Scene Changes Understanding Framework Based on Graph Convolutional Networks and Swin Transformer Blocks for Monitoring LCLU Using High-Resolution Remote Sensing Images
High-resolution remote sensing images with rich land surface structure can provide data support for accurately understanding more detailed change information of land cover and land use (LCLU) at different times. In this study, we present a novel scene change understanding framework for remote sensin...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 14; číslo 15; s. 3709 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.08.2022
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | High-resolution remote sensing images with rich land surface structure can provide data support for accurately understanding more detailed change information of land cover and land use (LCLU) at different times. In this study, we present a novel scene change understanding framework for remote sensing which includes scene classification and change detection. To enhance the feature representation of images in scene classification, a robust label semantic relation learning (LSRL) network based on EfficientNet is presented for scene classification. It consists of a semantic relation learning module based on graph convolutional networks and a joint expression learning framework based on similarity. Since the bi-temporal remote sensing image pairs include spectral information in both temporal and spatial dimensions, land cover and land use change monitoring can be improved by using the relationship between different spatial and temporal locations. Therefore, a change detection method based on swin transformer blocks (STB-CD) is presented to obtain contextual relationships between targets. The experimental results on the LEVIR-CD, NWPU-RESISC45, and AID datasets demonstrate the superiority of LSRL and STB-CD over other state-of-the-art methods. |
|---|---|
| AbstractList | High-resolution remote sensing images with rich land surface structure can provide data support for accurately understanding more detailed change information of land cover and land use (LCLU) at different times. In this study, we present a novel scene change understanding framework for remote sensing which includes scene classification and change detection. To enhance the feature representation of images in scene classification, a robust label semantic relation learning (LSRL) network based on EfficientNet is presented for scene classification. It consists of a semantic relation learning module based on graph convolutional networks and a joint expression learning framework based on similarity. Since the bi-temporal remote sensing image pairs include spectral information in both temporal and spatial dimensions, land cover and land use change monitoring can be improved by using the relationship between different spatial and temporal locations. Therefore, a change detection method based on swin transformer blocks (STB-CD) is presented to obtain contextual relationships between targets. The experimental results on the LEVIR-CD, NWPU-RESISC45, and AID datasets demonstrate the superiority of LSRL and STB-CD over other state-of-the-art methods. |
| Author | Jeon, Gwanggil Yang, Sihan Sun, Rui Song, Fei |
| Author_xml | – sequence: 1 givenname: Sihan orcidid: 0000-0001-6773-471X surname: Yang fullname: Yang, Sihan – sequence: 2 givenname: Fei orcidid: 0000-0003-0636-8343 surname: Song fullname: Song, Fei – sequence: 3 givenname: Gwanggil orcidid: 0000-0002-0651-4278 surname: Jeon fullname: Jeon, Gwanggil – sequence: 4 givenname: Rui surname: Sun fullname: Sun, Rui |
| BookMark | eNptksFuEzEQhleoSJTSC09giQtCWvCuvbH3SCPaRgpFapqzNesdJw67drAdKp6I18TbFFFV-OLxzPf_8ozmdXHivMOieFvRj4y19FOIFa8aJmj7ojitqahLXrf1yZP4VXEe447mw1jVUn5a_F5pdEjmW3AbjGTtegwxgeut25DLACPe-_CdXEDEnnhHrgLst2Tu3U8_HJL1DgZyg2mCIskysrq3jtwFcNH4MGIgF4PXuZZf5Kt3NvkwWS_nyzVZxym8tptteYvx0ZDc4ugTkhW6h_JihPyzN8VLA0PE88f7rFhffrmbX5fLb1eL-edlqVnLU9lRIVsK3HRcUKBCdNjXDXQItea9MVJL0TNom7YFprt6ZoyQKARALztqBDsrFkff3sNO7YMdIfxSHqx6SPiwURCS1QMqyZlmGgVrhODAqRRd1WjdmB4MrznLXu-PXvvgfxwwJjXaqHEYwKE_RFWLSrIZ57Mmo--eoTt_CHm4E0WpmHEhZabokdLBxxjQKG0TTENLAeygKqqmRVD_FiFLPjyT_O3pP_AfQY23rg |
| CitedBy_id | crossref_primary_10_1080_01431161_2023_2261153 crossref_primary_10_1109_JSTARS_2023_3298492 crossref_primary_10_3390_su16010274 crossref_primary_10_1109_TGRS_2024_3422007 crossref_primary_10_3390_app13063987 crossref_primary_10_1016_j_cosrev_2023_100596 crossref_primary_10_3390_sym17071002 crossref_primary_10_1016_j_rsase_2025_101542 crossref_primary_10_1109_TGRS_2025_3540080 crossref_primary_10_1109_ACCESS_2023_3333360 |
| Cites_doi | 10.1016/j.scitotenv.2020.136763 10.1109/LGRS.2020.2968550 10.1109/TGRS.2017.2702596 10.1080/22797254.2020.1868273 10.1109/TGRS.2018.2886643 10.3390/rs14010009 10.3390/rs11212504 10.1109/TGRS.2017.2685945 10.3390/rs12101662 10.1016/j.rse.2017.09.022 10.1109/JSTARS.2020.2988477 10.3390/s20174761 10.1109/JPROC.2017.2675998 10.1109/LGRS.2022.3165885 10.1109/ACCESS.2021.3051085 10.1023/B:VISI.0000029664.99615.94 10.1007/BF00130487 10.1109/TGRS.2020.2977248 10.1109/ACCESS.2018.2883254 10.3390/rs13030433 10.1109/LRA.2020.3003290 10.1109/ICCV48922.2021.00986 10.1109/JSTARS.2021.3074508 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs14153709 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_843c3ce735774a4087b15cc5fdaf4243 10_3390_rs14153709 |
| GeographicLocations | Siam |
| GeographicLocations_xml | – name: Siam |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO 7S9 L.6 |
| ID | FETCH-LOGICAL-c394t-b07890a4fb470a077bed25abea2c4dff8c87d3a9599a3cb26ff78e77aad8b0f73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000839814800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 18:47:55 EDT 2025 Fri Sep 05 09:54:12 EDT 2025 Thu Sep 11 11:42:21 EDT 2025 Sat Nov 29 07:16:43 EST 2025 Tue Nov 18 20:54:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-b07890a4fb470a077bed25abea2c4dff8c87d3a9599a3cb26ff78e77aad8b0f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0636-8343 0000-0002-0651-4278 0000-0001-6773-471X |
| OpenAccessLink | https://doaj.org/article/843c3ce735774a4087b15cc5fdaf4243 |
| PQID | 2700764788 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_843c3ce735774a4087b15cc5fdaf4243 proquest_miscellaneous_2718364465 proquest_journals_2700764788 crossref_citationtrail_10_3390_rs14153709 crossref_primary_10_3390_rs14153709 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Tian (ref_26) 2021; 14 Song (ref_8) 2022; 19 Lu (ref_6) 2017; 55 ref_12 ref_11 ref_17 Li (ref_22) 2020; 13 ref_15 Zhang (ref_1) 2017; 201 Shi (ref_16) 2021; 60 Cheng (ref_18) 2017; 105 Xia (ref_19) 2017; 55 Lv (ref_14) 2020; 58 Swain (ref_9) 1991; 7 Lowe (ref_10) 2004; 60 Qiu (ref_4) 2020; 5 Song (ref_7) 2018; 6 ref_21 Saha (ref_13) 2019; 57 ref_20 Alhichri (ref_24) 2021; 9 Gao (ref_25) 2021; 54 ref_3 Cao (ref_23) 2020; 18 ref_27 Yang (ref_2) 2020; 715 ref_5 |
| References_xml | – volume: 715 start-page: 136763 year: 2020 ident: ref_2 article-title: Understanding the changes in spatial fairness of urban greenery using time-series remote sensing images: A case study of Guangdong-Hong Kong-Macao Greater Bay publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136763 – volume: 18 start-page: 43 year: 2020 ident: ref_23 article-title: Self-attention-based deep feature fusion for remote sensing scene classification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.2968550 – ident: ref_5 – volume: 55 start-page: 5148 year: 2017 ident: ref_6 article-title: Remote sensing scene classification by unsupervised representation learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2702596 – volume: 54 start-page: 141 year: 2021 ident: ref_25 article-title: Remote sensing scene classification based on high-order graph convolutional network publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2020.1868273 – ident: ref_11 – volume: 57 start-page: 3677 year: 2019 ident: ref_13 article-title: Unsupervised deep change vector analysis for multiple-change detection in VHR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2886643 – ident: ref_27 doi: 10.3390/rs14010009 – ident: ref_21 doi: 10.3390/rs11212504 – volume: 55 start-page: 3965 year: 2017 ident: ref_19 article-title: AID: A benchmark data set for performance evaluation of aerial scene classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2685945 – ident: ref_20 doi: 10.3390/rs12101662 – volume: 201 start-page: 243 year: 2017 ident: ref_1 article-title: Separate segmentation of multi-temporal high-resolution remote sensing images for object-based change detection in urban area publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.09.022 – volume: 13 start-page: 1986 year: 2020 ident: ref_22 article-title: Classification of high-spatial-resolution remote sensing scenes method using transfer learning and deep convolutional neural network publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.2988477 – ident: ref_3 doi: 10.3390/s20174761 – volume: 105 start-page: 1865 year: 2017 ident: ref_18 article-title: Remote sensing image scene classification: Benchmark and state of the art publication-title: Proc. IEEE doi: 10.1109/JPROC.2017.2675998 – volume: 19 start-page: 6508505 year: 2022 ident: ref_8 article-title: MSTDSNet-CD: Multiscale Swin Transformer and Deeply Supervised Network for Change Detection of the Fast-Growing Urban Regions publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2022.3165885 – volume: 9 start-page: 14078 year: 2021 ident: ref_24 article-title: Classification of remote sensing images using EfficientNet-B3 CNN model with attention publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3051085 – volume: 60 start-page: 91 year: 2004 ident: ref_10 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 7 start-page: 11 year: 1991 ident: ref_9 article-title: Color indexing publication-title: Int. J. Comput. Vis. doi: 10.1007/BF00130487 – volume: 58 start-page: 6524 year: 2020 ident: ref_14 article-title: Object-oriented key point vector distance for binary land cover change detection using VHR remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2977248 – ident: ref_15 – volume: 60 start-page: 5604816 year: 2021 ident: ref_16 article-title: A deeply supervised attention metric-Based network and an open aerial image dataset for remote sensing change detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 6 start-page: 77494 year: 2018 ident: ref_7 article-title: Multi-scale feature based land cover change detection in mountainous terrain using multi-temporal and multi-sensor remote sensing images publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2883254 – ident: ref_12 doi: 10.3390/rs13030433 – volume: 5 start-page: 4743 year: 2020 ident: ref_4 article-title: 3d-aware scene change captioning from multiview images publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.3003290 – ident: ref_17 doi: 10.1109/ICCV48922.2021.00986 – volume: 14 start-page: 5501 year: 2021 ident: ref_26 article-title: SEMSDNet: A multiscale dense network with attention for remote sensing scene classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3074508 |
| SSID | ssj0000331904 |
| Score | 2.3825126 |
| Snippet | High-resolution remote sensing images with rich land surface structure can provide data support for accurately understanding more detailed change information... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 3709 |
| SubjectTerms | Algorithms Artificial neural networks Change detection Classification data collection Deep learning High resolution high-resolution remote sensing images Image classification Image enhancement Image resolution label semantic relation Land cover Land use land use change LCLU Learning Monitoring Neural networks Remote sensing Remote sensing systems scene change understanding Semantic relations Semantics Surface structure transformer Transformers |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fi9QwEA56Cvrib3H1lBF98SFcN0mb9EncxVVhWcS9lXsrSZqcB9qe7d6Jf5H_ppk03TtQfPGxzSQUZvJNOvlmhpCXzpaFcYxTz1RNBVcF1b5g1JVemNxNMxPToz8v5Wqljo7Kjyng1ida5YiJEajr1mKM_AAvSCUmRqrXp98pdo3C29XUQuMquYZVEqaRurfexVgyHgwsE0NVUh7-7g-6fho8FpfIP7zkh2K5_j_QOLqYxe3__bg75FY6XMKbwRrukiuuuUdupD7nX37eJ7_WNmAbDCkFPWwuZ7bAYuRpwSy4thraBt7hPJi3zXmy0LD6aiCO9xCmwfrHSQOH4-HXdTALzjGMhScY4ALjhrCcLzcQ2QmAxBKKlwbDgvDJBWNxsEYifRj-8C0AXP-AbBZvD-fvaWrVQC0vxZYarFqfaeGNkJnOpDSuZrk2TjMrau-VVbLmuszLUnNrWOG9VE5KrWtlMi_5Q7LXtI17RCAvnC64LZT1UqhcGKYyq2zJAlwo5d2EvBoVV9lUxxzbaXytwv8MKrm6UPKEvNjJng7VO_4qNUP97ySw4nZ80XbHVdrAlRLccuskz8OBWYtMSTPNrc19rb1ggk_I_mgaVYKBvrqwiwl5vhsOGxhvZXTj2jOUCahaYN26x_9e4gm5yTD3IrIP98netjtzT8l1e7496btn0fJ_AxDbEUQ priority: 102 providerName: ProQuest |
| Title | Scene Changes Understanding Framework Based on Graph Convolutional Networks and Swin Transformer Blocks for Monitoring LCLU Using High-Resolution Remote Sensing Images |
| URI | https://www.proquest.com/docview/2700764788 https://www.proquest.com/docview/2718364465 https://doaj.org/article/843c3ce735774a4087b15cc5fdaf4243 |
| Volume | 14 |
| WOSCitedRecordID | wos000839814800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQiwSXiqdIKdEguHBYdWN7194jiRKoFKJV06DCZWV7bbVSu0HZtIhL_w5_k5ndTYgEEhculnb9kOUZz_jxzWfG3nqXpdZzEQWuy0gKnUYmpDzyWZA28YPYNuHRn6dqNtPn51m-89QXYcJaeuB24I61FE44r0SCCxUjY63sIHEuCaUJksuG5zNW2c5mqrHBAlUrli0fqcB9_fGqHqCvEoqQhzseqCHq_8MON85l8ogddKtCeN_25jG756sn7EH3QPnFj6fs59yhUYI2FqCGxW5ICkw2ACsYok8qYVnBB6oHo2V126kWtj5rEd81YDWYf7-s4GyzavUrGKJXwzz8gnae04EfTEfTBTSwAiBESESn_W2DcOpRyh7mhIDH7JNrtEz1M7aYjM9GH6PujYXIiUyuI0t087GRwUoVm1gp60ueGOsNd7IMQTutSmGyJMuMcJanISjtlTKm1DYOSjxne9Wy8i8YJKk3qXCpdkFJnUjLdey0yzjOc62D77F3m3EvXEdATu9gXBW4ESEZFb9l1GNvtmW_tbQbfy01JPFtSxBVdvMDFajoFKj4lwL12NFG-EU3f-uCruMVheHqHnu9zcaZR9cppvLLGyqD5jAlwrnD_9GPl-whp9CKBlx4xPbWqxv_it13t-vLetVn-8PxLD_tN2reJ4TqnNK7MaZ58hXz85NP-Zdf8w0JSQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHdK48I0oDDACDhyipbYTOweEaKGsWldVtEXjFGzHhkmQjKbbtL-IG38jfvnoJoG47cAx8fM7JD__nu33BfDcmiTWlrLAUZkFnMk4UC6mgU0c15HthbpKj_44FpOJPDhIphvwq82FwbDKlhMros4Kg3fkO-ggFZgYKV8f_QiwaxR6V9sWGjUs9uzZqT-yla9Gb_3_fUHp8N18sBs0XQUCwxK-CjQWWA8Vd5qLUIVCaJvRSGmrqOGZc9JIkTGVREmimNE0dk5IK4RSmdShE8zrvQKbHMHegc3paH_6aX2rEzIP6ZDXdVAZS8KdZdnzNpIJjHi8YPmqBgF_8H9l1IY3_rfPcROuN9tn8qbG-y3YsPlt2Go6uX89uwM_Z8azN6mTJkqyuJi7Q4ZtJBrpe-OdkSIn73EeGRT5SbMGvfZJHRpfEj-NzE4PczJvt_d2Sfre_Psx_0RqQsSbUTIejBekir8gGDoToFukVkg-WL8cLJlhqoAfHn33FF7ehcWlfKd70MmL3N4HEsVWxczE0jjBZcQ1laGRJqGeEKV0tgsvW6CkpqnUjg1DvqX-xIagSs9B1YVna9mjuj7JX6X6iLe1BNYUr14Uyy9pQ1Gp5MwwYwWL_JFA8VAK3YuMiVymHKecdWG7hWLaEF2ZnuOwC0_Xw56i0O-kclsco4y3GzFW5nvwbxVPYGt3vj9Ox6PJ3kO4RjHTpIq13IbOanlsH8FVc7I6LJePm3VH4PNlY_s3q3Vy8w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQcCFN2KhgBFw4BBt1nZi54AQu2Vh1dVqxXZR1UuwHRsqQVKSbav-Iv4Dv46ZPLaVQNx64Jj4cUg-f2N7vpkh5IWzSWwc44FnKgsEV3GgfcwCl3hhIjcITR0e_WkqZzO1t5fMN8ivLhYGZZUdJ9ZEnRUW78j76CCVGBip-r6VRcy3x28OfwRYQQo9rV05jQYiO-70BI5v1evJNvzrl4yN3-2OPgRthYHA8kSsAoPJ1kMtvBEy1KGUxmUs0sZpZkXmvbJKZlwnUZJobg2LvZfKSal1pkzoJYd5L5HLEs6YKCecR_vr-52QA7hD0WRE5TwJ-2U1AGvJJWofz9nAulTAH5agNm_jm__zh7lFbrSbavq2WQW3yYbL75BrbX33r6d3yc-FBU6nTShFRZfnI3rouNOn0SGY9IwWOX2P4-ioyI_blQmzzxrBfEVhGF2cHOR0t9v0u5IOYVMAbfBEG5rE-1I6HU2XtFZlUBTUBOgsaSakHx0sEkcXGEAAzZPvQOzVPbK8kO90n2zmRe4eEBrFTsfcxsp6KVQkDFOhVTZhQJNKedcjrzrQpLbN345lRL6lcI5DgKVnAOuR5-u-h03Wkr_2GiL21j0w03j9oii_pC1xpUpwy62TPIKDghahkmYQWRv5THvBBO-RrQ6WaUt_VXqGyR55tm4G4kJvlM5dcYR9wJrEmK_v4b-neEquAqDT6WS284hcZxh-Ugswt8jmqjxyj8kVe7w6qMon9QKk5PNFA_s3GVF6Vg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scene+Changes+Understanding+Framework+Based+on+Graph+Convolutional+Networks+and+Swin+Transformer+Blocks+for+Monitoring+LCLU+Using+High-Resolution+Remote+Sensing+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Yang%2C+Sihan&rft.au=Song%2C+Fei&rft.au=Jeon%2C+Gwanggil&rft.au=Sun%2C+Rui&rft.date=2022-08-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=15&rft.spage=3709&rft_id=info:doi/10.3390%2Frs14153709&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14153709 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |