confounder assumptions, but within-subject designs require the assumption of no carry-over effects. Statistical power should be higher in within-subject designs, but the degree and conditions of this advantage are unknown for mediation analysis. A Monte Carlo simulation compares designs under a broad range of sample sizes, effect sizes, and correlations among repeated measurements. The results show within-subject designs require about half the sample size of between-subject designs to detect indirect effects of the same size, but this difference can vary with population parameters. I provide an empirical example and R script for conducting power analysis for within-subject mediation analysis. Researchers interested in conducting mediation analysis should not select within-subject designs merely because of higher power, but they should also consider validity and causality in their decision, both of which can favor between-subject designs.
Researchers with mediation hypotheses must consider which design to use: within-subject or between-subject? In this paper, I argue that three factors should influence design choice: validity, causality, and statistical power. Threats to validity include carry-over effects, participant awareness, measurement, and more. Causality is a core element of mediation, and the assumptions required for causal inference differ between the two designs. Between-subject designs require more restrictive no-confounder assumptions, but within-subject designs require the assumption of no carry-over effects. Statistical power should be higher in within-subject designs, but the degree and conditions of this advantage are unknown for mediation analysis. A Monte Carlo simulation compares designs under a broad range of sample sizes, effect sizes, and correlations among repeated measurements. The results show within-subject designs require about half the sample size of between-subject designs to detect indirect effects of the same size, but this difference can vary with population parameters. I provide an empirical example and R script for conducting power analysis for within-subject mediation analysis. Researchers interested in conducting mediation analysis should not select within-subject designs merely because of higher power, but they should also consider validity and causality in their decision, both of which can favor between-subject designs.Researchers with mediation hypotheses must consider which design to use: within-subject or between-subject? In this paper, I argue that three factors should influence design choice: validity, causality, and statistical power. Threats to validity include carry-over effects, participant awareness, measurement, and more. Causality is a core element of mediation, and the assumptions required for causal inference differ between the two designs. Between-subject designs require more restrictive no-confounder assumptions, but within-subject designs require the assumption of no carry-over effects. Statistical power should be higher in within-subject designs, but the degree and conditions of this advantage are unknown for mediation analysis. A Monte Carlo simulation compares designs under a broad range of sample sizes, effect sizes, and correlations among repeated measurements. The results show within-subject designs require about half the sample size of between-subject designs to detect indirect effects of the same size, but this difference can vary with population parameters. I provide an empirical example and R script for conducting power analysis for within-subject mediation analysis. Researchers interested in conducting mediation analysis should not select within-subject designs merely because of higher power, but they should also consider validity and causality in their decision, both of which can favor between-subject designs.
Author Montoya, Amanda K.
Author_xml – sequence: 1
  givenname: Amanda K.
  orcidid: 0000-0001-9316-8184
  surname: Montoya
  fullname: Montoya, Amanda K.
  organization: Department of Psychology, University of California, Los Angeles
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35679239$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEUhS1URNPATwBZYsOiU_yYsT10Aw1PqQik8FhazvhOcDSxi-1RlH-PhySbLmBh-1r3O9fWORfozAcPCD2l5IoSRV4SwiSnkl4xwljZpGRKPkAz2nBWyZaIMzSbmGqCztFFShtCiGjq9hE6542QLePtDK2XMECXnV9jg3-6_Mv5CoeIbyDvAHy1HFeb0sdvIbm1x31pfQbrTHbBv8I_zOCsy_tLvDBjKpepNN7iZS5Eyq4zA_4adhAfo4e9GRI8OZ5z9P39u2-Lj9Xtlw-fFm9uq463da5WrWkFtYTazkgKKwHNyopaEVpz0xMmakqF6qwEYWpVMw7M9By6lihlRQ98jl4c5t7F8HuElPXWpQ6GwXgIY9JMyFoWi1pe0Of30E0Yoy-_00wxqRhXZc3RsyM1rrZg9V10WxP3-mRhAa4PQBdDShF63bn8158cjRs0JXoKTJ8C01Ng-hhYUTf31KcH_qd7fdA5XzLZml2Ig9XZ7IcQ-2h855Lm_x7xB9NPqn8
CitedBy_id crossref_primary_10_1016_j_chb_2024_108299
crossref_primary_10_1016_j_foodqual_2024_105313
crossref_primary_10_3390_su152115410
crossref_primary_10_1002_mar_21891
crossref_primary_10_3389_fpsyg_2023_1095968
crossref_primary_10_1016_j_jaac_2024_10_020
crossref_primary_10_1177_23970022241284463
crossref_primary_10_1061_JCCEE5_CPENG_5138
crossref_primary_10_1080_00273171_2025_2483252
crossref_primary_10_1111_asap_12348
crossref_primary_10_1080_07421222_2025_2520178
crossref_primary_10_1108_EL_12_2023_0296
crossref_primary_10_1111_ijcs_70113
crossref_primary_10_1097_PR9_0000000000001172
crossref_primary_10_1017_jmo_2024_45
crossref_primary_10_1080_03634523_2024_2398105
crossref_primary_10_1177_21676968241236992
crossref_primary_10_3168_jds_2023_24529
crossref_primary_10_3389_fpsyg_2025_1580018
crossref_primary_10_3758_s13428_023_02118_0
crossref_primary_10_3390_su17157117
crossref_primary_10_3390_app14145996
crossref_primary_10_1038_s44271_025_00248_z
crossref_primary_10_1109_TOH_2024_3432835
crossref_primary_10_1109_TSE_2024_3523487
crossref_primary_10_1155_2024_5781565
crossref_primary_10_1177_25152459231156606
crossref_primary_10_1016_j_respol_2025_105291
crossref_primary_10_1080_08853134_2024_2386946
crossref_primary_10_1109_JSTARS_2025_3530762
crossref_primary_10_1123_jsep_2022_0038
crossref_primary_10_1016_j_jretconser_2024_104210
crossref_primary_10_1038_s41380_024_02871_4
Cites_doi 10.1037/0022-3514.51.6.1173
10.1016/j.paid.2019.04.022
10.1002/sim.4780110603
10.1037/1082-989X.12.2.121
10.1037/0033-2909.83.2.314
10.1027/1864-9335/a000364
10.1001/archpsyc.59.10.877
10.1080/00273171.2010.498292
10.1214/10-STS321
10.1007/s10964-020-01332-9
10.1037/h0035841
10.1207/s15366359mea0204_1
10.1080/10705519709540063
10.1016/0167-9473(84)90002-1
10.4135/9781483381411
10.1198/016214504000001880
10.1093/biostatistics/kxv029
10.1080/02699931.2019.1634004
10.1111/biom.12248
10.1201/9780429246593
10.1097/EDE.0b013e3181df191c
10.3758/BF03206553
10.1037/1082-989X.7.4.422
10.1037/a0020761
10.1007/s11121-019-01076-4
10.1037/met0000086
10.1080/01621459.1992.10476281
10.1177/0956797613480187
10.1002/pam.10129
10.1037/h0023914
10.1037/bul0000315
10.1073/pnas.1706541114
10.1177/1948550617715068
10.1037/1082-989X.6.2.115
10.1037/h0034731
10.31234/osf.io/ck2r5
10.1177/0956797611417632
10.1080/00273170903504695
10.1207/s15327906mbr3001_1
10.1146/annurev-psych-010814-015258
10.1177/1088868314542878
10.1037/pspa0000132
10.1037/a0033820
10.1080/02701367.1994.10607641
10.18637/jss.v059.i05
10.1177/02654075211000135
10.35566/power
10.1080/10705511.2016.1274657
10.1037/a0024776
10.1037/pspa0000166
10.1037/a0020141
10.1111/eip.12967
10.1097/00001648-199203000-00013
10.1016/j.ausmj.2017.02.001
10.1111/j.1467-9280.2007.01882.x
10.1515/ijb-2014-0057
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
2022 Taylor & Francis Group, LLC
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
– notice: 2022 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1080/00273171.2022.2077287
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1532-7906
EndPage 636
ExternalDocumentID 35679239
10_1080_00273171_2022_2077287
2077287
Genre Research Article
Journal Article
GroupedDBID --Z
-~X
.7I
.QK
0BK
0R~
123
4.4
5VS
8VB
AAGDL
AAGZJ
AAHIA
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABFIM
ABIVO
ABJNI
ABLIJ
ABLJU
ABPEM
ABPPZ
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACHQT
ACIWK
ACNCT
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
AECIN
AEFOU
AEISY
AEKEX
AENEX
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQTUD
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
DU5
EBS
EMOBN
E~B
E~C
F5P
FEDTE
G-F
GTTXZ
H13
HF~
HZ~
IPNFZ
J.O
KYCEM
LJTGL
M4Z
MS~
NA5
NW-
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TN5
TNTFI
TRJHH
TUROJ
TWZ
UT5
UT9
VAE
WH7
YNT
YQT
ZL0
~01
~S~
AAYXX
CITATION
.GJ
07M
53G
AANPH
ABRLO
ABVXC
ABWZE
ACPKE
ACRBO
ADEWX
ADIUE
ADXAZ
ADYSH
AETEA
AEXSR
AFFNX
AIXGP
ALEEW
ALLRG
C5A
CAG
CBZAQ
CKOZC
COF
C~T
DGXZK
EFRLQ
EGDCR
EJD
FXNIP
HVGLF
H~9
JLMOS
L7Y
LPU
NEJ
NPM
OHT
P-O
QZZOY
RBICI
ROL
UA1
UAP
XOL
ZCG
ZXP
7X8
ID FETCH-LOGICAL-c394t-b9a961d01dca71eb6e5bd6480143af02641168cd7e6a48423e2af3ec9088d6fe3
IEDL.DBID TFW
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808504800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0027-3171
1532-7906
IngestDate Fri Sep 05 06:52:34 EDT 2025
Mon Nov 10 02:56:07 EST 2025
Mon Jul 21 05:51:28 EDT 2025
Tue Nov 18 21:44:54 EST 2025
Sat Nov 29 06:40:31 EST 2025
Mon Oct 20 23:46:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords indirect effect
power
validity
within-subject design
causal inference
Mediation analysis
Monte Carlo simulation
type I error
power analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-b9a961d01dca71eb6e5bd6480143af02641168cd7e6a48423e2af3ec9088d6fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9316-8184
PMID 35679239
PQID 2827823882
PQPubID 47318
PageCount 21
ParticipantIDs pubmed_primary_35679239
crossref_citationtrail_10_1080_00273171_2022_2077287
proquest_journals_2827823882
crossref_primary_10_1080_00273171_2022_2077287
informaworld_taylorfrancis_310_1080_00273171_2022_2077287
proquest_miscellaneous_2674753293
PublicationCentury 2000
PublicationDate 2023-05-04
PublicationDateYYYYMMDD 2023-05-04
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Mahwah
PublicationTitle Multivariate behavioral research
PublicationTitleAlternate Multivariate Behav Res
PublicationYear 2023
Publisher Routledge
Taylor & Francis Ltd
Publisher_xml – name: Routledge
– name: Taylor & Francis Ltd
References Cohen J. (CIT0009) 1988
CIT0072
CIT0071
CIT0030
CIT0074
CIT0032
Pearl J. (CIT0045) 2001
CIT0031
CIT0034
CIT0033
CIT0070
Venter A. (CIT0069) 1999
CIT0036
CIT0035
CIT0038
Maxwell S. E. (CIT0037) 2018
Zyphur M. J. (CIT0075) 2018
CIT0039
VanderWeele T. J. (CIT0068) 2014; 11
Zhang Z. (CIT0073) 2018
CIT0041
Fisher A. C. (CIT0015) 1981
CIT0040
CIT0043
CIT0042
CIT0044
Senn S. (CIT0058) 1993
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
Rockwood N. J. (CIT0053) 2022
CIT0004
CIT0048
CIT0007
CIT0006
CIT0008
CIT0052
CIT0051
CIT0054
CIT0012
CIT0056
CIT0011
CIT0055
Raudenbush S. W. (CIT0050) 2002; 1
CIT0014
CIT0013
CIT0057
CIT0016
CIT0059
CIT0018
CIT0017
CIT0019
CIT0061
CIT0060
CIT0063
CIT0021
CIT0065
CIT0020
CIT0064
CIT0023
CIT0022
CIT0066
Aberson C. L. (CIT0001) 2019
Judd C. M. (CIT0028) 1989
CIT0025
CIT0024
CIT0027
VanderWeele T. J. (CIT0067) 2015
CIT0029
References_xml – ident: CIT0004
  doi: 10.1037/0022-3514.51.6.1173
– volume-title: Statistical strategies for small sample research
  year: 1999
  ident: CIT0069
– ident: CIT0044
  doi: 10.1016/j.paid.2019.04.022
– volume-title: Data analysis: A model comparison approach
  year: 1989
  ident: CIT0028
– ident: CIT0057
  doi: 10.1002/sim.4780110603
– volume-title: Pwr2ppl: Power analysis for common designs
  year: 2019
  ident: CIT0001
– volume-title: Cross-over trials in clinical research
  year: 1993
  ident: CIT0058
– ident: CIT0013
  doi: 10.1037/1082-989X.12.2.121
– ident: CIT0019
  doi: 10.1037/0033-2909.83.2.314
– ident: CIT0029
– ident: CIT0002
  doi: 10.1027/1864-9335/a000364
– ident: CIT0030
  doi: 10.1001/archpsyc.59.10.877
– volume-title: Multilevel modeling methods with introductory and advanced applications
  year: 2022
  ident: CIT0053
– ident: CIT0005
  doi: 10.1080/00273171.2010.498292
– ident: CIT0024
  doi: 10.1214/10-STS321
– volume-title: Designing experiments and analyzing data: A model comparison perspective
  year: 2018
  ident: CIT0037
– ident: CIT0036
  doi: 10.1007/s10964-020-01332-9
– volume-title: Explanation in causal inference: Methods for mediation and interaction
  year: 2015
  ident: CIT0067
– ident: CIT0054
  doi: 10.1037/h0035841
– volume-title: Statistical power analysis for the behavioral sciences
  year: 1988
  ident: CIT0009
– ident: CIT0038
  doi: 10.1207/s15366359mea0204_1
– ident: CIT0014
  doi: 10.1080/10705519709540063
– ident: CIT0042
  doi: 10.1016/0167-9473(84)90002-1
– ident: CIT0003
  doi: 10.4135/9781483381411
– ident: CIT0055
  doi: 10.1198/016214504000001880
– ident: CIT0006
  doi: 10.1093/biostatistics/kxv029
– ident: CIT0063
  doi: 10.1080/02699931.2019.1634004
– ident: CIT0011
  doi: 10.1111/biom.12248
– ident: CIT0012
  doi: 10.1201/9780429246593
– ident: CIT0066
  doi: 10.1097/EDE.0b013e3181df191c
– volume-title: Proceedings of the seventeenth conference on uncertainty in artificial intelligence
  year: 2001
  ident: CIT0045
– ident: CIT0048
  doi: 10.3758/BF03206553
– ident: CIT0060
  doi: 10.1037/1082-989X.7.4.422
– volume: 1
  volume-title: Hierarchical linear models: Applications and data analysis methods
  year: 2002
  ident: CIT0050
– ident: CIT0023
  doi: 10.1037/a0020761
– ident: CIT0035
  doi: 10.1007/s11121-019-01076-4
– ident: CIT0040
  doi: 10.1037/met0000086
– ident: CIT0041
  doi: 10.1080/01621459.1992.10476281
– ident: CIT0052
– volume: 11
  start-page: e9027
  issue: 2
  year: 2014
  ident: CIT0068
  publication-title: Epidemiology, Biostatistics and Public Health
– ident: CIT0022
  doi: 10.1177/0956797613480187
– ident: CIT0059
  doi: 10.1002/pam.10129
– ident: CIT0020
  doi: 10.1037/h0023914
– ident: CIT0018
  doi: 10.1037/bul0000315
– ident: CIT0070
  doi: 10.1073/pnas.1706541114
– ident: CIT0056
  doi: 10.1177/1948550617715068
– ident: CIT0027
  doi: 10.1037/1082-989X.6.2.115
– ident: CIT0046
  doi: 10.1037/h0034731
– ident: CIT0008
  doi: 10.31234/osf.io/ck2r5
– ident: CIT0039
– ident: CIT0061
  doi: 10.1177/0956797611417632
– ident: CIT0074
  doi: 10.1080/00273170903504695
– ident: CIT0031
  doi: 10.1207/s15327906mbr3001_1
– ident: CIT0047
  doi: 10.1146/annurev-psych-010814-015258
– ident: CIT0034
  doi: 10.1177/1088868314542878
– ident: CIT0072
  doi: 10.1037/pspa0000132
– ident: CIT0071
  doi: 10.1037/a0033820
– ident: CIT0033
  doi: 10.1080/02701367.1994.10607641
– ident: CIT0064
  doi: 10.18637/jss.v059.i05
– ident: CIT0017
  doi: 10.1177/02654075211000135
– volume-title: Practical Statistical Power Analysis Using Webpower and R.
  year: 2018
  ident: CIT0073
  doi: 10.35566/power
– ident: CIT0065
  doi: 10.1080/10705511.2016.1274657
– ident: CIT0032
  doi: 10.1037/a0024776
– ident: CIT0043
  doi: 10.1037/pspa0000166
– ident: CIT0049
  doi: 10.1037/a0020141
– ident: CIT0007
  doi: 10.1111/eip.12967
– ident: CIT0051
  doi: 10.1097/00001648-199203000-00013
– start-page: 139
  volume-title: Statistics in the pharmaceutical industry
  year: 1981
  ident: CIT0015
– ident: CIT0021
  doi: 10.1016/j.ausmj.2017.02.001
– ident: CIT0016
  doi: 10.1111/j.1467-9280.2007.01882.x
– start-page: 473
  volume-title: The handbook of multilevel theory, measurement, and analysis
  year: 2018
  ident: CIT0075
– ident: CIT0025
  doi: 10.1515/ijb-2014-0057
SSID ssj0006549
Score 2.525891
Snippet Researchers with mediation hypotheses must consider which design to use: within-subject or between-subject? In this paper, I argue that three factors should...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 616
SubjectTerms causal inference
Causality
Design factors
Empirical analysis
indirect effect
Mediation analysis
Monte Carlo simulation
power
power analysis
Statistical power
type I error
Validity
within-subject design
Title Selecting a Within- or Between-Subject Design for Mediation: Validity, Causality, and Statistical Power
URI https://www.tandfonline.com/doi/abs/10.1080/00273171.2022.2077287
https://www.ncbi.nlm.nih.gov/pubmed/35679239
https://www.proquest.com/docview/2827823882
https://www.proquest.com/docview/2674753293
Volume 58
WOSCitedRecordID wos000808504800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1532-7906
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006549
  issn: 0027-3171
  databaseCode: TFW
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4V1AMXaCmPpVtkJI4YkrXjBze67YoLCAla9hY5fgASyqJ9IPXfd-xko3JAHOgxSpzYHs_MN874G4BDEQKX3hZUcispIvCMaptpqgqlnA3oMYVLxSbk5aUaj_VVm004a9MqYwwdGqKIZKujcptqtsyIO0kcLLmM0d0gnqVCgKjieXJE9jGp72Z029liUbQAeBB342S-PMPz2lteeKcX3KWvI9DkiUYb_2EMn2C9haHkrFk3n-GDrzdhrbOGf77A3XWqkIOejRhy-zC_f6gpmUzJ9yaxi6LFiVs45EdKASE4BHKRyn6goE_Jb4T3DgH-ERmaxSxh_SOCnSUR3CZuaPz6VazQtgW_Rj9vhue0rcpALdN8TitttMhdljtrZO4r4YvKicRCw0zAkI7nuVDWSS8MV4jW_MAE5m1MqHIieLYNq_Wk9rtAKl0Vg8wa5pXmgjnDM-6D90awSsjK9YAvpVHalrI8Vs54LPOO2bSZxjJOY9lOYw-Ou2ZPDWfHWw30v6Iu52mzJDSVTUr2Rtv-cl2UrfrPSoxjEXkxjF56cNDdRsWNf2NM7ScLfEZgJFcwhFs92GnWU9dbVojI66j33tGxr7CGl01yJu_D6ny68N_go31GKU_3YUWO1X5Slr_M-gxO
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VilQupbzaLbS4EkcMydqx495a2hVVYYXE8rhZjh-AVGWrZbdS_33HTjaCA-JQzo4T22PPfDMZfwOwK0Lg0tuCSm4lRQSeUWUzRcuiLJ0NaDGFS8Um5HBYXl2p-3dhYlpl9KFDQxSRdHU83DEYPU-JO0gkLLmM7l0_XqZChFjKBXhZoK2Ne300uOy0sShaCNyP8TiZz2_xPPaaB_bpAXvp4xg02aLBynPM4g28bpEo-dJsnVV44es1WO4U4t91uD5LRXLQuBFDLm-nN7c1JeMJ-drkdlFUOjGKQ76lLBCCcyAnqfIHyvozuUCE7xDj75FDM7tLcH-P4GhJxLeJHhq_fhqLtG3A-eD76PCItoUZqGWKT2mljBK5y3Jnjcx9JXxROZGIaJgJ6NXxPBelddILw0sEbL5vAvM25lQ5ETzbhMV6XPt3QCpVFf3MGuZLxQVzhmfcB--NYJWQlesBn4tD25a1PBbP-KXzjty0WUYdl1G3y9iD_a7b74a246kO6r6s9TTFS0JT3ESzJ_puzzeGbjXAnUZXFsEXQwemB5-6Zjy78YeMqf14hs8IdOYKhoirB2-bDdWNlhUiUjuq9_8xsB14dTQ6OdbHP4Y_t2AZm5pcTb4Ni9PJzH-AJfsHJT75mM7MP1pmD4Y
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VihCX0lJaltLWlXrEJVk7dtwbj65AbVcrlRZuluNHi4SyaB-V-PeMnWwEB8QBzo4T2-OZ-cYZfwPwWYTApbcFldxKigg8o8pmipZFWTob0GMKl4pNyOGwPD9XozabcNqmVcYYOjREEclWR-W-cmGREbeXOFhyGaO7frxLhQCxlEvwPDKLxCIGp4OzzhiLokXA_XgcJ_PFJZ77XnPHPd0hL70fgiZXNFh_gkm8hBctDiX7zcZ5Bc98vQFrnTm8fg1_f6USOejaiCFnF7N_FzUl4wk5aDK7KJqceIZDjlIOCMEpkJ-p7gdK-iv5g_jeIcLfJYdmPk1gf5fgYElEt4kcGr8-iiXaNuH34Nvp4TFtyzJQyxSf0UoZJXKX5c4amftK-KJyItHQMBMwpuN5LkrrpBeGlwjXfN8E5m3MqHIiePYGlutx7beAVKoq-pk1zJeKC-YMz7gP3hvBKiEr1wO-kIa2LWd5LJ1xqfOO2rRZRh2XUbfL2IMvXberhrTjoQ7qtqj1LJ2WhKa0iWYP9N1Z7Avd6v9UYyCL0Ith-NKDT10zam78HWNqP57jMwJDuYIh3urB22Y_daNlhYjEjmr7EQP7CKujo4H-cTL8_g7WsKVJ1OQ7sDybzP17WLH_UeCTD0ljbgDiMg4q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selecting+a+Within-+or+Between-Subject+Design+for+Mediation%3A+Validity%2C+Causality%2C+and+Statistical+Power&rft.jtitle=Multivariate+behavioral+research&rft.au=Montoya%2C+Amanda+K&rft.date=2023-05-04&rft.issn=1532-7906&rft.eissn=1532-7906&rft.volume=58&rft.issue=3&rft.spage=616&rft_id=info:doi/10.1080%2F00273171.2022.2077287&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-3171&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-3171&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-3171&client=summon