Deep Learning Based Retrieval of Forest Aboveground Biomass from Combined LiDAR and Landsat 8 Data
Estimation of forest aboveground biomass (AGB) is crucial for various technical and scientific applications, ranging from regional carbon and bioenergy policies to sustainable forest management. However, passive optical remote sensing, which is the most widely used remote sensing data for retrieving...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 11; číslo 12; s. 1459 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
20.06.2019
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Estimation of forest aboveground biomass (AGB) is crucial for various technical and scientific applications, ranging from regional carbon and bioenergy policies to sustainable forest management. However, passive optical remote sensing, which is the most widely used remote sensing data for retrieving vegetation parameters, is constrained by spectral saturation problems and cloud cover. On the other hand, LiDAR data, which have been extensively used to estimate forest structure attributes, cannot provide sufficient spectral information of vegetation canopies. Thus, this study aimed to develop a novel synergistic approach to estimating biomass by integrating LiDAR data with Landsat 8 imagery through a deep learning-based workflow. First the relationships between biomass and spectral vegetation indices (SVIs) and LiDAR metrics were separately investigated. Next, two groups of combined optical and LiDAR indices (i.e., COLI1 and COLI2) were designed and explored to identify their performances in biomass estimation. Finally, five prediction models, including K-nearest Neighbor, Random Forest, Support Vector Regression, the deep learning model, i.e., Stacked Sparse Autoencoder network (SSAE), and multiple stepwise linear regressions, were individually used to estimate biomass with input variables of different scenarios, i.e., (i) all the COLI1 (ACOLI1), (ii) all the COLI2 (ACOLI2), (iii) ACOLI1 and all the optical (AO) and LiDAR variables (AL), and (iv) ACOLI2, AO and AL. Results showed that univariate models with the combined optical and LiDAR indices as explanatory variables presented better modeling performance than those with either optical or LiDAR data alone, regardless of the combination mode. The SSAE model obtained the best performance compared to the other tested prediction algorithms for the forest biomass estimation. The best predictive accuracy was achieved by the SSAE model with inputs of combined optical and LiDAR variables (i.e., ACOLI1, AO and AL) that yielded an R2 of 0.935, root mean squared error (RMSE) of 15.67 Mg/ha, and relative root mean squared error (RMSEr) of 11.407%. It was concluded that the presented combined indices were simple and effective by integrating LiDAR-derived structure information with Landsat 8 spectral data for estimating forest biomass. Overall, the SSAE model with inputs of Landsat 8 and LiDAR integrated information resulted in accurate estimation of forest biomass. The presented modeling workflow will greatly facilitate future forest biomass estimation and carbon stock assessments. |
|---|---|
| AbstractList | Estimation of forest aboveground biomass (AGB) is crucial for various technical and scientific applications, ranging from regional carbon and bioenergy policies to sustainable forest management. However, passive optical remote sensing, which is the most widely used remote sensing data for retrieving vegetation parameters, is constrained by spectral saturation problems and cloud cover. On the other hand, LiDAR data, which have been extensively used to estimate forest structure attributes, cannot provide sufficient spectral information of vegetation canopies. Thus, this study aimed to develop a novel synergistic approach to estimating biomass by integrating LiDAR data with Landsat 8 imagery through a deep learning-based workflow. First the relationships between biomass and spectral vegetation indices (SVIs) and LiDAR metrics were separately investigated. Next, two groups of combined optical and LiDAR indices (i.e., COLI1 and COLI2) were designed and explored to identify their performances in biomass estimation. Finally, five prediction models, including K-nearest Neighbor, Random Forest, Support Vector Regression, the deep learning model, i.e., Stacked Sparse Autoencoder network (SSAE), and multiple stepwise linear regressions, were individually used to estimate biomass with input variables of different scenarios, i.e., (i) all the COLI1 (ACOLI1), (ii) all the COLI2 (ACOLI2), (iii) ACOLI1 and all the optical (AO) and LiDAR variables (AL), and (iv) ACOLI2, AO and AL. Results showed that univariate models with the combined optical and LiDAR indices as explanatory variables presented better modeling performance than those with either optical or LiDAR data alone, regardless of the combination mode. The SSAE model obtained the best performance compared to the other tested prediction algorithms for the forest biomass estimation. The best predictive accuracy was achieved by the SSAE model with inputs of combined optical and LiDAR variables (i.e., ACOLI1, AO and AL) that yielded an R2 of 0.935, root mean squared error (RMSE) of 15.67 Mg/ha, and relative root mean squared error (RMSEr) of 11.407%. It was concluded that the presented combined indices were simple and effective by integrating LiDAR-derived structure information with Landsat 8 spectral data for estimating forest biomass. Overall, the SSAE model with inputs of Landsat 8 and LiDAR integrated information resulted in accurate estimation of forest biomass. The presented modeling workflow will greatly facilitate future forest biomass estimation and carbon stock assessments. |
| Author | Cheng, Qimin Zhang, Linjing Liu, Jianchen Shao, Zhenfeng |
| Author_xml | – sequence: 1 givenname: Linjing surname: Zhang fullname: Zhang, Linjing – sequence: 2 givenname: Zhenfeng surname: Shao fullname: Shao, Zhenfeng – sequence: 3 givenname: Jianchen surname: Liu fullname: Liu, Jianchen – sequence: 4 givenname: Qimin surname: Cheng fullname: Cheng, Qimin |
| BookMark | eNptkV9rFDEUxQepYK198RMEfBFhNf92Jnnc7lotDAhFn8PN5GbJMpOsSbbQb290FaUYuMkl-Z1DDvdldxFTxK57zeh7ITT9kAtjjDO51s-6S04HvpJc84t_-hfddSkH2pYQTFN52dkd4pGMCDmGuCc3UNCRe6w54APMJHlymzKWSjY2PeA-p1N05CakBUohPqeFbNNiQ2yqMew29wTa-9i2ApUosoMKr7rnHuaC17_Pq-7b7cev28-r8cunu-1mXE1Cy7qyVE5Ie9f3nnHV4zRoD0JKhz130lnqFAWpmBMAmjLQg6XIqOLeWq7sJK66u7OvS3AwxxwWyI8mQTC_LlLeG8g1TDMaL2hPqbJ2Ykpq1Fp5xwbJuG8fUB6b19uz1zGn76eW3yyhTDjPEDGdiuFa9Wu-btXQN0_QQzrl2JIaLigb-rUSulH0TE05lZLRmylUqCHFmiHMhlHzc4bm7wyb5N0TyZ9M_4F_AFyJm8E |
| CitedBy_id | crossref_primary_10_3390_s21103482 crossref_primary_10_3390_plants14070998 crossref_primary_10_1007_s12524_019_01068_5 crossref_primary_10_1016_j_ecolind_2024_112495 crossref_primary_10_1109_JSTARS_2022_3203145 crossref_primary_10_3390_rs16132419 crossref_primary_10_1080_10106049_2021_1878292 crossref_primary_10_3390_rs14122828 crossref_primary_10_1109_JSTARS_2023_3313251 crossref_primary_10_3390_s20051345 crossref_primary_10_3390_f14061159 crossref_primary_10_1007_s10342_024_01721_w crossref_primary_10_1016_j_ecoinf_2022_101951 crossref_primary_10_1016_j_catena_2022_106603 crossref_primary_10_1088_1755_1315_569_1_012053 crossref_primary_10_3390_en16145383 crossref_primary_10_1049_iet_ipr_2019_0074 crossref_primary_10_1016_j_ecolind_2021_108280 crossref_primary_10_1016_j_jhazmat_2024_136729 crossref_primary_10_3389_fpls_2024_1518272 crossref_primary_10_1016_j_jag_2020_102163 crossref_primary_10_3390_f14030526 crossref_primary_10_3390_rs16122229 crossref_primary_10_1016_j_geoderma_2023_116589 crossref_primary_10_1093_forestry_cpac002 crossref_primary_10_1016_j_envres_2024_119432 crossref_primary_10_1016_j_jag_2021_102389 crossref_primary_10_3390_rs13040603 crossref_primary_10_3390_rs15061548 crossref_primary_10_1155_2021_9925940 crossref_primary_10_3390_f15030480 crossref_primary_10_1017_eds_2025_10013 crossref_primary_10_1016_j_ophoto_2021_100011 crossref_primary_10_1109_ACCESS_2020_3027361 crossref_primary_10_3390_rs14010176 crossref_primary_10_3390_agriculture14071064 crossref_primary_10_1016_j_ufug_2024_128239 crossref_primary_10_1080_19479832_2024_2309615 crossref_primary_10_1109_MGRS_2021_3136100 crossref_primary_10_3390_rs12162564 crossref_primary_10_1109_TIP_2020_3019925 crossref_primary_10_3390_rs15215138 crossref_primary_10_1016_j_ecolind_2024_112071 crossref_primary_10_1109_JSTARS_2022_3188201 crossref_primary_10_3389_fpls_2022_950720 crossref_primary_10_3390_f13101597 crossref_primary_10_3390_f14122388 crossref_primary_10_1007_s10980_025_02064_6 crossref_primary_10_3390_rs17030415 crossref_primary_10_3390_s21155191 crossref_primary_10_1016_j_agrformet_2024_110301 crossref_primary_10_1016_j_atech_2025_101292 crossref_primary_10_1080_01431161_2023_2240508 crossref_primary_10_1080_01431161_2020_1820618 crossref_primary_10_1080_10106049_2020_1756461 crossref_primary_10_1016_j_jag_2025_104425 crossref_primary_10_1080_10095020_2022_2105754 crossref_primary_10_3390_rs13122392 crossref_primary_10_3390_rs11182156 crossref_primary_10_1016_j_geoderma_2022_115695 crossref_primary_10_1016_j_ecolmodel_2020_108947 crossref_primary_10_7717_peerj_8282 crossref_primary_10_3390_f10100871 crossref_primary_10_3390_app15020503 crossref_primary_10_3390_f15030456 crossref_primary_10_3390_f16030449 crossref_primary_10_1186_s13007_019_0507_8 crossref_primary_10_3390_s21175974 crossref_primary_10_1371_journal_pone_0241418 crossref_primary_10_1088_1755_1315_1192_1_012051 crossref_primary_10_1016_j_scitotenv_2022_161150 crossref_primary_10_3390_su162310636 crossref_primary_10_3390_rs12060958 crossref_primary_10_1016_j_compag_2023_107957 crossref_primary_10_1080_10095020_2020_1864232 crossref_primary_10_1109_JSTARS_2022_3232583 crossref_primary_10_1016_j_fecs_2022_100059 crossref_primary_10_3390_rs15143543 crossref_primary_10_3389_fpls_2021_616689 crossref_primary_10_1080_13416979_2024_2436748 crossref_primary_10_1155_2022_3690312 crossref_primary_10_1016_j_geomat_2025_100074 crossref_primary_10_1016_j_ecoinf_2022_101754 crossref_primary_10_1016_j_isprsjprs_2020_12_010 crossref_primary_10_1155_2022_6430120 crossref_primary_10_1080_01431161_2024_2326537 crossref_primary_10_1109_JSTARS_2020_3043379 crossref_primary_10_3390_rs15071853 crossref_primary_10_1080_07038992_2021_1926952 crossref_primary_10_1080_01431161_2025_2506160 crossref_primary_10_1109_JSTARS_2022_3179819 crossref_primary_10_1080_17538947_2024_2310730 crossref_primary_10_1016_j_ufug_2023_128098 crossref_primary_10_1007_s11027_025_10254_5 crossref_primary_10_1080_21580103_2024_2409211 crossref_primary_10_1109_JSTARS_2022_3179027 crossref_primary_10_1139_cjfr_2024_0293 crossref_primary_10_1016_j_rse_2023_113968 crossref_primary_10_1080_10095020_2020_1787800 crossref_primary_10_1111_gfs_12607 crossref_primary_10_1109_JSTARS_2022_3175609 crossref_primary_10_1080_01431161_2024_2307945 crossref_primary_10_3390_f16030420 crossref_primary_10_3390_rs12091357 crossref_primary_10_1080_27658511_2025_2469406 crossref_primary_10_3390_rs13234839 crossref_primary_10_1016_j_compag_2023_108067 crossref_primary_10_3390_f14051064 crossref_primary_10_1007_s11356_022_24442_2 crossref_primary_10_3390_rs16101804 crossref_primary_10_1016_j_asr_2021_11_020 crossref_primary_10_3390_agriculture13040895 crossref_primary_10_18172_cig_6767 crossref_primary_10_3390_f16040559 crossref_primary_10_1080_07038992_2021_1968811 crossref_primary_10_3390_f15122106 crossref_primary_10_3390_rs14041039 crossref_primary_10_3390_rs17010085 crossref_primary_10_3390_f16091423 crossref_primary_10_3390_rs12010186 crossref_primary_10_1029_2023JG007864 crossref_primary_10_3390_pr11020435 crossref_primary_10_3390_rs16071276 crossref_primary_10_3390_rs15081997 crossref_primary_10_14358_PERS_21_00063R2 crossref_primary_10_1016_j_rse_2020_111953 crossref_primary_10_1016_j_jes_2024_06_020 crossref_primary_10_1080_10106049_2022_2158238 crossref_primary_10_1016_j_foreco_2022_120031 crossref_primary_10_3390_f15112023 |
| Cites_doi | 10.3390/f5081910 10.1029/2008JG000870 10.1109/JSTARS.2014.2329330 10.1080/2150704X.2014.960608 10.1109/TGRS.2016.2537830 10.3390/rs70911449 10.1080/01431160310001654923 10.1109/LGRS.2011.2109934 10.3390/rs8020109 10.1080/01431160121407 10.1177/030913339802200402 10.3390/s16060834 10.1016/j.rse.2006.08.008 10.1016/j.isprsjprs.2014.12.021 10.1007/s00442-005-0100-x 10.3390/rs4051190 10.1109/JSTARS.2015.2467377 10.1080/01431161.2012.693969 10.1016/j.rse.2011.10.012 10.1109/JSTARS.2013.2241020 10.1016/j.rse.2007.10.009 10.1016/j.rse.2008.09.009 10.1016/j.isprsjprs.2014.01.001 10.1023/A:1010933404324 10.1109/LGRS.2016.2586109 10.1016/j.rse.2014.07.028 10.1016/j.landurbplan.2014.12.007 10.1080/01431160903252335 10.1364/OE.20.007119 10.3390/rs5105040 10.3390/rs70100229 10.1016/j.rse.2013.09.006 10.1080/01431160500486732 10.1080/01431161.2014.967888 10.1016/0034-4257(94)90056-6 10.1016/j.rse.2012.02.001 10.3390/rs8020099 10.3390/s100707057 10.1109/JSTARS.2014.2347276 10.1016/j.isprsjprs.2014.11.001 10.1080/01431161.2011.577829 10.1109/JSTARS.2017.2748341 10.1093/forestry/cpq022 10.1016/j.jenvman.2006.07.015 10.1016/j.isprsjprs.2014.12.011 10.1016/j.rse.2014.10.004 10.1016/j.rse.2014.11.007 10.1016/j.rse.2013.10.036 10.1007/978-90-481-3233-1_3 10.5589/m10-037 10.1016/j.rse.2011.11.002 10.1016/j.rse.2010.03.018 10.1088/1748-9326/2/4/045025 10.1016/j.rse.2009.03.006 10.1016/j.rse.2006.09.031 10.1016/j.foreco.2006.01.030 10.1016/j.rse.2015.11.010 10.1109/JSTARS.2015.2496358 |
| ContentType | Journal Article |
| Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs11121459 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_f306008bbc1849e998fd17412f06d8fe 10_3390_rs11121459 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c394t-b04ce06d66f1286ec79fa344de62d4db0d80a481d3aa901a97b0e1082fbb28bc3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 137 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473794600065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 19:03:22 EDT 2025 Thu Sep 04 19:35:38 EDT 2025 Mon Oct 20 02:51:03 EDT 2025 Tue Nov 18 21:36:24 EST 2025 Sat Nov 29 07:20:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-b04ce06d66f1286ec79fa344de62d4db0d80a481d3aa901a97b0e1082fbb28bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/f306008bbc1849e998fd17412f06d8fe |
| PQID | 2301765839 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f306008bbc1849e998fd17412f06d8fe proquest_miscellaneous_2986525652 proquest_journals_2301765839 crossref_citationtrail_10_3390_rs11121459 crossref_primary_10_3390_rs11121459 |
| PublicationCentury | 2000 |
| PublicationDate | 20190620 |
| PublicationDateYYYYMMDD | 2019-06-20 |
| PublicationDate_xml | – month: 06 year: 2019 text: 20190620 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zheng (ref_13) 2006; 85 Wulder (ref_15) 1998; 22 Fassnacht (ref_35) 2014; 154 Verrelst (ref_55) 2012; 118 Tilly (ref_64) 2015; 7 Zhang (ref_43) 2016; 13 ref_58 Sandberg (ref_18) 2011; 115 Castel (ref_19) 2001; 22 Shao (ref_50) 2017; 10 Chen (ref_28) 2010; 10 ref_53 Hame (ref_67) 2013; 6 Li (ref_26) 2014; 5 Yu (ref_42) 2015; 8 Fang (ref_48) 1996; 16 Latifi (ref_54) 2010; 83 He (ref_20) 2012; 33 Kulawardhana (ref_32) 2014; 154 Filippi (ref_51) 2014; 33 Li (ref_62) 2015; 8 ref_66 Gonsamo (ref_6) 2010; 12 Hakala (ref_27) 2012; 20 Sheridan (ref_33) 2014; 7 Laurin (ref_61) 2014; 89 Chen (ref_39) 2014; 7 ref_63 Hamdan (ref_17) 2011; 23 Dalponte (ref_30) 2014; 140 Yu (ref_38) 2016; 54 Zandler (ref_8) 2015; 158 Li (ref_59) 2015; 41 Li (ref_22) 2014; 5 Lu (ref_14) 2006; 27 Tuia (ref_56) 2011; 8 Duncanson (ref_11) 2010; 36 Labrecque (ref_10) 2006; 226 Avitabile (ref_3) 2012; 117 Chen (ref_9) 2015; 102 Kattenborn (ref_46) 2015; 35 Dube (ref_7) 2015; 101 Pope (ref_31) 2013; 5 Wulder (ref_49) 2012; 121 Zhang (ref_40) 2015; 8 Godwin (ref_45) 2015; 136 Singh (ref_44) 2015; 101 Song (ref_1) 2007; 106 Wu (ref_5) 2010; 31 Durbha (ref_37) 2007; 107 Herold (ref_4) 2007; 2 Bouvier (ref_25) 2015; 156 Breiman (ref_65) 2001; 45 Ghosh (ref_29) 2014; 26 Tian (ref_34) 2014; 35 Chirici (ref_52) 2016; 174 Latifi (ref_57) 2012; 33 Zhao (ref_24) 2009; 113 Hawbaker (ref_60) 2009; 114 Hudak (ref_36) 2008; 112 ref_41 ref_2 Yong (ref_16) 1994; 49 Zhao (ref_23) 2009; 113 Mutanga (ref_12) 2004; 25 Chave (ref_47) 2005; 145 Hyypp (ref_21) 2012; 4 |
| References_xml | – volume: 5 start-page: 1910 year: 2014 ident: ref_22 article-title: Correlating the Horizontal and Vertical Distribution of LiDAR Point Clouds with Components of Biomass in a Picea crassifolia Forest publication-title: Forests doi: 10.3390/f5081910 – volume: 35 start-page: 359 year: 2015 ident: ref_46 article-title: Mapping forest biomass from space – Fusion of hyperspectral EO1-hyperion data and Tandem-X and WorldView-2 canopy height models publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 114 start-page: 363 year: 2009 ident: ref_60 article-title: Improved estimates of forest vegetation structure and biomass with a LiDAR-optimized sampling design publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2008JG000870 – volume: 41 start-page: 88 year: 2015 ident: ref_59 article-title: Geostatistical modeling using LiDAR-derived prior knowledge with SPOT-6 data to estimate temperate forest canopy cover and above-ground biomass via stratified random sampling publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 7 start-page: 2094 year: 2014 ident: ref_39 article-title: Deep Learning-Based Classification of Hyperspectral Data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2329330 – volume: 5 start-page: 693 year: 2014 ident: ref_26 article-title: Estimation of leaf biochemical content using a novel hyperspectral full-waveform LiDAR system publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2014.960608 – volume: 54 start-page: 4130 year: 2016 ident: ref_38 article-title: Automated Detection of Three-Dimensional Cars in Mobile Laser Scanning Point Clouds Using DBM-Hough-Forests publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2537830 – volume: 7 start-page: 11449 year: 2015 ident: ref_64 article-title: Fusion of Plant Height and Vegetation Indices for the Estimation of Barley Biomass publication-title: Remote Sens. doi: 10.3390/rs70911449 – volume: 25 start-page: 3999 year: 2004 ident: ref_12 article-title: Narrow band vegetation indices overcome the saturation problem in biomass estimation publication-title: Int. J. Remote Sens. doi: 10.1080/01431160310001654923 – volume: 8 start-page: 804 year: 2011 ident: ref_56 article-title: Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2011.2109934 – ident: ref_58 – ident: ref_63 doi: 10.3390/rs8020109 – volume: 22 start-page: 2351 year: 2001 ident: ref_19 article-title: Sensitivity of space-borne SAR data to forest parameters over sloping terrain. Theory and experiment publication-title: Int. J. Remote Sens. doi: 10.1080/01431160121407 – volume: 22 start-page: 449 year: 1998 ident: ref_15 article-title: Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters publication-title: Prog. Phys. Geogr. doi: 10.1177/030913339802200402 – ident: ref_53 doi: 10.3390/s16060834 – volume: 106 start-page: 228 year: 2007 ident: ref_1 article-title: Predicting temperate conifer forest successional stage distributions with multitemporal Landsat Thematic Mapper imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.08.008 – volume: 101 start-page: 310 year: 2015 ident: ref_44 article-title: Effects of LiDAR point density and landscape context on estimates of urban forest biomass publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.12.021 – volume: 145 start-page: 87 year: 2005 ident: ref_47 article-title: Tree allometry and improved estimation of carbon stocks and balance in tropical forests publication-title: Oecologia doi: 10.1007/s00442-005-0100-x – volume: 4 start-page: 1190 year: 2012 ident: ref_21 article-title: Advances in Forest Inventory Using Airborne Laser Scanning publication-title: Remote Sens. doi: 10.3390/rs4051190 – volume: 8 start-page: 4895 year: 2015 ident: ref_40 article-title: A Hierarchical Oil Tank Detector With Deep Surrounding Features for High-Resolution Optical Satellite Imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2467377 – volume: 33 start-page: 6668 year: 2012 ident: ref_57 article-title: Evaluation of most similar neighbour and random forest methods for imputing forest inventory variables using data from target and auxiliary stands publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.693969 – volume: 117 start-page: 366 year: 2012 ident: ref_3 article-title: Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.012 – volume: 33 start-page: 119 year: 2014 ident: ref_51 article-title: Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_66 – volume: 6 start-page: 92 year: 2013 ident: ref_67 article-title: Improved Mapping of Tropical Forests With Optical and SAR Imagery, Part II: Above Ground Biomass Estimation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2241020 – volume: 112 start-page: 2232 year: 2008 ident: ref_36 article-title: Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.10.009 – volume: 113 start-page: 182 year: 2009 ident: ref_23 article-title: Lidar remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.09.009 – volume: 89 start-page: 49 year: 2014 ident: ref_61 article-title: Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.01.001 – volume: 45 start-page: 5 year: 2001 ident: ref_65 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 13 start-page: 1359 year: 2016 ident: ref_43 article-title: Stacked Sparse Autoencoder in PolSAR Data Classification Using Local Spatial Information publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2586109 – volume: 154 start-page: 102 year: 2014 ident: ref_35 article-title: Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.07.028 – volume: 136 start-page: 97 year: 2015 ident: ref_45 article-title: The impact of urban residential development patterns on forest carbon density: An integration of LiDAR, aerial photography and field mensuration publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2014.12.007 – volume: 31 start-page: 1079 year: 2010 ident: ref_5 article-title: An evaluation of EO-1 hyperspectral Hyperion data for chlorophyll content and leaf area index estimation publication-title: Int. J. Remote Sens. doi: 10.1080/01431160903252335 – volume: 20 start-page: 7119 year: 2012 ident: ref_27 article-title: Full waveform hyperspectral LiDAR for terrestrial laser scanning publication-title: Opt. Express doi: 10.1364/OE.20.007119 – volume: 5 start-page: 5040 year: 2013 ident: ref_31 article-title: Leaf Area Index (LAI) Estimation in Boreal Mixedwood Forest of Ontario, Canada Using Light Detection and Ranging (LiDAR) and WorldView-2 Imagery publication-title: Remote Sens. doi: 10.3390/rs5105040 – volume: 7 start-page: 229 year: 2014 ident: ref_33 article-title: Modeling Forest Aboveground Biomass and Volume Using Airborne LiDAR Metrics and Forest Inventory and Analysis Data in the Pacific Northwest publication-title: Remote Sens. doi: 10.3390/rs70100229 – volume: 140 start-page: 306 year: 2014 ident: ref_30 article-title: Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.09.006 – volume: 27 start-page: 1297 year: 2006 ident: ref_14 article-title: The potential and challenge of remote sensing-based biomass estimation publication-title: Int. J. Remote Sens. doi: 10.1080/01431160500486732 – volume: 35 start-page: 7339 year: 2014 ident: ref_34 article-title: Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.967888 – volume: 49 start-page: 25 year: 1994 ident: ref_16 article-title: The effects of changes in loblolly pine biomass and soil moisture on ERS-1 SAR backscatter publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)90056-6 – volume: 26 start-page: 49 year: 2014 ident: ref_29 article-title: A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 121 start-page: 196 year: 2012 ident: ref_49 article-title: Lidar sampling for large-area forest characterization: A review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.02.001 – ident: ref_41 doi: 10.3390/rs8020099 – volume: 10 start-page: 7057 year: 2010 ident: ref_28 article-title: Two-channel Hyperspectral LiDAR with a Supercontinuum Laser Source publication-title: Sensors doi: 10.3390/s100707057 – volume: 8 start-page: 709 year: 2015 ident: ref_42 article-title: Learning Hierarchical Features for Automated Extraction of Road Markings From 3-D Mobile LiDAR Point Clouds publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2347276 – volume: 101 start-page: 36 year: 2015 ident: ref_7 article-title: Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.11.001 – volume: 33 start-page: 710 year: 2012 ident: ref_20 article-title: Forest stand biomass estimation using ALOS PALSAR data based on LiDAR-derived prior knowledge in the Qilian Mountain, western China publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2011.577829 – volume: 10 start-page: 5569 year: 2017 ident: ref_50 article-title: Stacked Sparse Autoencoder Modeling Using the Synergy of Airborne LiDAR and Satellite Optical and SAR Data to Map Forest Above-Ground Biomass publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2748341 – volume: 83 start-page: 395 year: 2010 ident: ref_54 article-title: Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: Application of multiple optical/LiDAR-derived predictors publication-title: Forestry doi: 10.1093/forestry/cpq022 – volume: 85 start-page: 616 year: 2006 ident: ref_13 article-title: Combining remote sensing imagery and forest age inventory for biomass mapping publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2006.07.015 – volume: 102 start-page: 148 year: 2015 ident: ref_9 article-title: Spatio-temporal prediction of leaf area index of rubber plantation using HJ-1A/1B CCD images and recurrent neural network publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.12.011 – volume: 156 start-page: 322 year: 2015 ident: ref_25 article-title: Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.10.004 – volume: 158 start-page: 140 year: 2015 ident: ref_8 article-title: Quantifying dwarf shrub biomass in an arid environment: Comparing empirical methods in a high dimensional setting publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.11.007 – volume: 154 start-page: 345 year: 2014 ident: ref_32 article-title: Fusion of lidar and multispectral data to quantify salt marsh carbon stocks publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.10.036 – ident: ref_2 doi: 10.1007/978-90-481-3233-1_3 – volume: 36 start-page: 129 year: 2010 ident: ref_11 article-title: Integration of GLAS and Landsat TM data for aboveground biomass estimation publication-title: Can. J. Remote Sens. doi: 10.5589/m10-037 – volume: 118 start-page: 127 year: 2012 ident: ref_55 article-title: Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.002 – volume: 115 start-page: 2874 year: 2011 ident: ref_18 article-title: L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.03.018 – volume: 16 start-page: 497 year: 1996 ident: ref_48 article-title: Biomass and net production of forest vegetation in china publication-title: Acta Ecol. Sin. – volume: 2 start-page: 045025 year: 2007 ident: ref_4 article-title: Linking requirements with capabilities for deforestation monitoring in the context of the UNFCCC-REDD process publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/2/4/045025 – volume: 113 start-page: 1628 year: 2009 ident: ref_24 article-title: Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.03.006 – volume: 107 start-page: 348 year: 2007 ident: ref_37 article-title: Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.09.031 – volume: 226 start-page: 129 year: 2006 ident: ref_10 article-title: A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2006.01.030 – volume: 174 start-page: 1 year: 2016 ident: ref_52 article-title: Comparing echo-based and canopy height model-based metrics for enhancing estimation of forest aboveground biomass in a model-assisted framework publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.11.010 – volume: 8 start-page: 4489 year: 2015 ident: ref_62 article-title: Combined Use of Airborne LiDAR and Satellite GF-1 Data to Estimate Leaf Area Index, Height, and Aboveground Biomass of Maize During Peak Growing Season publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2496358 – volume: 12 start-page: 233 year: 2010 ident: ref_6 article-title: Leaf area index retrieval using gap fractions obtained from high resolution satellite data: Comparisons of approaches, scales and atmospheric effects publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 23 start-page: 318 year: 2011 ident: ref_17 article-title: Remotely sensed l-band sar data for tropical forest biomass estimation publication-title: J. Trop. For. Sci. |
| SSID | ssj0000331904 |
| Score | 2.55445 |
| Snippet | Estimation of forest aboveground biomass (AGB) is crucial for various technical and scientific applications, ranging from regional carbon and bioenergy... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1459 |
| SubjectTerms | aboveground biomass Algorithms Artificial intelligence bioenergy Biomass canopy Carbon carbon sinks Cloud cover combined optical and LiDAR indices Deep learning Estimation forest aboveground biomass (AGB) Forest biomass Forest management forests issues and policy Laboratories Landsat Landsat 8 OLI Landsat satellites LiDAR Machine learning mathematical models Model accuracy Modelling Parameter estimation Prediction models regression analysis Regression models Remote sensing Renewable energy Root-mean-square errors Satellite imagery spatial data Spectra spectral analysis Stacked Sparse Autoencoder network (SSAE) Studies Support vector machines Sustainability management Sustainable forestry synergy Vegetation vegetation index Workflow |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BikQvvBGBghbBhYPVtXdj755QQlpxqKIqAqk3a59tJGSH2K3Uf8-Ms0mFQFy4eseW7Xnv4_sAPsa8CEHlMnPKl5n0mmdW2JD5SaFC5YWJzg5kE9VioS4u9HmacOvStspdTBwCtW8dzZEfY6mcV5guhf68_pkRaxStriYKjftwQEhlcgQHs5PF-XI_y8IFmhiXW1xSgf398aZD7yZ4bv1bJhoA-_-Ix0OSOX38v6_3BB6l8pJNt_bwFO6F5hk8TEznV7fPwc5DWLOEqnrJZpjEPFsOtFpoc6yNjMg6u55NbXsT6MxH49lsRbuIOkZnURhGEOym8a6z1Xy6ZAbHz-i8sOmZYnPTmxfw_fTk25evWeJZyJzQss8sly7w0pclak6VwVU6GiGlD2XhpbfcK24kFrbCGCwfjK4sDznWDtHaQlknXsKoaZvwCpiMuY4lBtAoC2nNxHKjPFFriCgVGu0YPu3-ee0SCDlxYfyosRkh_dR3-hnDh73segu98VepGaluL0Fw2cOFdnNZJ--rIzZGWOxY67Ch1QFbzOixFcuLiJ-tYhjD0U6rdfLhrr5T6Rje74fR-2hJxTShvUYZrcoJVo2T4vW_H_EGDrHUIsAHjEtHMOo31-EtPHA3_arbvEtm-wuSKvdS priority: 102 providerName: ProQuest |
| Title | Deep Learning Based Retrieval of Forest Aboveground Biomass from Combined LiDAR and Landsat 8 Data |
| URI | https://www.proquest.com/docview/2301765839 https://www.proquest.com/docview/2986525652 https://doaj.org/article/f306008bbc1849e998fd17412f06d8fe |
| Volume | 11 |
| WOSCitedRecordID | wos000473794600065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kCvoi1g88rcdKffEhNMlukt3HO-9KC-0RToXqS9iP2fag5MolLfji3-5Mkl4rCr74sg_ZCVlmZmd-Q3Z_w9iHkKQAKpGRUz6PpNdxZIWFyGepgsILE5ztmk0Ui4U6O9PlvVZfdCaspwfuFXcQENNinrLWYS2iAauD4BFFJ2mIc68CUPRF1HOvmOpisEDXimXPRyqwrj_YNLiriZZb_5aBOqL-P-Jwl1wOn7GnAyrkk341u-wB1M_Z46FB-cWPF8zOAK74QIZ6zqeYezxfdt2w0FX4OnDqsdm0fGLXN0BXNWrPpys6_NNwukLCceNjEYxvnaxmkyU3OH9C13xNyxWfmda8ZF8P518-HUVDe4TICS3byMbSASohz1HhKgdX6GCElB7y1EtvY69iIxGPCmMw6xtd2BgSTPnB2lRZJ16xnXpdw2vGZUh0yDHuBZlKazIbG-WpI4YIUqGvjdjHW5VVbuAOpxYWlxXWEKTe6k69I7a_lb3qGTP-KjUlzW8liOW6e4C2rwbbV_-y_Yjt3dqtGrZeU2FNlRSIqwR-4_12GjcN_QkxNayvUUarPEOwl6Vv_sc63rIniKOIzQGDzh7baTfX8I49cjftqtmM2cPpfFEux52Hjulw6Wcaf85xLLPvOF8en5bffgEtp-4r |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aHdK48BtRGGAEHDhEc2I3sQ8ItZRp1bqqmoY0TsE_RyWUlCYb2j_F38hzmnRCIG47cI0tK44_f--92O99AK99nDgnYh4ZYdOIW0kjzbSL7CARLrNMeaMbsYlsNhOnp3K-BT-7XJhwrbLjxIaobWnCP_I9dJXjDM0lk--X36OgGhVOVzsJjTUsDt3lDwzZqneTMa7vmyTZ_3jy4SBqVQUiwySvI025cTS1aYrvKVJnMukV49y6NLHcamoFVRzdOKYUGkslM01djJbSa50IbRiOewO2OYJd9GB7Pjmaf9781aEMIU35ug4qY5LurSpkk1AOXP5m-RqBgD_4vzFq-3f-t89xF2637jMZrvF-D7ZccR92WiX3r5cPQI-dW5K2auwZGaGRtuS4kQ3DPUVKT4IYaVWToS4vXMhpKSwZLcItqYqEXBuCDKnR9bZkuhgPj4nC9mnIh1Y1EWSsavUQPl3LFB9BrygL9xgI97H0KRoIzxOu1UBTJWyQDmGeC9yUfXjbrXFu2iLrQevjW47BVsBDfoWHPrza9F2uS4v8tdcoQGXTI5QDbx6Uq7O8ZZfcY-CHzpzWBgN26TCE9hZDzTjxOG3hXR92OxTlLUdV-RWE-vBy04zsEo6MVOHKc-wjRTpAr3iQPPn3EC9g5-DkaJpPJ7PDp3AL3cpQ3AI5eBd69ercPYOb5qJeVKvn7ZYh8OW6YfkL20tVpA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXQRceCMKCxgBBw5RndhN7ANC7ZaK1VZVVYG0t-DnUgklpcku2r_Gr2OcJl0hELc9cI1HVhx_84o98wG89nHinIh5ZIRNI24ljTTTLrLDRLjMMuWNbsgmsvlcnJzIxR787GphwrXKziY2htqWJvwjH2CoHGfoLpkc-PZaxGIyfb_-HgUGqXDS2tFpbCFy7C5-YPpWvTua4F6_SZLph0-HH6OWYSAyTPI60pQbR1ObpvjOInUmk14xzq1LE8utplZQxTGkY0qh41Qy09TF6DW91onQhuG812BfpBlNerC_OByPlrs_PJQhvCnf9kRlTNLBpkLLElqDy9-8YEMW8IcvaBzc9M7__Gnuwu02rCajrR7cgz1X3IebLcP714sHoCfOrUnbTfaUjNF5W7Js6MRQ10jpSSAprWoy0uW5C7UuhSXjVbg9VZFQg0PQcmoMyS2ZrSajJVE4Pgt10qomgkxUrR7C5ytZ4iPoFWXhHgPhPpY-RcfhecK1GmqqhA2UIsxzgcrah7fdfuembb4eOEC-5ZiEBWzkl9jow6ud7HrbcuSvUuMAm51EaBPePCg3p3lrdXKPCSEGeVobTOSlw9TaW0xB48TjsoV3fTjoEJW3tqvKL-HUh5e7YbQ64ShJFa48Qxkp0iFGy8Pkyb-neAE3EIv57Gh-_BRuYbQZel6gaT6AXr05c8_gujmvV9Xmeas9BL5cNSp_AYWsXhQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Based+Retrieval+of+Forest+Aboveground+Biomass+from+Combined+LiDAR+and+Landsat+8+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Linjing&rft.au=Shao%2C+Zhenfeng&rft.au=Liu%2C+Jianchen&rft.au=Cheng%2C+Qimin&rft.date=2019-06-20&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=12&rft_id=info:doi/10.3390%2Frs11121459&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |