Scene Changes Understanding Framework Based on Graph Convolutional Networks and Swin Transformer Blocks for Monitoring LCLU Using High-Resolution Remote Sensing Images

High-resolution remote sensing images with rich land surface structure can provide data support for accurately understanding more detailed change information of land cover and land use (LCLU) at different times. In this study, we present a novel scene change understanding framework for remote sensin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 14; číslo 15; s. 3709
Hlavní autoři: Yang, Sihan, Song, Fei, Jeon, Gwanggil, Sun, Rui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.08.2022
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract High-resolution remote sensing images with rich land surface structure can provide data support for accurately understanding more detailed change information of land cover and land use (LCLU) at different times. In this study, we present a novel scene change understanding framework for remote sensing which includes scene classification and change detection. To enhance the feature representation of images in scene classification, a robust label semantic relation learning (LSRL) network based on EfficientNet is presented for scene classification. It consists of a semantic relation learning module based on graph convolutional networks and a joint expression learning framework based on similarity. Since the bi-temporal remote sensing image pairs include spectral information in both temporal and spatial dimensions, land cover and land use change monitoring can be improved by using the relationship between different spatial and temporal locations. Therefore, a change detection method based on swin transformer blocks (STB-CD) is presented to obtain contextual relationships between targets. The experimental results on the LEVIR-CD, NWPU-RESISC45, and AID datasets demonstrate the superiority of LSRL and STB-CD over other state-of-the-art methods.
AbstractList High-resolution remote sensing images with rich land surface structure can provide data support for accurately understanding more detailed change information of land cover and land use (LCLU) at different times. In this study, we present a novel scene change understanding framework for remote sensing which includes scene classification and change detection. To enhance the feature representation of images in scene classification, a robust label semantic relation learning (LSRL) network based on EfficientNet is presented for scene classification. It consists of a semantic relation learning module based on graph convolutional networks and a joint expression learning framework based on similarity. Since the bi-temporal remote sensing image pairs include spectral information in both temporal and spatial dimensions, land cover and land use change monitoring can be improved by using the relationship between different spatial and temporal locations. Therefore, a change detection method based on swin transformer blocks (STB-CD) is presented to obtain contextual relationships between targets. The experimental results on the LEVIR-CD, NWPU-RESISC45, and AID datasets demonstrate the superiority of LSRL and STB-CD over other state-of-the-art methods.
