Deep Learning Based Retrieval of Forest Aboveground Biomass from Combined LiDAR and Landsat 8 Data

Estimation of forest aboveground biomass (AGB) is crucial for various technical and scientific applications, ranging from regional carbon and bioenergy policies to sustainable forest management. However, passive optical remote sensing, which is the most widely used remote sensing data for retrieving...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 11; číslo 12; s. 1459
Hlavní autoři: Zhang, Linjing, Shao, Zhenfeng, Liu, Jianchen, Cheng, Qimin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 20.06.2019
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Estimation of forest aboveground biomass (AGB) is crucial for various technical and scientific applications, ranging from regional carbon and bioenergy policies to sustainable forest management. However, passive optical remote sensing, which is the most widely used remote sensing data for retrieving vegetation parameters, is constrained by spectral saturation problems and cloud cover. On the other hand, LiDAR data, which have been extensively used to estimate forest structure attributes, cannot provide sufficient spectral information of vegetation canopies. Thus, this study aimed to develop a novel synergistic approach to estimating biomass by integrating LiDAR data with Landsat 8 imagery through a deep learning-based workflow. First the relationships between biomass and spectral vegetation indices (SVIs) and LiDAR metrics were separately investigated. Next, two groups of combined optical and LiDAR indices (i.e., COLI1 and COLI2) were designed and explored to identify their performances in biomass estimation. Finally, five prediction models, including K-nearest Neighbor, Random Forest, Support Vector Regression, the deep learning model, i.e., Stacked Sparse Autoencoder network (SSAE), and multiple stepwise linear regressions, were individually used to estimate biomass with input variables of different scenarios, i.e., (i) all the COLI1 (ACOLI1), (ii) all the COLI2 (ACOLI2), (iii) ACOLI1 and all the optical (AO) and LiDAR variables (AL), and (iv) ACOLI2, AO and AL. Results showed that univariate models with the combined optical and LiDAR indices as explanatory variables presented better modeling performance than those with either optical or LiDAR data alone, regardless of the combination mode. The SSAE model obtained the best performance compared to the other tested prediction algorithms for the forest biomass estimation. The best predictive accuracy was achieved by the SSAE model with inputs of combined optical and LiDAR variables (i.e., ACOLI1, AO and AL) that yielded an R2 of 0.935, root mean squared error (RMSE) of 15.67 Mg/ha, and relative root mean squared error (RMSEr) of 11.407%. It was concluded that the presented combined indices were simple and effective by integrating LiDAR-derived structure information with Landsat 8 spectral data for estimating forest biomass. Overall, the SSAE model with inputs of Landsat 8 and LiDAR integrated information resulted in accurate estimation of forest biomass. The presented modeling workflow will greatly facilitate future forest biomass estimation and carbon stock assessments.
AbstractList Estimation of forest aboveground biomass (AGB) is crucial for various technical and scientific applications, ranging from regional carbon and bioenergy policies to sustainable forest management. However, passive optical remote sensing, which is the most widely used remote sensing data for retrieving vegetation parameters, is constrained by spectral saturation problems and cloud cover. On the other hand, LiDAR data, which have been extensively used to estimate forest structure attributes, cannot provide sufficient spectral information of vegetation canopies. Thus, this study aimed to develop a novel synergistic approach to estimating biomass by integrating LiDAR data with Landsat 8 imagery through a deep learning-based workflow. First the relationships between biomass and spectral vegetation indices (SVIs) and LiDAR metrics were separately investigated. Next, two groups of combined optical and LiDAR indices (i.e., COLI1 and COLI2) were designed and explored to identify their performances in biomass estimation. Finally, five prediction models, including K-nearest Neighbor, Random Forest, Support Vector Regression, the deep learning model, i.e., Stacked Sparse Autoencoder network (SSAE), and multiple stepwise linear regressions, were individually used to estimate biomass with input variables of different scenarios, i.e., (i) all the COLI1 (ACOLI1), (ii) all the COLI2 (ACOLI2), (iii) ACOLI1 and all the optical (AO) and LiDAR variables (AL), and (iv) ACOLI2, AO and AL. Results showed that univariate models with the combined optical and LiDAR indices as explanatory variables presented better modeling performance than those with either optical or LiDAR data alone, regardless of the combination mode. The SSAE model obtained the best performance compared to the other tested prediction algorithms for the forest biomass estimation. The best predictive accuracy was achieved by the SSAE model with inputs of combined optical and LiDAR variables (i.e., ACOLI1, AO and AL) that yielded an R2 of 0.935, root mean squared error (RMSE) of 15.67 Mg/ha, and relative root mean squared error (RMSEr) of 11.407%. It was concluded that the presented combined indices were simple and effective by integrating LiDAR-derived structure information with Landsat 8 spectral data for estimating forest biomass. Overall, the SSAE model with inputs of Landsat 8 and LiDAR integrated information resulted in accurate estimation of forest biomass. The presented modeling workflow will greatly facilitate future forest biomass estimation and carbon stock assessments.
Author Cheng, Qimin
Zhang, Linjing
Liu, Jianchen
Shao, Zhenfeng
Author_xml – sequence: 1
  givenname: Linjing
  surname: Zhang
  fullname: Zhang, Linjing
– sequence: 2
  givenname: Zhenfeng
  surname: Shao
  fullname: Shao, Zhenfeng
– sequence: 3
  givenname: Jianchen
  surname: Liu
  fullname: Liu, Jianchen
– sequence: 4
  givenname: Qimin
  surname: Cheng
  fullname: Cheng, Qimin
BookMark eNptkV9rFDEUxQepYK198RMEfBFhNf92Jnnc7lotDAhFn8PN5GbJMpOsSbbQb290FaUYuMkl-Z1DDvdldxFTxK57zeh7ITT9kAtjjDO51s-6S04HvpJc84t_-hfddSkH2pYQTFN52dkd4pGMCDmGuCc3UNCRe6w54APMJHlymzKWSjY2PeA-p1N05CakBUohPqeFbNNiQ2yqMew29wTa-9i2ApUosoMKr7rnHuaC17_Pq-7b7cev28-r8cunu-1mXE1Cy7qyVE5Ie9f3nnHV4zRoD0JKhz130lnqFAWpmBMAmjLQg6XIqOLeWq7sJK66u7OvS3AwxxwWyI8mQTC_LlLeG8g1TDMaL2hPqbJ2Ykpq1Fp5xwbJuG8fUB6b19uz1zGn76eW3yyhTDjPEDGdiuFa9Wu-btXQN0_QQzrl2JIaLigb-rUSulH0TE05lZLRmylUqCHFmiHMhlHzc4bm7wyb5N0TyZ9M_4F_AFyJm8E
CitedBy_id crossref_primary_10_3390_s21103482
crossref_primary_10_3390_plants14070998
crossref_primary_10_1007_s12524_019_01068_5
crossref_primary_10_1016_j_ecolind_2024_112495
crossref_primary_10_1109_JSTARS_2022_3203145
crossref_primary_10_3390_rs16132419
crossref_primary_10_1080_10106049_2021_1878292
crossref_primary_10_3390_rs14122828
crossref_primary_10_1109_JSTARS_2023_3313251
crossref_primary_10_3390_s20051345
crossref_primary_10_3390_f14061159
crossref_primary_10_1007_s10342_024_01721_w
crossref_primary_10_1016_j_ecoinf_2022_101951
crossref_primary_10_1016_j_catena_2022_106603
crossref_primary_10_1088_1755_1315_569_1_012053
crossref_primary_10_3390_en16145383
crossref_primary_10_1049_iet_ipr_2019_0074
crossref_primary_10_1016_j_ecolind_2021_108280
crossref_primary_10_1016_j_jhazmat_2024_136729
crossref_primary_10_3389_fpls_2024_1518272
crossref_primary_10_1016_j_jag_2020_102163
crossref_primary_10_3390_f14030526
crossref_primary_10_3390_rs16122229
crossref_primary_10_1016_j_geoderma_2023_116589
crossref_primary_10_1093_forestry_cpac002
crossref_primary_10_1016_j_envres_2024_119432
crossref_primary_10_1016_j_jag_2021_102389
crossref_primary_10_3390_rs13040603
crossref_primary_10_3390_rs15061548
crossref_primary_10_1155_2021_9925940
crossref_primary_10_3390_f15030480
crossref_primary_10_1017_eds_2025_10013
crossref_primary_10_1016_j_ophoto_2021_100011
crossref_primary_10_1109_ACCESS_2020_3027361
crossref_primary_10_3390_rs14010176
crossref_primary_10_3390_agriculture14071064
crossref_primary_10_1016_j_ufug_2024_128239
crossref_primary_10_1080_19479832_2024_2309615
crossref_primary_10_1109_MGRS_2021_3136100
crossref_primary_10_3390_rs12162564
crossref_primary_10_1109_TIP_2020_3019925
crossref_primary_10_3390_rs15215138
crossref_primary_10_1016_j_ecolind_2024_112071
crossref_primary_10_1109_JSTARS_2022_3188201
crossref_primary_10_3389_fpls_2022_950720
crossref_primary_10_3390_f13101597
crossref_primary_10_3390_f14122388
crossref_primary_10_1007_s10980_025_02064_6
crossref_primary_10_3390_rs17030415
crossref_primary_10_3390_s21155191
crossref_primary_10_1016_j_agrformet_2024_110301
crossref_primary_10_1016_j_atech_2025_101292
crossref_primary_10_1080_01431161_2023_2240508
crossref_primary_10_1080_01431161_2020_1820618
crossref_primary_10_1080_10106049_2020_1756461
crossref_primary_10_1016_j_jag_2025_104425
crossref_primary_10_1080_10095020_2022_2105754
crossref_primary_10_3390_rs13122392
crossref_primary_10_3390_rs11182156
crossref_primary_10_1016_j_geoderma_2022_115695
crossref_primary_10_1016_j_ecolmodel_2020_108947
crossref_primary_10_7717_peerj_8282
crossref_primary_10_3390_f10100871
crossref_primary_10_3390_app15020503
crossref_primary_10_3390_f15030456
crossref_primary_10_3390_f16030449
crossref_primary_10_1186_s13007_019_0507_8
crossref_primary_10_3390_s21175974
crossref_primary_10_1371_journal_pone_0241418
crossref_primary_10_1088_1755_1315_1192_1_012051
crossref_primary_10_1016_j_scitotenv_2022_161150
crossref_primary_10_3390_su162310636
crossref_primary_10_3390_rs12060958
crossref_primary_10_1016_j_compag_2023_107957
crossref_primary_10_1080_10095020_2020_1864232
crossref_primary_10_1109_JSTARS_2022_3232583
crossref_primary_10_1016_j_fecs_2022_100059
crossref_primary_10_3390_rs15143543
crossref_primary_10_3389_fpls_2021_616689
crossref_primary_10_1080_13416979_2024_2436748
crossref_primary_10_1155_2022_3690312
crossref_primary_10_1016_j_geomat_2025_100074
crossref_primary_10_1016_j_ecoinf_2022_101754
crossref_primary_10_1016_j_isprsjprs_2020_12_010
crossref_primary_10_1155_2022_6430120
crossref_primary_10_1080_01431161_2024_2326537
crossref_primary_10_1109_JSTARS_2020_3043379
crossref_primary_10_3390_rs15071853
crossref_primary_10_1080_07038992_2021_1926952
crossref_primary_10_1080_01431161_2025_2506160
crossref_primary_10_1109_JSTARS_2022_3179819
crossref_primary_10_1080_17538947_2024_2310730
crossref_primary_10_1016_j_ufug_2023_128098
crossref_primary_10_1007_s11027_025_10254_5
crossref_primary_10_1080_21580103_2024_2409211
crossref_primary_10_1109_JSTARS_2022_3179027
crossref_primary_10_1139_cjfr_2024_0293
crossref_primary_10_1016_j_rse_2023_113968
crossref_primary_10_1080_10095020_2020_1787800
crossref_primary_10_1111_gfs_12607
crossref_primary_10_1109_JSTARS_2022_3175609
crossref_primary_10_1080_01431161_2024_2307945
crossref_primary_10_3390_f16030420
crossref_primary_10_3390_rs12091357
crossref_primary_10_1080_27658511_2025_2469406
crossref_primary_10_3390_rs13234839
crossref_primary_10_1016_j_compag_2023_108067
crossref_primary_10_3390_f14051064
crossref_primary_10_1007_s11356_022_24442_2
crossref_primary_10_3390_rs16101804
crossref_primary_10_1016_j_asr_2021_11_020
crossref_primary_10_3390_agriculture13040895
crossref_primary_10_18172_cig_6767
crossref_primary_10_3390_f16040559
crossref_primary_10_1080_07038992_2021_1968811
crossref_primary_10_3390_f15122106
crossref_primary_10_3390_rs14041039
crossref_primary_10_3390_rs17010085
crossref_primary_10_3390_f16091423
crossref_primary_10_3390_rs12010186
crossref_primary_10_1029_2023JG007864
crossref_primary_10_3390_pr11020435
crossref_primary_10_3390_rs16071276
crossref_primary_10_3390_rs15081997
crossref_primary_10_14358_PERS_21_00063R2
crossref_primary_10_1016_j_rse_2020_111953
crossref_primary_10_1016_j_jes_2024_06_020
crossref_primary_10_1080_10106049_2022_2158238
crossref_primary_10_1016_j_foreco_2022_120031
crossref_primary_10_3390_f15112023
Cites_doi 10.3390/f5081910
10.1029/2008JG000870
10.1109/JSTARS.2014.2329330
10.1080/2150704X.2014.960608
10.1109/TGRS.2016.2537830
10.3390/rs70911449
10.1080/01431160310001654923
10.1109/LGRS.2011.2109934
10.3390/rs8020109
10.1080/01431160121407
10.1177/030913339802200402
10.3390/s16060834
10.1016/j.rse.2006.08.008
10.1016/j.isprsjprs.2014.12.021
10.1007/s00442-005-0100-x
10.3390/rs4051190
10.1109/JSTARS.2015.2467377
10.1080/01431161.2012.693969
10.1016/j.rse.2011.10.012
10.1109/JSTARS.2013.2241020
10.1016/j.rse.2007.10.009
10.1016/j.rse.2008.09.009
10.1016/j.isprsjprs.2014.01.001
10.1023/A:1010933404324
10.1109/LGRS.2016.2586109
10.1016/j.rse.2014.07.028
10.1016/j.landurbplan.2014.12.007
10.1080/01431160903252335
10.1364/OE.20.007119
10.3390/rs5105040
10.3390/rs70100229
10.1016/j.rse.2013.09.006
10.1080/01431160500486732
10.1080/01431161.2014.967888
10.1016/0034-4257(94)90056-6
10.1016/j.rse.2012.02.001
10.3390/rs8020099
10.3390/s100707057
10.1109/JSTARS.2014.2347276
10.1016/j.isprsjprs.2014.11.001
10.1080/01431161.2011.577829
10.1109/JSTARS.2017.2748341
10.1093/forestry/cpq022
10.1016/j.jenvman.2006.07.015
10.1016/j.isprsjprs.2014.12.011
10.1016/j.rse.2014.10.004
10.1016/j.rse.2014.11.007
10.1016/j.rse.2013.10.036
10.1007/978-90-481-3233-1_3
10.5589/m10-037
10.1016/j.rse.2011.11.002
10.1016/j.rse.2010.03.018
10.1088/1748-9326/2/4/045025
10.1016/j.rse.2009.03.006
10.1016/j.rse.2006.09.031
10.1016/j.foreco.2006.01.030
10.1016/j.rse.2015.11.010
10.1109/JSTARS.2015.2496358
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs11121459
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_f306008bbc1849e998fd17412f06d8fe
10_3390_rs11121459
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-b04ce06d66f1286ec79fa344de62d4db0d80a481d3aa901a97b0e1082fbb28bc3
IEDL.DBID DOA
ISICitedReferencesCount 137
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473794600065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Tue Oct 14 19:03:22 EDT 2025
Thu Sep 04 19:35:38 EDT 2025
Mon Oct 20 02:51:03 EDT 2025
Tue Nov 18 21:36:24 EST 2025
Sat Nov 29 07:20:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-b04ce06d66f1286ec79fa344de62d4db0d80a481d3aa901a97b0e1082fbb28bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/f306008bbc1849e998fd17412f06d8fe
PQID 2301765839
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_f306008bbc1849e998fd17412f06d8fe
proquest_miscellaneous_2986525652
proquest_journals_2301765839
crossref_citationtrail_10_3390_rs11121459
crossref_primary_10_3390_rs11121459
PublicationCentury 2000
PublicationDate 20190620
PublicationDateYYYYMMDD 2019-06-20
PublicationDate_xml – month: 06
  year: 2019
  text: 20190620
  day: 20
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zheng (ref_13) 2006; 85
Wulder (ref_15) 1998; 22
Fassnacht (ref_35) 2014; 154
Verrelst (ref_55) 2012; 118
Tilly (ref_64) 2015; 7
Zhang (ref_43) 2016; 13
ref_58
Sandberg (ref_18) 2011; 115
Castel (ref_19) 2001; 22
Shao (ref_50) 2017; 10
Chen (ref_28) 2010; 10
ref_53
Hame (ref_67) 2013; 6
Li (ref_26) 2014; 5
Yu (ref_42) 2015; 8
Fang (ref_48) 1996; 16
Latifi (ref_54) 2010; 83
He (ref_20) 2012; 33
Kulawardhana (ref_32) 2014; 154
Filippi (ref_51) 2014; 33
Li (ref_62) 2015; 8
ref_66
Gonsamo (ref_6) 2010; 12
Hakala (ref_27) 2012; 20
Sheridan (ref_33) 2014; 7
Laurin (ref_61) 2014; 89
Chen (ref_39) 2014; 7
ref_63
Hamdan (ref_17) 2011; 23
Dalponte (ref_30) 2014; 140
Yu (ref_38) 2016; 54
Zandler (ref_8) 2015; 158
Li (ref_59) 2015; 41
Li (ref_22) 2014; 5
Lu (ref_14) 2006; 27
Tuia (ref_56) 2011; 8
Duncanson (ref_11) 2010; 36
Labrecque (ref_10) 2006; 226
Avitabile (ref_3) 2012; 117
Chen (ref_9) 2015; 102
Kattenborn (ref_46) 2015; 35
Dube (ref_7) 2015; 101
Pope (ref_31) 2013; 5
Wulder (ref_49) 2012; 121
Zhang (ref_40) 2015; 8
Godwin (ref_45) 2015; 136
Singh (ref_44) 2015; 101
Song (ref_1) 2007; 106
Wu (ref_5) 2010; 31
Durbha (ref_37) 2007; 107
Herold (ref_4) 2007; 2
Bouvier (ref_25) 2015; 156
Breiman (ref_65) 2001; 45
Ghosh (ref_29) 2014; 26
Tian (ref_34) 2014; 35
Chirici (ref_52) 2016; 174
Latifi (ref_57) 2012; 33
Zhao (ref_24) 2009; 113
Hawbaker (ref_60) 2009; 114
Hudak (ref_36) 2008; 112
ref_41
ref_2
Yong (ref_16) 1994; 49
Zhao (ref_23) 2009; 113
Mutanga (ref_12) 2004; 25
Chave (ref_47) 2005; 145
Hyypp (ref_21) 2012; 4
References_xml – volume: 5
  start-page: 1910
  year: 2014
  ident: ref_22
  article-title: Correlating the Horizontal and Vertical Distribution of LiDAR Point Clouds with Components of Biomass in a Picea crassifolia Forest
  publication-title: Forests
  doi: 10.3390/f5081910
– volume: 35
  start-page: 359
  year: 2015
  ident: ref_46
  article-title: Mapping forest biomass from space – Fusion of hyperspectral EO1-hyperion data and Tandem-X and WorldView-2 canopy height models
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 114
  start-page: 363
  year: 2009
  ident: ref_60
  article-title: Improved estimates of forest vegetation structure and biomass with a LiDAR-optimized sampling design
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2008JG000870
– volume: 41
  start-page: 88
  year: 2015
  ident: ref_59
  article-title: Geostatistical modeling using LiDAR-derived prior knowledge with SPOT-6 data to estimate temperate forest canopy cover and above-ground biomass via stratified random sampling
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 7
  start-page: 2094
  year: 2014
  ident: ref_39
  article-title: Deep Learning-Based Classification of Hyperspectral Data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2329330
– volume: 5
  start-page: 693
  year: 2014
  ident: ref_26
  article-title: Estimation of leaf biochemical content using a novel hyperspectral full-waveform LiDAR system
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2014.960608
– volume: 54
  start-page: 4130
  year: 2016
  ident: ref_38
  article-title: Automated Detection of Three-Dimensional Cars in Mobile Laser Scanning Point Clouds Using DBM-Hough-Forests
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2537830
– volume: 7
  start-page: 11449
  year: 2015
  ident: ref_64
  article-title: Fusion of Plant Height and Vegetation Indices for the Estimation of Barley Biomass
  publication-title: Remote Sens.
  doi: 10.3390/rs70911449
– volume: 25
  start-page: 3999
  year: 2004
  ident: ref_12
  article-title: Narrow band vegetation indices overcome the saturation problem in biomass estimation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160310001654923
– volume: 8
  start-page: 804
  year: 2011
  ident: ref_56
  article-title: Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2011.2109934
– ident: ref_58
– ident: ref_63
  doi: 10.3390/rs8020109
– volume: 22
  start-page: 2351
  year: 2001
  ident: ref_19
  article-title: Sensitivity of space-borne SAR data to forest parameters over sloping terrain. Theory and experiment
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160121407
– volume: 22
  start-page: 449
  year: 1998
  ident: ref_15
  article-title: Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/030913339802200402
– ident: ref_53
  doi: 10.3390/s16060834
– volume: 106
  start-page: 228
  year: 2007
  ident: ref_1
  article-title: Predicting temperate conifer forest successional stage distributions with multitemporal Landsat Thematic Mapper imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.08.008
– volume: 101
  start-page: 310
  year: 2015
  ident: ref_44
  article-title: Effects of LiDAR point density and landscape context on estimates of urban forest biomass
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.12.021
– volume: 145
  start-page: 87
  year: 2005
  ident: ref_47
  article-title: Tree allometry and improved estimation of carbon stocks and balance in tropical forests
  publication-title: Oecologia
  doi: 10.1007/s00442-005-0100-x
– volume: 4
  start-page: 1190
  year: 2012
  ident: ref_21
  article-title: Advances in Forest Inventory Using Airborne Laser Scanning
  publication-title: Remote Sens.
  doi: 10.3390/rs4051190
– volume: 8
  start-page: 4895
  year: 2015
  ident: ref_40
  article-title: A Hierarchical Oil Tank Detector With Deep Surrounding Features for High-Resolution Optical Satellite Imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2467377
– volume: 33
  start-page: 6668
  year: 2012
  ident: ref_57
  article-title: Evaluation of most similar neighbour and random forest methods for imputing forest inventory variables using data from target and auxiliary stands
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.693969
– volume: 117
  start-page: 366
  year: 2012
  ident: ref_3
  article-title: Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.012
– volume: 33
  start-page: 119
  year: 2014
  ident: ref_51
  article-title: Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_66
– volume: 6
  start-page: 92
  year: 2013
  ident: ref_67
  article-title: Improved Mapping of Tropical Forests With Optical and SAR Imagery, Part II: Above Ground Biomass Estimation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2241020
– volume: 112
  start-page: 2232
  year: 2008
  ident: ref_36
  article-title: Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.10.009
– volume: 113
  start-page: 182
  year: 2009
  ident: ref_23
  article-title: Lidar remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.09.009
– volume: 89
  start-page: 49
  year: 2014
  ident: ref_61
  article-title: Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.01.001
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_65
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 13
  start-page: 1359
  year: 2016
  ident: ref_43
  article-title: Stacked Sparse Autoencoder in PolSAR Data Classification Using Local Spatial Information
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2586109
– volume: 154
  start-page: 102
  year: 2014
  ident: ref_35
  article-title: Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.07.028
– volume: 136
  start-page: 97
  year: 2015
  ident: ref_45
  article-title: The impact of urban residential development patterns on forest carbon density: An integration of LiDAR, aerial photography and field mensuration
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2014.12.007
– volume: 31
  start-page: 1079
  year: 2010
  ident: ref_5
  article-title: An evaluation of EO-1 hyperspectral Hyperion data for chlorophyll content and leaf area index estimation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160903252335
– volume: 20
  start-page: 7119
  year: 2012
  ident: ref_27
  article-title: Full waveform hyperspectral LiDAR for terrestrial laser scanning
  publication-title: Opt. Express
  doi: 10.1364/OE.20.007119
– volume: 5
  start-page: 5040
  year: 2013
  ident: ref_31
  article-title: Leaf Area Index (LAI) Estimation in Boreal Mixedwood Forest of Ontario, Canada Using Light Detection and Ranging (LiDAR) and WorldView-2 Imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs5105040
– volume: 7
  start-page: 229
  year: 2014
  ident: ref_33
  article-title: Modeling Forest Aboveground Biomass and Volume Using Airborne LiDAR Metrics and Forest Inventory and Analysis Data in the Pacific Northwest
  publication-title: Remote Sens.
  doi: 10.3390/rs70100229
– volume: 140
  start-page: 306
  year: 2014
  ident: ref_30
  article-title: Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.09.006
– volume: 27
  start-page: 1297
  year: 2006
  ident: ref_14
  article-title: The potential and challenge of remote sensing-based biomass estimation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500486732
– volume: 35
  start-page: 7339
  year: 2014
  ident: ref_34
  article-title: Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.967888
– volume: 49
  start-page: 25
  year: 1994
  ident: ref_16
  article-title: The effects of changes in loblolly pine biomass and soil moisture on ERS-1 SAR backscatter
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90056-6
– volume: 26
  start-page: 49
  year: 2014
  ident: ref_29
  article-title: A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 121
  start-page: 196
  year: 2012
  ident: ref_49
  article-title: Lidar sampling for large-area forest characterization: A review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.02.001
– ident: ref_41
  doi: 10.3390/rs8020099
– volume: 10
  start-page: 7057
  year: 2010
  ident: ref_28
  article-title: Two-channel Hyperspectral LiDAR with a Supercontinuum Laser Source
  publication-title: Sensors
  doi: 10.3390/s100707057
– volume: 8
  start-page: 709
  year: 2015
  ident: ref_42
  article-title: Learning Hierarchical Features for Automated Extraction of Road Markings From 3-D Mobile LiDAR Point Clouds
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2347276
– volume: 101
  start-page: 36
  year: 2015
  ident: ref_7
  article-title: Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.11.001
– volume: 33
  start-page: 710
  year: 2012
  ident: ref_20
  article-title: Forest stand biomass estimation using ALOS PALSAR data based on LiDAR-derived prior knowledge in the Qilian Mountain, western China
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2011.577829
– volume: 10
  start-page: 5569
  year: 2017
  ident: ref_50
  article-title: Stacked Sparse Autoencoder Modeling Using the Synergy of Airborne LiDAR and Satellite Optical and SAR Data to Map Forest Above-Ground Biomass
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2748341
– volume: 83
  start-page: 395
  year: 2010
  ident: ref_54
  article-title: Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: Application of multiple optical/LiDAR-derived predictors
  publication-title: Forestry
  doi: 10.1093/forestry/cpq022
– volume: 85
  start-page: 616
  year: 2006
  ident: ref_13
  article-title: Combining remote sensing imagery and forest age inventory for biomass mapping
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2006.07.015
– volume: 102
  start-page: 148
  year: 2015
  ident: ref_9
  article-title: Spatio-temporal prediction of leaf area index of rubber plantation using HJ-1A/1B CCD images and recurrent neural network
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.12.011
– volume: 156
  start-page: 322
  year: 2015
  ident: ref_25
  article-title: Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.10.004
– volume: 158
  start-page: 140
  year: 2015
  ident: ref_8
  article-title: Quantifying dwarf shrub biomass in an arid environment: Comparing empirical methods in a high dimensional setting
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.11.007
– volume: 154
  start-page: 345
  year: 2014
  ident: ref_32
  article-title: Fusion of lidar and multispectral data to quantify salt marsh carbon stocks
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.10.036
– ident: ref_2
  doi: 10.1007/978-90-481-3233-1_3
– volume: 36
  start-page: 129
  year: 2010
  ident: ref_11
  article-title: Integration of GLAS and Landsat TM data for aboveground biomass estimation
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m10-037
– volume: 118
  start-page: 127
  year: 2012
  ident: ref_55
  article-title: Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.002
– volume: 115
  start-page: 2874
  year: 2011
  ident: ref_18
  article-title: L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.03.018
– volume: 16
  start-page: 497
  year: 1996
  ident: ref_48
  article-title: Biomass and net production of forest vegetation in china
  publication-title: Acta Ecol. Sin.
– volume: 2
  start-page: 045025
  year: 2007
  ident: ref_4
  article-title: Linking requirements with capabilities for deforestation monitoring in the context of the UNFCCC-REDD process
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/2/4/045025
– volume: 113
  start-page: 1628
  year: 2009
  ident: ref_24
  article-title: Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.03.006
– volume: 107
  start-page: 348
  year: 2007
  ident: ref_37
  article-title: Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.09.031
– volume: 226
  start-page: 129
  year: 2006
  ident: ref_10
  article-title: A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2006.01.030
– volume: 174
  start-page: 1
  year: 2016
  ident: ref_52
  article-title: Comparing echo-based and canopy height model-based metrics for enhancing estimation of forest aboveground biomass in a model-assisted framework
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.11.010
– volume: 8
  start-page: 4489
  year: 2015
  ident: ref_62
  article-title: Combined Use of Airborne LiDAR and Satellite GF-1 Data to Estimate Leaf Area Index, Height, and Aboveground Biomass of Maize During Peak Growing Season
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2496358
– volume: 12
  start-page: 233
  year: 2010
  ident: ref_6
  article-title: Leaf area index retrieval using gap fractions obtained from high resolution satellite data: Comparisons of approaches, scales and atmospheric effects
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 23
  start-page: 318
  year: 2011
  ident: ref_17
  article-title: Remotely sensed l-band sar data for tropical forest biomass estimation
  publication-title: J. Trop. For. Sci.
SSID ssj0000331904
Score 2.55445
Snippet Estimation of forest aboveground biomass (AGB) is crucial for various technical and scientific applications, ranging from regional carbon and bioenergy...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1459
SubjectTerms aboveground biomass
Algorithms
Artificial intelligence
bioenergy
Biomass
canopy
Carbon
carbon sinks
Cloud cover
combined optical and LiDAR indices
Deep learning
Estimation
forest aboveground biomass (AGB)
Forest biomass
Forest management
forests
issues and policy
Laboratories
Landsat
Landsat 8 OLI
Landsat satellites
LiDAR
Machine learning
mathematical models
Model accuracy
Modelling
Parameter estimation
Prediction models
regression analysis
Regression models
Remote sensing
Renewable energy
Root-mean-square errors
Satellite imagery
spatial data
Spectra
spectral analysis
Stacked Sparse Autoencoder network (SSAE)
Studies
Support vector machines
Sustainability management
Sustainable forestry
synergy
Vegetation
vegetation index
Workflow
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BikQvvBGBghbBhYPVtXdj755QQlpxqKIqAqk3a59tJGSH2K3Uf8-Ms0mFQFy4eseW7Xnv4_sAPsa8CEHlMnPKl5n0mmdW2JD5SaFC5YWJzg5kE9VioS4u9HmacOvStspdTBwCtW8dzZEfY6mcV5guhf68_pkRaxStriYKjftwQEhlcgQHs5PF-XI_y8IFmhiXW1xSgf398aZD7yZ4bv1bJhoA-_-Ix0OSOX38v6_3BB6l8pJNt_bwFO6F5hk8TEznV7fPwc5DWLOEqnrJZpjEPFsOtFpoc6yNjMg6u55NbXsT6MxH49lsRbuIOkZnURhGEOym8a6z1Xy6ZAbHz-i8sOmZYnPTmxfw_fTk25evWeJZyJzQss8sly7w0pclak6VwVU6GiGlD2XhpbfcK24kFrbCGCwfjK4sDznWDtHaQlknXsKoaZvwCpiMuY4lBtAoC2nNxHKjPFFriCgVGu0YPu3-ee0SCDlxYfyosRkh_dR3-hnDh73segu98VepGaluL0Fw2cOFdnNZJ--rIzZGWOxY67Ch1QFbzOixFcuLiJ-tYhjD0U6rdfLhrr5T6Rje74fR-2hJxTShvUYZrcoJVo2T4vW_H_EGDrHUIsAHjEtHMOo31-EtPHA3_arbvEtm-wuSKvdS
  priority: 102
  providerName: ProQuest
Title Deep Learning Based Retrieval of Forest Aboveground Biomass from Combined LiDAR and Landsat 8 Data
URI https://www.proquest.com/docview/2301765839
https://www.proquest.com/docview/2986525652
https://doaj.org/article/f306008bbc1849e998fd17412f06d8fe
Volume 11
WOSCitedRecordID wos000473794600065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kCvoi1g88rcdKffEhNMlukt3HO-9KC-0RToXqS9iP2fag5MolLfji3-5Mkl4rCr74sg_ZCVlmZmd-Q3Z_w9iHkKQAKpGRUz6PpNdxZIWFyGepgsILE5ztmk0Ui4U6O9PlvVZfdCaspwfuFXcQENNinrLWYS2iAauD4BFFJ2mIc68CUPRF1HOvmOpisEDXimXPRyqwrj_YNLiriZZb_5aBOqL-P-Jwl1wOn7GnAyrkk341u-wB1M_Z46FB-cWPF8zOAK74QIZ6zqeYezxfdt2w0FX4OnDqsdm0fGLXN0BXNWrPpys6_NNwukLCceNjEYxvnaxmkyU3OH9C13xNyxWfmda8ZF8P518-HUVDe4TICS3byMbSASohz1HhKgdX6GCElB7y1EtvY69iIxGPCmMw6xtd2BgSTPnB2lRZJ16xnXpdw2vGZUh0yDHuBZlKazIbG-WpI4YIUqGvjdjHW5VVbuAOpxYWlxXWEKTe6k69I7a_lb3qGTP-KjUlzW8liOW6e4C2rwbbV_-y_Yjt3dqtGrZeU2FNlRSIqwR-4_12GjcN_QkxNayvUUarPEOwl6Vv_sc63rIniKOIzQGDzh7baTfX8I49cjftqtmM2cPpfFEux52Hjulw6Wcaf85xLLPvOF8en5bffgEtp-4r
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aHdK48BtRGGAEHDhEc2I3sQ8ItZRp1bqqmoY0TsE_RyWUlCYb2j_F38hzmnRCIG47cI0tK44_f--92O99AK99nDgnYh4ZYdOIW0kjzbSL7CARLrNMeaMbsYlsNhOnp3K-BT-7XJhwrbLjxIaobWnCP_I9dJXjDM0lk--X36OgGhVOVzsJjTUsDt3lDwzZqneTMa7vmyTZ_3jy4SBqVQUiwySvI025cTS1aYrvKVJnMukV49y6NLHcamoFVRzdOKYUGkslM01djJbSa50IbRiOewO2OYJd9GB7Pjmaf9781aEMIU35ug4qY5LurSpkk1AOXP5m-RqBgD_4vzFq-3f-t89xF2637jMZrvF-D7ZccR92WiX3r5cPQI-dW5K2auwZGaGRtuS4kQ3DPUVKT4IYaVWToS4vXMhpKSwZLcItqYqEXBuCDKnR9bZkuhgPj4nC9mnIh1Y1EWSsavUQPl3LFB9BrygL9xgI97H0KRoIzxOu1UBTJWyQDmGeC9yUfXjbrXFu2iLrQevjW47BVsBDfoWHPrza9F2uS4v8tdcoQGXTI5QDbx6Uq7O8ZZfcY-CHzpzWBgN26TCE9hZDzTjxOG3hXR92OxTlLUdV-RWE-vBy04zsEo6MVOHKc-wjRTpAr3iQPPn3EC9g5-DkaJpPJ7PDp3AL3cpQ3AI5eBd69ercPYOb5qJeVKvn7ZYh8OW6YfkL20tVpA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXQRceCMKCxgBBw5RndhN7ANC7ZaK1VZVVYG0t-DnUgklpcku2r_Gr2OcJl0hELc9cI1HVhx_84o98wG89nHinIh5ZIRNI24ljTTTLrLDRLjMMuWNbsgmsvlcnJzIxR787GphwrXKziY2htqWJvwjH2CoHGfoLpkc-PZaxGIyfb_-HgUGqXDS2tFpbCFy7C5-YPpWvTua4F6_SZLph0-HH6OWYSAyTPI60pQbR1ObpvjOInUmk14xzq1LE8utplZQxTGkY0qh41Qy09TF6DW91onQhuG812BfpBlNerC_OByPlrs_PJQhvCnf9kRlTNLBpkLLElqDy9-8YEMW8IcvaBzc9M7__Gnuwu02rCajrR7cgz1X3IebLcP714sHoCfOrUnbTfaUjNF5W7Js6MRQ10jpSSAprWoy0uW5C7UuhSXjVbg9VZFQg0PQcmoMyS2ZrSajJVE4Pgt10qomgkxUrR7C5ytZ4iPoFWXhHgPhPpY-RcfhecK1GmqqhA2UIsxzgcrah7fdfuembb4eOEC-5ZiEBWzkl9jow6ud7HrbcuSvUuMAm51EaBPePCg3p3lrdXKPCSEGeVobTOSlw9TaW0xB48TjsoV3fTjoEJW3tqvKL-HUh5e7YbQ64ShJFa48Qxkp0iFGy8Pkyb-neAE3EIv57Gh-_BRuYbQZel6gaT6AXr05c8_gujmvV9Xmeas9BL5cNSp_AYWsXhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Based+Retrieval+of+Forest+Aboveground+Biomass+from+Combined+LiDAR+and+Landsat+8+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Linjing&rft.au=Shao%2C+Zhenfeng&rft.au=Liu%2C+Jianchen&rft.au=Cheng%2C+Qimin&rft.date=2019-06-20&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=12&rft_id=info:doi/10.3390%2Frs11121459&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon