Selecting a Within- or Between-Subject Design for Mediation: Validity, Causality, and Statistical Power
Researchers with mediation hypotheses must consider which design to use: within-subject or between-subject? In this paper, I argue that three factors should influence design choice: validity, causality, and statistical power. Threats to validity include carry-over effects, participant awareness, mea...
Uloženo v:
| Vydáno v: | Multivariate behavioral research Ročník 58; číslo 3; s. 616 - 636 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Routledge
04.05.2023
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0027-3171, 1532-7906, 1532-7906 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Researchers with mediation hypotheses must consider which design to use: within-subject or between-subject? In this paper, I argue that three factors should influence design choice: validity, causality, and statistical power. Threats to validity include carry-over effects, participant awareness, measurement, and more. Causality is a core element of mediation, and the assumptions required for causal inference differ between the two designs. Between-subject designs require more restrictive no-confounder assumptions, but within-subject designs require the assumption of no carry-over effects. Statistical power should be higher in within-subject designs, but the degree and conditions of this advantage are unknown for mediation analysis. A Monte Carlo simulation compares designs under a broad range of sample sizes, effect sizes, and correlations among repeated measurements. The results show within-subject designs require about half the sample size of between-subject designs to detect indirect effects of the same size, but this difference can vary with population parameters. I provide an empirical example and R script for conducting power analysis for within-subject mediation analysis. Researchers interested in conducting mediation analysis should not select within-subject designs merely because of higher power, but they should also consider validity and causality in their decision, both of which can favor between-subject designs. |
|---|---|
| AbstractList | Researchers with mediation hypotheses must consider which design to use: within-subject or between-subject? In this paper, I argue that three factors should influence design choice: validity, causality, and statistical power. Threats to validity include carry-over effects, participant awareness, measurement, and more. Causality is a core element of mediation, and the assumptions required for causal inference differ between the two designs. Between-subject designs require more restrictive no-confounder assumptions, but within-subject designs require the assumption of no carry-over effects. Statistical power should be higher in within-subject designs, but the degree and conditions of this advantage are unknown for mediation analysis. A Monte Carlo simulation compares designs under a broad range of sample sizes, effect sizes, and correlations among repeated measurements. The results show within-subject designs require about half the sample size of between-subject designs to detect indirect effects of the same size, but this difference can vary with population parameters. I provide an empirical example and R script for conducting power analysis for within-subject mediation analysis. Researchers interested in conducting mediation analysis should not select within-subject designs merely because of higher power, but they should also consider validity and causality in their decision, both of which can favor between-subject designs.Researchers with mediation hypotheses must consider which design to use: within-subject or between-subject? In this paper, I argue that three factors should influence design choice: validity, causality, and statistical power. Threats to validity include carry-over effects, participant awareness, measurement, and more. Causality is a core element of mediation, and the assumptions required for causal inference differ between the two designs. Between-subject designs require more restrictive no-confounder assumptions, but within-subject designs require the assumption of no carry-over effects. Statistical power should be higher in within-subject designs, but the degree and conditions of this advantage are unknown for mediation analysis. A Monte Carlo simulation compares designs under a broad range of sample sizes, effect sizes, and correlations among repeated measurements. The results show within-subject designs require about half the sample size of between-subject designs to detect indirect effects of the same size, but this difference can vary with population parameters. I provide an empirical example and R script for conducting power analysis for within-subject mediation analysis. Researchers interested in conducting mediation analysis should not select within-subject designs merely because of higher power, but they should also consider validity and causality in their decision, both of which can favor between-subject designs. Researchers with mediation hypotheses must consider which design to use: within-subject or between-subject? In this paper, I argue that three factors should influence design choice: validity, causality, and statistical power. Threats to validity include carry-over effects, participant awareness, measurement, and more. Causality is a core element of mediation, and the assumptions required for causal inference differ between the two designs. Between-subject designs require more restrictive no-confounder assumptions, but within-subject designs require the assumption of no carry-over effects. Statistical power should be higher in within-subject designs, but the degree and conditions of this advantage are unknown for mediation analysis. A Monte Carlo simulation compares designs under a broad range of sample sizes, effect sizes, and correlations among repeated measurements. The results show within-subject designs require about half the sample size of between-subject designs to detect indirect effects of the same size, but this difference can vary with population parameters. I provide an empirical example and R script for conducting power analysis for within-subject mediation analysis. Researchers interested in conducting mediation analysis should not select within-subject designs merely because of higher power, but they should also consider validity and causality in their decision, both of which can favor between-subject designs. |
| Author | Montoya, Amanda K. |
| Author_xml | – sequence: 1 givenname: Amanda K. orcidid: 0000-0001-9316-8184 surname: Montoya fullname: Montoya, Amanda K. organization: Department of Psychology, University of California, Los Angeles |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35679239$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtvEzEUhS1URNPATwBZYsOiU_yYsT10Aw1PqQik8FhazvhOcDSxi-1RlH-PhySbLmBh-1r3O9fWORfozAcPCD2l5IoSRV4SwiSnkl4xwljZpGRKPkAz2nBWyZaIMzSbmGqCztFFShtCiGjq9hE6542QLePtDK2XMECXnV9jg3-6_Mv5CoeIbyDvAHy1HFeb0sdvIbm1x31pfQbrTHbBv8I_zOCsy_tLvDBjKpepNN7iZS5Eyq4zA_4adhAfo4e9GRI8OZ5z9P39u2-Lj9Xtlw-fFm9uq463da5WrWkFtYTazkgKKwHNyopaEVpz0xMmakqF6qwEYWpVMw7M9By6lihlRQ98jl4c5t7F8HuElPXWpQ6GwXgIY9JMyFoWi1pe0Of30E0Yoy-_00wxqRhXZc3RsyM1rrZg9V10WxP3-mRhAa4PQBdDShF63bn8158cjRs0JXoKTJ8C01Ng-hhYUTf31KcH_qd7fdA5XzLZml2Ig9XZ7IcQ-2h855Lm_x7xB9NPqn8 |
| CitedBy_id | crossref_primary_10_1016_j_chb_2024_108299 crossref_primary_10_1016_j_foodqual_2024_105313 crossref_primary_10_3390_su152115410 crossref_primary_10_1002_mar_21891 crossref_primary_10_3389_fpsyg_2023_1095968 crossref_primary_10_1016_j_jaac_2024_10_020 crossref_primary_10_1177_23970022241284463 crossref_primary_10_1061_JCCEE5_CPENG_5138 crossref_primary_10_1080_00273171_2025_2483252 crossref_primary_10_1111_asap_12348 crossref_primary_10_1080_07421222_2025_2520178 crossref_primary_10_1108_EL_12_2023_0296 crossref_primary_10_1111_ijcs_70113 crossref_primary_10_1097_PR9_0000000000001172 crossref_primary_10_1017_jmo_2024_45 crossref_primary_10_1080_03634523_2024_2398105 crossref_primary_10_1177_21676968241236992 crossref_primary_10_3168_jds_2023_24529 crossref_primary_10_3389_fpsyg_2025_1580018 crossref_primary_10_3758_s13428_023_02118_0 crossref_primary_10_3390_su17157117 crossref_primary_10_3390_app14145996 crossref_primary_10_1038_s44271_025_00248_z crossref_primary_10_1109_TOH_2024_3432835 crossref_primary_10_1109_TSE_2024_3523487 crossref_primary_10_1155_2024_5781565 crossref_primary_10_1177_25152459231156606 crossref_primary_10_1016_j_respol_2025_105291 crossref_primary_10_1080_08853134_2024_2386946 crossref_primary_10_1109_JSTARS_2025_3530762 crossref_primary_10_1123_jsep_2022_0038 crossref_primary_10_1016_j_jretconser_2024_104210 crossref_primary_10_1038_s41380_024_02871_4 |
| Cites_doi | 10.1037/0022-3514.51.6.1173 10.1016/j.paid.2019.04.022 10.1002/sim.4780110603 10.1037/1082-989X.12.2.121 10.1037/0033-2909.83.2.314 10.1027/1864-9335/a000364 10.1001/archpsyc.59.10.877 10.1080/00273171.2010.498292 10.1214/10-STS321 10.1007/s10964-020-01332-9 10.1037/h0035841 10.1207/s15366359mea0204_1 10.1080/10705519709540063 10.1016/0167-9473(84)90002-1 10.4135/9781483381411 10.1198/016214504000001880 10.1093/biostatistics/kxv029 10.1080/02699931.2019.1634004 10.1111/biom.12248 10.1201/9780429246593 10.1097/EDE.0b013e3181df191c 10.3758/BF03206553 10.1037/1082-989X.7.4.422 10.1037/a0020761 10.1007/s11121-019-01076-4 10.1037/met0000086 10.1080/01621459.1992.10476281 10.1177/0956797613480187 10.1002/pam.10129 10.1037/h0023914 10.1037/bul0000315 10.1073/pnas.1706541114 10.1177/1948550617715068 10.1037/1082-989X.6.2.115 10.1037/h0034731 10.31234/osf.io/ck2r5 10.1177/0956797611417632 10.1080/00273170903504695 10.1207/s15327906mbr3001_1 10.1146/annurev-psych-010814-015258 10.1177/1088868314542878 10.1037/pspa0000132 10.1037/a0033820 10.1080/02701367.1994.10607641 10.18637/jss.v059.i05 10.1177/02654075211000135 10.35566/power 10.1080/10705511.2016.1274657 10.1037/a0024776 10.1037/pspa0000166 10.1037/a0020141 10.1111/eip.12967 10.1097/00001648-199203000-00013 10.1016/j.ausmj.2017.02.001 10.1111/j.1467-9280.2007.01882.x 10.1515/ijb-2014-0057 |
| ContentType | Journal Article |
| Copyright | 2022 Taylor & Francis Group, LLC 2022 2022 Taylor & Francis Group, LLC |
| Copyright_xml | – notice: 2022 Taylor & Francis Group, LLC 2022 – notice: 2022 Taylor & Francis Group, LLC |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1080/00273171.2022.2077287 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology |
| EISSN | 1532-7906 |
| EndPage | 636 |
| ExternalDocumentID | 35679239 10_1080_00273171_2022_2077287 2077287 |
| Genre | Research Article Journal Article |
| GroupedDBID | --Z -~X .7I .QK 0BK 0R~ 123 4.4 5VS 8VB AAGDL AAGZJ AAHIA AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABFIM ABIVO ABJNI ABLIJ ABLJU ABPEM ABPPZ ABRYG ABTAI ABXUL ABXYU ABZLS ACGFS ACHQT ACIWK ACNCT ACTIO ACTOA ADAHI ADCVX ADKVQ AECIN AEFOU AEISY AEKEX AENEX AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AIJEM AIYEW AJWEG AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AQTUD AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 CS3 DGFLZ DKSSO DU5 EBS EMOBN E~B E~C F5P FEDTE G-F GTTXZ H13 HF~ HZ~ IPNFZ J.O KYCEM LJTGL M4Z MS~ NA5 NW- O9- P2P PQQKQ QWB RIG RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TN5 TNTFI TRJHH TUROJ TWZ UT5 UT9 VAE WH7 YNT YQT ZL0 ~01 ~S~ AAYXX CITATION .GJ 07M 53G AANPH ABRLO ABVXC ABWZE ACPKE ACRBO ADEWX ADIUE ADXAZ ADYSH AETEA AEXSR AFFNX AIXGP ALEEW ALLRG C5A CAG CBZAQ CKOZC COF C~T DGXZK EFRLQ EGDCR EJD FXNIP HVGLF H~9 JLMOS L7Y LPU NEJ NPM OHT P-O QZZOY RBICI ROL UA1 UAP XOL ZCG ZXP 7X8 |
| ID | FETCH-LOGICAL-c394t-b9a961d01dca71eb6e5bd6480143af02641168cd7e6a48423e2af3ec9088d6fe3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808504800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0027-3171 1532-7906 |
| IngestDate | Fri Sep 05 06:52:34 EDT 2025 Mon Nov 10 02:56:07 EST 2025 Mon Jul 21 05:51:28 EDT 2025 Tue Nov 18 21:44:54 EST 2025 Sat Nov 29 06:40:31 EST 2025 Mon Oct 20 23:46:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | indirect effect power validity within-subject design causal inference Mediation analysis Monte Carlo simulation type I error power analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-b9a961d01dca71eb6e5bd6480143af02641168cd7e6a48423e2af3ec9088d6fe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9316-8184 |
| PMID | 35679239 |
| PQID | 2827823882 |
| PQPubID | 47318 |
| PageCount | 21 |
| ParticipantIDs | pubmed_primary_35679239 crossref_citationtrail_10_1080_00273171_2022_2077287 proquest_journals_2827823882 crossref_primary_10_1080_00273171_2022_2077287 informaworld_taylorfrancis_310_1080_00273171_2022_2077287 proquest_miscellaneous_2674753293 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-04 |
| PublicationDateYYYYMMDD | 2023-05-04 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Mahwah |
| PublicationTitle | Multivariate behavioral research |
| PublicationTitleAlternate | Multivariate Behav Res |
| PublicationYear | 2023 |
| Publisher | Routledge Taylor & Francis Ltd |
| Publisher_xml | – name: Routledge – name: Taylor & Francis Ltd |
| References | Cohen J. (CIT0009) 1988 CIT0072 CIT0071 CIT0030 CIT0074 CIT0032 Pearl J. (CIT0045) 2001 CIT0031 CIT0034 CIT0033 CIT0070 Venter A. (CIT0069) 1999 CIT0036 CIT0035 CIT0038 Maxwell S. E. (CIT0037) 2018 Zyphur M. J. (CIT0075) 2018 CIT0039 VanderWeele T. J. (CIT0068) 2014; 11 Zhang Z. (CIT0073) 2018 CIT0041 Fisher A. C. (CIT0015) 1981 CIT0040 CIT0043 CIT0042 CIT0044 Senn S. (CIT0058) 1993 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 Rockwood N. J. (CIT0053) 2022 CIT0004 CIT0048 CIT0007 CIT0006 CIT0008 CIT0052 CIT0051 CIT0054 CIT0012 CIT0056 CIT0011 CIT0055 Raudenbush S. W. (CIT0050) 2002; 1 CIT0014 CIT0013 CIT0057 CIT0016 CIT0059 CIT0018 CIT0017 CIT0019 CIT0061 CIT0060 CIT0063 CIT0021 CIT0065 CIT0020 CIT0064 CIT0023 CIT0022 CIT0066 Aberson C. L. (CIT0001) 2019 Judd C. M. (CIT0028) 1989 CIT0025 CIT0024 CIT0027 VanderWeele T. J. (CIT0067) 2015 CIT0029 |
| References_xml | – ident: CIT0004 doi: 10.1037/0022-3514.51.6.1173 – volume-title: Statistical strategies for small sample research year: 1999 ident: CIT0069 – ident: CIT0044 doi: 10.1016/j.paid.2019.04.022 – volume-title: Data analysis: A model comparison approach year: 1989 ident: CIT0028 – ident: CIT0057 doi: 10.1002/sim.4780110603 – volume-title: Pwr2ppl: Power analysis for common designs year: 2019 ident: CIT0001 – volume-title: Cross-over trials in clinical research year: 1993 ident: CIT0058 – ident: CIT0013 doi: 10.1037/1082-989X.12.2.121 – ident: CIT0019 doi: 10.1037/0033-2909.83.2.314 – ident: CIT0029 – ident: CIT0002 doi: 10.1027/1864-9335/a000364 – ident: CIT0030 doi: 10.1001/archpsyc.59.10.877 – volume-title: Multilevel modeling methods with introductory and advanced applications year: 2022 ident: CIT0053 – ident: CIT0005 doi: 10.1080/00273171.2010.498292 – ident: CIT0024 doi: 10.1214/10-STS321 – volume-title: Designing experiments and analyzing data: A model comparison perspective year: 2018 ident: CIT0037 – ident: CIT0036 doi: 10.1007/s10964-020-01332-9 – volume-title: Explanation in causal inference: Methods for mediation and interaction year: 2015 ident: CIT0067 – ident: CIT0054 doi: 10.1037/h0035841 – volume-title: Statistical power analysis for the behavioral sciences year: 1988 ident: CIT0009 – ident: CIT0038 doi: 10.1207/s15366359mea0204_1 – ident: CIT0014 doi: 10.1080/10705519709540063 – ident: CIT0042 doi: 10.1016/0167-9473(84)90002-1 – ident: CIT0003 doi: 10.4135/9781483381411 – ident: CIT0055 doi: 10.1198/016214504000001880 – ident: CIT0006 doi: 10.1093/biostatistics/kxv029 – ident: CIT0063 doi: 10.1080/02699931.2019.1634004 – ident: CIT0011 doi: 10.1111/biom.12248 – ident: CIT0012 doi: 10.1201/9780429246593 – ident: CIT0066 doi: 10.1097/EDE.0b013e3181df191c – volume-title: Proceedings of the seventeenth conference on uncertainty in artificial intelligence year: 2001 ident: CIT0045 – ident: CIT0048 doi: 10.3758/BF03206553 – ident: CIT0060 doi: 10.1037/1082-989X.7.4.422 – volume: 1 volume-title: Hierarchical linear models: Applications and data analysis methods year: 2002 ident: CIT0050 – ident: CIT0023 doi: 10.1037/a0020761 – ident: CIT0035 doi: 10.1007/s11121-019-01076-4 – ident: CIT0040 doi: 10.1037/met0000086 – ident: CIT0041 doi: 10.1080/01621459.1992.10476281 – ident: CIT0052 – volume: 11 start-page: e9027 issue: 2 year: 2014 ident: CIT0068 publication-title: Epidemiology, Biostatistics and Public Health – ident: CIT0022 doi: 10.1177/0956797613480187 – ident: CIT0059 doi: 10.1002/pam.10129 – ident: CIT0020 doi: 10.1037/h0023914 – ident: CIT0018 doi: 10.1037/bul0000315 – ident: CIT0070 doi: 10.1073/pnas.1706541114 – ident: CIT0056 doi: 10.1177/1948550617715068 – ident: CIT0027 doi: 10.1037/1082-989X.6.2.115 – ident: CIT0046 doi: 10.1037/h0034731 – ident: CIT0008 doi: 10.31234/osf.io/ck2r5 – ident: CIT0039 – ident: CIT0061 doi: 10.1177/0956797611417632 – ident: CIT0074 doi: 10.1080/00273170903504695 – ident: CIT0031 doi: 10.1207/s15327906mbr3001_1 – ident: CIT0047 doi: 10.1146/annurev-psych-010814-015258 – ident: CIT0034 doi: 10.1177/1088868314542878 – ident: CIT0072 doi: 10.1037/pspa0000132 – ident: CIT0071 doi: 10.1037/a0033820 – ident: CIT0033 doi: 10.1080/02701367.1994.10607641 – ident: CIT0064 doi: 10.18637/jss.v059.i05 – ident: CIT0017 doi: 10.1177/02654075211000135 – volume-title: Practical Statistical Power Analysis Using Webpower and R. year: 2018 ident: CIT0073 doi: 10.35566/power – ident: CIT0065 doi: 10.1080/10705511.2016.1274657 – ident: CIT0032 doi: 10.1037/a0024776 – ident: CIT0043 doi: 10.1037/pspa0000166 – ident: CIT0049 doi: 10.1037/a0020141 – ident: CIT0007 doi: 10.1111/eip.12967 – ident: CIT0051 doi: 10.1097/00001648-199203000-00013 – start-page: 139 volume-title: Statistics in the pharmaceutical industry year: 1981 ident: CIT0015 – ident: CIT0021 doi: 10.1016/j.ausmj.2017.02.001 – ident: CIT0016 doi: 10.1111/j.1467-9280.2007.01882.x – start-page: 473 volume-title: The handbook of multilevel theory, measurement, and analysis year: 2018 ident: CIT0075 – ident: CIT0025 doi: 10.1515/ijb-2014-0057 |
| SSID | ssj0006549 |
| Score | 2.525822 |
| Snippet | Researchers with mediation hypotheses must consider which design to use: within-subject or between-subject? In this paper, I argue that three factors should... |
| SourceID | proquest pubmed crossref informaworld |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 616 |
| SubjectTerms | causal inference Causality Design factors Empirical analysis indirect effect Mediation analysis Monte Carlo simulation power power analysis Statistical power type I error Validity within-subject design |
| Title | Selecting a Within- or Between-Subject Design for Mediation: Validity, Causality, and Statistical Power |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00273171.2022.2077287 https://www.ncbi.nlm.nih.gov/pubmed/35679239 https://www.proquest.com/docview/2827823882 https://www.proquest.com/docview/2674753293 |
| Volume | 58 |
| WOSCitedRecordID | wos000808504800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1532-7906 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006549 issn: 0027-3171 databaseCode: TFW dateStart: 19660101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8QgEJ6o8eDF92N9BROPVqVQKN50dePFjYmvvTW0gG5iumYfJv57B9pt9GA86LFppwWGYb6hwzcAh57STNtcRk5irIr-GE2KuThixsbS8oQb7kKxCdntpr2euq2zCUd1WqWPoV1FFBHWam_cOh9NM-JOAgcLlT66i_1ZKgSIqT9Pjq7fm-Z956lZi0VSA-DY78ZJOj3D89Nbvnmnb9ylPyPQ4Ik6S__Qh2VYrGEoOa_mzQrM2HIVFprV8GMNnu9ChRz0bESTp_74pV9GZDAkF1ViV4Qrjt_CIZchBYRgF8hNKPuBij4jjwjvDQL8I9LWk1HA-kcEG0s8uA3c0Pj1W1-hbR0eOlf37euorsoQFUzxcZQrrQQ1p9QUWlKbC5vkRgQWGqYdhnScUpEWRlqheYpozcbaMVv4hCojnGUbMFcOSrsFRKg4YYlC1FNQbk5ZikKJUui2rSyki1vAp9rIipqy3FfOeM1ow2xaDWPmhzGrh7EFx43YW8XZ8ZuA-qrqbBw2S1xV2SRjv8juTudFVpv_KMM4FpEXw-ilBQfNbTRc_zdGl3YwwWcERnIJQ7jVgs1qPjWtZYnwvI5q-w8N24EFvKySM_kuzI2HE7sH88U7anm4D7Oyl-4HY_kEKKcLXw |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dTxQxEJ8gkMiLIiqeopbER1bp9mvrmyIXDHAx8RTemt62VRKyZ447E_97Z7p7G3ggPOhzd3b7NTO_6U5_A_CGKM18nJgiGYxV0R-jSolUFiLE0kSpZJApF5swo1F1fm6v34WhtEqKoVNLFJFtNSk3HUYvU-LeZRIWbii8K-kyFSLEytyDNYW-lvjzx8Oz3hpr1UHgks7jDF_e4rntNTf80w320tsxaPZFw4f_YxSb8KBDouxDu3UewUpstmCjN4h_HsOPr7lIDjo35tnZxfznRVOw6Yx9bHO7CjQ6dIrDPuUsEIZjYKe58geu9Xv2HRF-QIy_xw784irD_T2GvWWEbzM9NH79CxVpewLfhofjg6OiK8xQ1MLKeTGx3moe9nmoveFxoqOaBJ2JaIRPGNVJznVVBxO1lxUCtlj6JGJNOVVBpyiewmozbeIzYNqWSiiLwKfmMuyLCoWUtei5o6lNKgcgl8vh6o61nIpnXDrek5u20-hoGl03jQN424v9amk77hKw19fazfN5SWqLmzhxh-zOcmO4zgJcOQxlEXwJDGAGsNs3o-7SDxnfxOkCn9EYzCmBiGsA2-2G6nsrlCZqR_v8Hzr2Gu4fjU9P3Mnn0fEL2MCmNldT7sDqfLaIL2G9_o0rPnuVdeYv0HgOoQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RQBUXCrSULQsYiSMpOHbsmFsLrEDAaiVo4WZ5Y5sioSzaBxL_vmMnG7EHxKE9O5P4NTPfOONvAPYCpZlxfZl4ibEq-mNUKebThFmXSsczbrmPxSZkt5vf3alenU04qtMqQwztK6KIaKuDcj9ZP82IO4gcLFSG6C4Nd6kQIObyAywgdBZhk990bhtjLLIaAafhOE7S6SWet14z455myEvfhqDRFXU-_YdBrMByjUPJj2rjrMKcK9dgqTGHL5_h_jqWyEHXRgy5fRj_eSgTMhiSn1VmV4ImJ5zhkJOYA0JwCOQq1v3AlT4ivxHfW0T4--TYTEYR7O8T7CwJ6DaSQ-PXe6FE2xf41Tm9OT5L6rIMScEUHyd9ZZSg9pDawkjq-sJlfSsiDQ0zHmM6TqnICyudMDxHuOZS45krQkaVFd6xdZgvB6XbACJUmrFMIewpKLeHLEehTCn0204W0qct4NPV0EXNWR5KZzxq2lCbVtOowzTqehpb8L0Re6pIO94TUK-XWo_jaYmvSpto9o5se7ovdK3_I42BLEIvhuFLC3abZtTc8DvGlG4wwWcEhnIZQ7zVgq_Vfmp6yzIRiB3Vt3_o2A587J109OV592ITlrClStTkbZgfDyduCxaLZ1zw4XbUmL-GmA1T |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selecting+a+Within-+or+Between-Subject+Design+for+Mediation%3A+Validity%2C+Causality%2C+and+Statistical+Power&rft.jtitle=Multivariate+behavioral+research&rft.au=Montoya%2C+Amanda+K.&rft.date=2023-05-04&rft.issn=0027-3171&rft.eissn=1532-7906&rft.volume=58&rft.issue=3&rft.spage=616&rft.epage=636&rft_id=info:doi/10.1080%2F00273171.2022.2077287&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00273171_2022_2077287 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-3171&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-3171&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-3171&client=summon |