Author Jeon, Gwanggil
Yang, Sihan
Sun, Rui
Song, Fei
Author_xml – sequence: 1
  givenname: Sihan
  orcidid: 0000-0001-6773-471X
  surname: Yang
  fullname: Yang, Sihan
– sequence: 2
  givenname: Fei
  orcidid: 0000-0003-0636-8343
  surname: Song
  fullname: Song, Fei
– sequence: 3
  givenname: Gwanggil
  orcidid: 0000-0002-0651-4278
  surname: Jeon
  fullname: Jeon, Gwanggil
– sequence: 4
  givenname: Rui
  surname: Sun
  fullname: Sun, Rui
BookMark eNptksFuEzEQhleoSJTSC09giQtCWvCuvbH3SCPaRgpFapqzNesdJw67drAdKp6I18TbFFFV-OLxzPf_8ozmdXHivMOieFvRj4y19FOIFa8aJmj7ojitqahLXrf1yZP4VXEe447mw1jVUn5a_F5pdEjmW3AbjGTtegwxgeut25DLACPe-_CdXEDEnnhHrgLst2Tu3U8_HJL1DgZyg2mCIskysrq3jtwFcNH4MGIgF4PXuZZf5Kt3NvkwWS_nyzVZxym8tptteYvx0ZDc4ugTkhW6h_JihPyzN8VLA0PE88f7rFhffrmbX5fLb1eL-edlqVnLU9lRIVsK3HRcUKBCdNjXDXQItea9MVJL0TNom7YFprt6ZoyQKARALztqBDsrFkff3sNO7YMdIfxSHqx6SPiwURCS1QMqyZlmGgVrhODAqRRd1WjdmB4MrznLXu-PXvvgfxwwJjXaqHEYwKE_RFWLSrIZ57Mmo--eoTt_CHm4E0WpmHEhZabokdLBxxjQKG0TTENLAeygKqqmRVD_FiFLPjyT_O3pP_AfQY23rg
CitedBy_id crossref_primary_10_1080_01431161_2023_2261153
crossref_primary_10_1109_JSTARS_2023_3298492
crossref_primary_10_3390_su16010274
crossref_primary_10_1109_TGRS_2024_3422007
crossref_primary_10_3390_app13063987
crossref_primary_10_1016_j_cosrev_2023_100596
crossref_primary_10_3390_sym17071002
crossref_primary_10_1016_j_rsase_2025_101542
crossref_primary_10_1109_TGRS_2025_3540080
crossref_primary_10_1109_ACCESS_2023_3333360
Cites_doi 10.1016/j.scitotenv.2020.136763
10.1109/LGRS.2020.2968550
10.1109/TGRS.2017.2702596
10.1080/22797254.2020.1868273
10.1109/TGRS.2018.2886643
10.3390/rs14010009
10.3390/rs11212504
10.1109/TGRS.2017.2685945
10.3390/rs12101662
10.1016/j.rse.2017.09.022
10.1109/JSTARS.2020.2988477
10.3390/s20174761
10.1109/JPROC.2017.2675998
10.1109/LGRS.2022.3165885
10.1109/ACCESS.2021.3051085
10.1023/B:VISI.0000029664.99615.94
10.1007/BF00130487
10.1109/TGRS.2020.2977248
10.1109/ACCESS.2018.2883254
10.3390/rs13030433
10.1109/LRA.2020.3003290
10.1109/ICCV48922.2021.00986
10.1109/JSTARS.2021.3074508
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14153709
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_843c3ce735774a4087b15cc5fdaf4243
10_3390_rs14153709
GeographicLocations Siam
GeographicLocations_xml – name: Siam
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c394t-b07890a4fb470a077bed25abea2c4dff8c87d3a9599a3cb26ff78e77aad8b0f73
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000839814800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Tue Oct 14 18:47:55 EDT 2025
Fri Sep 05 09:54:12 EDT 2025
Thu Sep 11 11:42:21 EDT 2025
Sat Nov 29 07:16:43 EST 2025
Tue Nov 18 20:54:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-b07890a4fb470a077bed25abea2c4dff8c87d3a9599a3cb26ff78e77aad8b0f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0636-8343
0000-0002-0651-4278
0000-0001-6773-471X
OpenAccessLink https://doaj.org/article/843c3ce735774a4087b15cc5fdaf4243
PQID 2700764788
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_843c3ce735774a4087b15cc5fdaf4243
proquest_miscellaneous_2718364465
proquest_journals_2700764788
crossref_citationtrail_10_3390_rs14153709
crossref_primary_10_3390_rs14153709
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Tian (ref_26) 2021; 14
Song (ref_8) 2022; 19
Lu (ref_6) 2017; 55
ref_12
ref_11
ref_17
Li (ref_22) 2020; 13
ref_15
Zhang (ref_1) 2017; 201
Shi (ref_16) 2021; 60
Cheng (ref_18) 2017; 105
Xia (ref_19) 2017; 55
Lv (ref_14) 2020; 58
Swain (ref_9) 1991; 7
Lowe (ref_10) 2004; 60
Qiu (ref_4) 2020; 5
Song (ref_7) 2018; 6
ref_21
Saha (ref_13) 2019; 57
ref_20
Alhichri (ref_24) 2021; 9
Gao (ref_25) 2021; 54
ref_3
Cao (ref_23) 2020; 18
ref_27
Yang (ref_2) 2020; 715
ref_5
References_xml – volume: 715
  start-page: 136763
  year: 2020
  ident: ref_2
  article-title: Understanding the changes in spatial fairness of urban greenery using time-series remote sensing images: A case study of Guangdong-Hong Kong-Macao Greater Bay
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.136763
– volume: 18
  start-page: 43
  year: 2020
  ident: ref_23
  article-title: Self-attention-based deep feature fusion for remote sensing scene classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2968550
– ident: ref_5
– volume: 55
  start-page: 5148
  year: 2017
  ident: ref_6
  article-title: Remote sensing scene classification by unsupervised representation learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2702596
– volume: 54
  start-page: 141
  year: 2021
  ident: ref_25
  article-title: Remote sensing scene classification based on high-order graph convolutional network
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2020.1868273
– ident: ref_11
– volume: 57
  start-page: 3677
  year: 2019
  ident: ref_13
  article-title: Unsupervised deep change vector analysis for multiple-change detection in VHR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2886643
– ident: ref_27
  doi: 10.3390/rs14010009
– ident: ref_21
  doi: 10.3390/rs11212504
– volume: 55
  start-page: 3965
  year: 2017
  ident: ref_19
  article-title: AID: A benchmark data set for performance evaluation of aerial scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2685945
– ident: ref_20
  doi: 10.3390/rs12101662
– volume: 201
  start-page: 243
  year: 2017
  ident: ref_1
  article-title: Separate segmentation of multi-temporal high-resolution remote sensing images for object-based change detection in urban area
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.09.022
– volume: 13
  start-page: 1986
  year: 2020
  ident: ref_22
  article-title: Classification of high-spatial-resolution remote sensing scenes method using transfer learning and deep convolutional neural network
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.2988477
– ident: ref_3
  doi: 10.3390/s20174761
– volume: 105
  start-page: 1865
  year: 2017
  ident: ref_18
  article-title: Remote sensing image scene classification: Benchmark and state of the art
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2017.2675998
– volume: 19
  start-page: 6508505
  year: 2022
  ident: ref_8
  article-title: MSTDSNet-CD: Multiscale Swin Transformer and Deeply Supervised Network for Change Detection of the Fast-Growing Urban Regions
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2022.3165885
– volume: 9
  start-page: 14078
  year: 2021
  ident: ref_24
  article-title: Classification of remote sensing images using EfficientNet-B3 CNN model with attention
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3051085
– volume: 60
  start-page: 91
  year: 2004
  ident: ref_10
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 7
  start-page: 11
  year: 1991
  ident: ref_9
  article-title: Color indexing
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF00130487
– volume: 58
  start-page: 6524
  year: 2020
  ident: ref_14
  article-title: Object-oriented key point vector distance for binary land cover change detection using VHR remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2977248
– ident: ref_15
– volume: 60
  start-page: 5604816
  year: 2021
  ident: ref_16
  article-title: A deeply supervised attention metric-Based network and an open aerial image dataset for remote sensing change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 6
  start-page: 77494
  year: 2018
  ident: ref_7
  article-title: Multi-scale feature based land cover change detection in mountainous terrain using multi-temporal and multi-sensor remote sensing images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2883254
– ident: ref_12
  doi: 10.3390/rs13030433
– volume: 5
  start-page: 4743
  year: 2020
  ident: ref_4
  article-title: 3d-aware scene change captioning from multiview images
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.3003290
– ident: ref_17
  doi: 10.1109/ICCV48922.2021.00986
– volume: 14
  start-page: 5501
  year: 2021
  ident: ref_26
  article-title: SEMSDNet: A multiscale dense network with attention for remote sensing scene classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3074508
SSID ssj0000331904
Score 2.3825126
Snippet High-resolution remote sensing images with rich land surface structure can provide data support for accurately understanding more detailed change information...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3709
SubjectTerms Algorithms
Artificial neural networks
Change detection
Classification
data collection
Deep learning
High resolution
high-resolution remote sensing images
Image classification
Image enhancement
Image resolution
label semantic relation
Land cover
Land use
land use change
LCLU
Learning
Monitoring
Neural networks
Remote sensing
Remote sensing systems
scene change understanding
Semantic relations
Semantics
Surface structure
transformer
Transformers
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9QwEA56Cvrib3H1lBF98SFcN0mb9EncxVVhWcS9lXsrSZqcB9qe7d6Jf5H_ppk03TtQfPGxzSQUZvJNOvlmhpCXzpaFcYxTz1RNBVcF1b5g1JVemNxNMxPToz8v5Wqljo7Kjyng1ida5YiJEajr1mKM_AAvSCUmRqrXp98pdo3C29XUQuMquYZVEqaRurfexVgyHgwsE0NVUh7-7g-6fho8FpfIP7zkh2K5_j_QOLqYxe3__bg75FY6XMKbwRrukiuuuUdupD7nX37eJ7_WNmAbDCkFPWwuZ7bAYuRpwSy4thraBt7hPJi3zXmy0LD6aiCO9xCmwfrHSQOH4-HXdTALzjGMhScY4ALjhrCcLzcQ2QmAxBKKlwbDgvDJBWNxsEYifRj-8C0AXP-AbBZvD-fvaWrVQC0vxZYarFqfaeGNkJnOpDSuZrk2TjMrau-VVbLmuszLUnNrWOG9VE5KrWtlMi_5Q7LXtI17RCAvnC64LZT1UqhcGKYyq2zJAlwo5d2EvBoVV9lUxxzbaXytwv8MKrm6UPKEvNjJng7VO_4qNUP97ySw4nZ80XbHVdrAlRLccuskz8OBWYtMSTPNrc19rb1ggk_I_mgaVYKBvrqwiwl5vhsOGxhvZXTj2jOUCahaYN26x_9e4gm5yTD3IrIP98netjtzT8l1e7496btn0fJ_AxDbEUQ
  priority: 102
  providerName: ProQuest
Title Scene Changes Understanding Framework Based on Graph Convolutional Networks and Swin Transformer Blocks for Monitoring LCLU Using High-Resolution Remote Sensing Images
URI https://www.proquest.com/docview/2700764788
https://www.proquest.com/docview/2718364465
https://doaj.org/article/843c3ce735774a4087b15cc5fdaf4243
Volume 14
WOSCitedRecordID wos000839814800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQiwSXiqdIKdEguHBYdWN7194jiRKoFKJV06DCZWV7bbVSu0HZtIhL_w5_k5ndTYgEEhculnb9kOUZz_jxzWfG3nqXpdZzEQWuy0gKnUYmpDzyWZA28YPYNuHRn6dqNtPn51m-89QXYcJaeuB24I61FE44r0SCCxUjY63sIHEuCaUJksuG5zNW2c5mqrHBAlUrli0fqcB9_fGqHqCvEoqQhzseqCHq_8MON85l8ogddKtCeN_25jG756sn7EH3QPnFj6fs59yhUYI2FqCGxW5ICkw2ACsYok8qYVnBB6oHo2V126kWtj5rEd81YDWYf7-s4GyzavUrGKJXwzz8gnae04EfTEfTBTSwAiBESESn_W2DcOpRyh7mhIDH7JNrtEz1M7aYjM9GH6PujYXIiUyuI0t087GRwUoVm1gp60ueGOsNd7IMQTutSmGyJMuMcJanISjtlTKm1DYOSjxne9Wy8i8YJKk3qXCpdkFJnUjLdey0yzjOc62D77F3m3EvXEdATu9gXBW4ESEZFb9l1GNvtmW_tbQbfy01JPFtSxBVdvMDFajoFKj4lwL12NFG-EU3f-uCruMVheHqHnu9zcaZR9cppvLLGyqD5jAlwrnD_9GPl-whp9CKBlx4xPbWqxv_it13t-vLetVn-8PxLD_tN2reJ4TqnNK7MaZ58hXz85NP-Zdf8w0JSQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHdK48I0oDDACDhyipbYTOweEaKGsWldVtEXjFGzHhkmQjKbbtL-IG38jfvnoJoG47cAx8fM7JD__nu33BfDcmiTWlrLAUZkFnMk4UC6mgU0c15HthbpKj_44FpOJPDhIphvwq82FwbDKlhMros4Kg3fkO-ggFZgYKV8f_QiwaxR6V9sWGjUs9uzZqT-yla9Gb_3_fUHp8N18sBs0XQUCwxK-CjQWWA8Vd5qLUIVCaJvRSGmrqOGZc9JIkTGVREmimNE0dk5IK4RSmdShE8zrvQKbHMHegc3paH_6aX2rEzIP6ZDXdVAZS8KdZdnzNpIJjHi8YPmqBgF_8H9l1IY3_rfPcROuN9tn8qbG-y3YsPlt2Go6uX89uwM_Z8azN6mTJkqyuJi7Q4ZtJBrpe-OdkSIn73EeGRT5SbMGvfZJHRpfEj-NzE4PczJvt_d2Sfre_Psx_0RqQsSbUTIejBekir8gGDoToFukVkg-WL8cLJlhqoAfHn33FF7ehcWlfKd70MmL3N4HEsVWxczE0jjBZcQ1laGRJqGeEKV0tgsvW6CkpqnUjg1DvqX-xIagSs9B1YVna9mjuj7JX6X6iLe1BNYUr14Uyy9pQ1Gp5MwwYwWL_JFA8VAK3YuMiVymHKecdWG7hWLaEF2ZnuOwC0_Xw56i0O-kclsco4y3GzFW5nvwbxVPYGt3vj9Ox6PJ3kO4RjHTpIq13IbOanlsH8FVc7I6LJePm3VH4PNlY_s3q3Vy8w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQcCFN2KhgBFw4BBt1nZi54AQu2Vh1dVqxXZR1UuwHRsqQVKSbav-Iv4Dv46ZPLaVQNx64Jj4cUg-f2N7vpkh5IWzSWwc44FnKgsEV3GgfcwCl3hhIjcITR0e_WkqZzO1t5fMN8ivLhYGZZUdJ9ZEnRUW78j76CCVGBip-r6VRcy3x28OfwRYQQo9rV05jQYiO-70BI5v1evJNvzrl4yN3-2OPgRthYHA8kSsAoPJ1kMtvBEy1KGUxmUs0sZpZkXmvbJKZlwnUZJobg2LvZfKSal1pkzoJYd5L5HLEs6YKCecR_vr-52QA7hD0WRE5TwJ-2U1AGvJJWofz9nAulTAH5agNm_jm__zh7lFbrSbavq2WQW3yYbL75BrbX33r6d3yc-FBU6nTShFRZfnI3rouNOn0SGY9IwWOX2P4-ioyI_blQmzzxrBfEVhGF2cHOR0t9v0u5IOYVMAbfBEG5rE-1I6HU2XtFZlUBTUBOgsaSakHx0sEkcXGEAAzZPvQOzVPbK8kO90n2zmRe4eEBrFTsfcxsp6KVQkDFOhVTZhQJNKedcjrzrQpLbN345lRL6lcI5DgKVnAOuR5-u-h03Wkr_2GiL21j0w03j9oii_pC1xpUpwy62TPIKDghahkmYQWRv5THvBBO-RrQ6WaUt_VXqGyR55tm4G4kJvlM5dcYR9wJrEmK_v4b-neEquAqDT6WS284hcZxh-Ugswt8jmqjxyj8kVe7w6qMon9QKk5PNFA_s3GVF6Vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scene+Changes+Understanding+Framework+Based+on+Graph+Convolutional+Networks+and+Swin+Transformer+Blocks+for+Monitoring+LCLU+Using+High-Resolution+Remote+Sensing+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Yang%2C+Sihan&rft.au=Song%2C+Fei&rft.au=Jeon%2C+Gwanggil&rft.au=Sun%2C+Rui&rft.date=2022-08-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=15&rft.spage=3709&rft_id=info:doi/10.3390%2Frs14153709&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14153709
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon