Cohesion Intensive Deep Hashing for Remote Sensing Image Retrieval

Recently, the demand for remote sensing image retrieval is growing and attracting the interest of many researchers because of the increasing number of remote sensing images. Hashing, as a method of retrieving images, has been widely applied to remote sensing image retrieval. In order to improve hash...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 12; no. 1; p. 101
Main Authors: Han, Lirong, Li, Peng, Bai, Xiao, Grecos, Christos, Zhang, Xiaoyu, Ren, Peng
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.01.2020
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, the demand for remote sensing image retrieval is growing and attracting the interest of many researchers because of the increasing number of remote sensing images. Hashing, as a method of retrieving images, has been widely applied to remote sensing image retrieval. In order to improve hashing performance, we develop a cohesion intensive deep hashing model for remote sensing image retrieval. The underlying architecture of our deep model is motivated by the state-of-the-art residual net. Residual nets aim at avoiding gradient vanishing and gradient explosion when the net reaches a certain depth. However, different from the residual net which outputs multiple class-labels, we present a residual hash net that is terminated by a Heaviside-like function for binarizing remote sensing images. In this scenario, the representational power of the residual net architecture is exploited to establish an end-to-end deep hashing model. The residual hash net is trained subject to a weighted loss strategy that intensifies the cohesiveness of image hash codes within one class. This effectively addresses the data imbalance problem normally arising in remote sensing image retrieval tasks. Furthermore, we adopted a gradualness optimization method for obtaining optimal model parameters in order to favor accurate binary codes with little quantization error. We conduct comparative experiments on large-scale remote sensing data sets such as UCMerced and AID. The experimental results validate the hypothesis that our method improves the performance of current remote sensing image retrieval.
AbstractList Recently, the demand for remote sensing image retrieval is growing and attracting the interest of many researchers because of the increasing number of remote sensing images. Hashing, as a method of retrieving images, has been widely applied to remote sensing image retrieval. In order to improve hashing performance, we develop a cohesion intensive deep hashing model for remote sensing image retrieval. The underlying architecture of our deep model is motivated by the state-of-the-art residual net. Residual nets aim at avoiding gradient vanishing and gradient explosion when the net reaches a certain depth. However, different from the residual net which outputs multiple class-labels, we present a residual hash net that is terminated by a Heaviside-like function for binarizing remote sensing images. In this scenario, the representational power of the residual net architecture is exploited to establish an end-to-end deep hashing model. The residual hash net is trained subject to a weighted loss strategy that intensifies the cohesiveness of image hash codes within one class. This effectively addresses the data imbalance problem normally arising in remote sensing image retrieval tasks. Furthermore, we adopted a gradualness optimization method for obtaining optimal model parameters in order to favor accurate binary codes with little quantization error. We conduct comparative experiments on large-scale remote sensing data sets such as UCMerced and AID. The experimental results validate the hypothesis that our method improves the performance of current remote sensing image retrieval.
Author Ren, Peng
Grecos, Christos
Han, Lirong
Li, Peng
Bai, Xiao
Zhang, Xiaoyu
Author_xml – sequence: 1
  givenname: Lirong
  surname: Han
  fullname: Han, Lirong
– sequence: 2
  givenname: Peng
  surname: Li
  fullname: Li, Peng
– sequence: 3
  givenname: Xiao
  surname: Bai
  fullname: Bai, Xiao
– sequence: 4
  givenname: Christos
  surname: Grecos
  fullname: Grecos, Christos
– sequence: 5
  givenname: Xiaoyu
  surname: Zhang
  fullname: Zhang, Xiaoyu
– sequence: 6
  givenname: Peng
  surname: Ren
  fullname: Ren, Peng
BookMark eNptkU1LAzEQhoNUUKsXf8GCFxGqSTbZTY5avwqC4Mc5zO7O1pTtpiZpwX9vahWlmDkkvPPMS2bmgAx61yMhx4ye57mmFz4wTtk6dsg-pyUfCa754M97jxyFMKPp5DnTVOyTq7F7w2Bdn036iH2wK8yuERfZPYQ320-z1vnsCecuYva8zidpMocpJjF6iyvoDsluC13Ao-97SF5vb17G96OHx7vJ-PJhVOdaxBGUsiyVYlWhW8ZUwVuqWxBF0apWcoqAjRSl0CChYQILVSSq0bJGWZW8yfMhmWx8Gwczs_B2Dv7DOLDmS3B-asBHW3doGspQ1KqomFSCSa0qAayhogImQYsmeZ1uvBbevS8xRDO3ocaugx7dMhiu0wd5mWaW0JMtdOaWvk-dGi4lzVnBlEgU3VC1dyF4bE1tI8Q02OjBdoZRs96R-d1RKjnbKvnp6R_4EzQgkBA
CitedBy_id crossref_primary_10_1109_TGRS_2023_3323495
crossref_primary_10_1007_s11227_021_04157_w
crossref_primary_10_1109_TGRS_2021_3132296
crossref_primary_10_1109_JSTARS_2022_3162251
crossref_primary_10_1016_j_inffus_2020_10_008
crossref_primary_10_1109_ACCESS_2020_3024720
crossref_primary_10_1049_cit2_12151
crossref_primary_10_1007_s12145_021_00593_7
crossref_primary_10_1016_j_ins_2020_05_114
crossref_primary_10_1080_01431161_2023_2169595
crossref_primary_10_1109_TGRS_2020_2981997
crossref_primary_10_1080_01431161_2021_1996655
crossref_primary_10_1109_TGRS_2022_3143571
crossref_primary_10_1109_JSTARS_2023_3298942
crossref_primary_10_1109_JSTARS_2023_3271303
crossref_primary_10_1109_JSTARS_2023_3344628
crossref_primary_10_3390_rs14153643
crossref_primary_10_1109_TGRS_2025_3606968
crossref_primary_10_1109_TGRS_2024_3429350
crossref_primary_10_1109_TGRS_2022_3231215
crossref_primary_10_1109_JSTARS_2023_3240414
crossref_primary_10_1109_TGRS_2021_3136641
crossref_primary_10_1109_TGRS_2024_3368194
crossref_primary_10_1109_JSTARS_2025_3538701
crossref_primary_10_3390_rs16010090
crossref_primary_10_1109_JSTARS_2023_3236662
crossref_primary_10_3390_app122312221
crossref_primary_10_1016_j_knosys_2021_107807
crossref_primary_10_1109_TGRS_2024_3360621
crossref_primary_10_1109_ACCESS_2020_2973472
crossref_primary_10_3390_rs13234786
Cites_doi 10.1109/TITS.2017.2749964
10.1109/ICCV.2017.598
10.1109/TGRS.2017.2685945
10.1109/CVPR.2015.7298598
10.1609/aaai.v30i1.10235
10.1609/aaai.v30i1.10176
10.1007/s11263-018-1117-z
10.1109/TGRS.2015.2469138
10.1109/IGARSS.2015.7326056
10.1023/B:VISI.0000029664.99615.94
10.1145/1869790.1869829
10.1109/CVPR.2016.227
10.1109/LGRS.2015.2503142
10.1109/TGRS.2017.2756911
10.1109/TGRS.2018.2839705
10.1109/TGRS.2015.2441954
10.1007/s12517-014-1718-y
10.1109/TPAMI.2012.193
10.1609/aaai.v30i1.9906
10.3390/rs10050709
10.1109/CVPR.2010.5539994
10.1109/LGRS.2017.2651056
10.1080/15481603.2017.1323377
10.1023/A:1011139631724
10.1016/j.isprsjprs.2018.09.014
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs12010101
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database

AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_d01e4c86b15841598b4a1d04ba15a94d
10_3390_rs12010101
Genre Correspondence
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
2XV
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
ITC
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c394t-a7577881b69f11862f09fa466f8f520eaed54749a5ad14e686118d95ce5b72d33
IEDL.DBID BENPR
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515391700101&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Mon Nov 10 04:24:30 EST 2025
Sun Nov 09 10:19:43 EST 2025
Fri Jul 25 09:29:30 EDT 2025
Tue Nov 18 22:26:22 EST 2025
Sat Nov 29 07:09:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-a7577881b69f11862f09fa466f8f520eaed54749a5ad14e686118d95ce5b72d33
Notes SourceType-Scholarly Journals-1
ObjectType-Correspondence-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.proquest.com/docview/2550316184?pq-origsite=%requestingapplication%
PQID 2550316184
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_d01e4c86b15841598b4a1d04ba15a94d
proquest_miscellaneous_2986227429
proquest_journals_2550316184
crossref_citationtrail_10_3390_rs12010101
crossref_primary_10_3390_rs12010101
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_4) 2016; 13
Datar (ref_8) 2004; 8–11
ref_14
ref_11
Ma (ref_2) 2015; 53
ref_18
Lowe (ref_15) 2004; 60
Li (ref_5) 2018; 146
Li (ref_20) 2018; 56
Demir (ref_12) 2016; 54
ref_25
Patil (ref_6) 2015; 8
Li (ref_13) 2017; 14
ref_23
Xia (ref_24) 2017; 55
ref_22
Gong (ref_10) 2012; 35
ref_21
Li (ref_19) 2018; 56
Yu (ref_17) 2017; 54
ref_29
ref_28
ref_27
ref_26
Oliva (ref_16) 2001; 42
Ma (ref_3) 2019; 127
Weiss (ref_9) 2008; 8–11
Wang (ref_1) 2018; 19
ref_7
References_xml – volume: 19
  start-page: 230
  year: 2018
  ident: ref_1
  article-title: Embedding Structured Contour and Location Prior in Siamesed Fully Convolutional Networks for Road Detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2749964
– ident: ref_22
  doi: 10.1109/ICCV.2017.598
– volume: 8–11
  start-page: 1753
  year: 2008
  ident: ref_9
  article-title: Spectral Hashing
  publication-title: Neural Inf. Process. Syst.
– volume: 55
  start-page: 3965
  year: 2017
  ident: ref_24
  article-title: AID: A Benchmark Dataset for Performance Evaluation of Aerial Scene Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2685945
– ident: ref_26
  doi: 10.1109/CVPR.2015.7298598
– ident: ref_28
  doi: 10.1609/aaai.v30i1.10235
– ident: ref_27
  doi: 10.1609/aaai.v30i1.10176
– volume: 8–11
  start-page: 253
  year: 2004
  ident: ref_8
  article-title: Locality-sensitive hashing scheme based on p-stable distributions
  publication-title: Symp. Comput. Geom.
– volume: 127
  start-page: 512
  year: 2019
  ident: ref_3
  article-title: Locality preserving matching
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-018-1117-z
– volume: 54
  start-page: 892
  year: 2016
  ident: ref_12
  article-title: Hashing-Based Scalable Remote Sensing Image Search and Retrieval in Large Archives
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2469138
– ident: ref_11
  doi: 10.1109/IGARSS.2015.7326056
– ident: ref_21
– volume: 60
  start-page: 91
  year: 2004
  ident: ref_15
  article-title: Distinctive Image Features from Scale-Invariant Keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref_23
  doi: 10.1145/1869790.1869829
– ident: ref_25
– ident: ref_29
  doi: 10.1109/CVPR.2016.227
– volume: 13
  start-page: 157
  year: 2016
  ident: ref_4
  article-title: Unsupervised Multilayer Feature Learning for Satellite Image Scene Classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2015.2503142
– volume: 56
  start-page: 950
  year: 2018
  ident: ref_19
  article-title: Large-Scale Remote Sensing Image Retrieval by Deep Hashing Neural Networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2756911
– volume: 56
  start-page: 6521
  year: 2018
  ident: ref_20
  article-title: Learning Source-Invariant Deep Hashing Convolutional Neural Networks for Cross-Source Remote Sensing Image Retrieval
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2839705
– volume: 53
  start-page: 6469
  year: 2015
  ident: ref_2
  article-title: Robust feature matching for remote sensing image registration via locally linear transforming
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2441954
– volume: 8
  start-page: 6967
  year: 2015
  ident: ref_6
  article-title: Remote Sensing and GIS based soil erosion assessment from an agricultural watershed
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-014-1718-y
– volume: 35
  start-page: 2916
  year: 2012
  ident: ref_10
  article-title: Iterative quantization: A procrustean approach to learning binary codes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.193
– ident: ref_18
  doi: 10.1609/aaai.v30i1.9906
– ident: ref_14
  doi: 10.3390/rs10050709
– ident: ref_7
  doi: 10.1109/CVPR.2010.5539994
– volume: 14
  start-page: 464
  year: 2017
  ident: ref_13
  article-title: Partial Randomness Hashing for Large-Scale Remote Sensing Image Retrieval
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2651056
– volume: 54
  start-page: 741
  year: 2017
  ident: ref_17
  article-title: Deep learning in remote sensing scene classification: A data augmentation enhanced convolutional neural network framework
  publication-title: Gisci. Remote Sens.
  doi: 10.1080/15481603.2017.1323377
– volume: 42
  start-page: 145
  year: 2001
  ident: ref_16
  article-title: Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1011139631724
– volume: 146
  start-page: 182
  year: 2018
  ident: ref_5
  article-title: Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images
  publication-title: Isprs J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.09.014
SSID ssj0000331904
Score 2.4122407
Snippet Recently, the demand for remote sensing image retrieval is growing and attracting the interest of many researchers because of the increasing number of remote...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 101
SubjectTerms Approximation
Binary codes
Codes
Cohesion
cohesion intensive
data collection
Datasets
deep hashing
Deep learning
gradualness optimization
Image management
Image retrieval
Neural networks
Optimization
Performance enhancement
Remote sensing
remote sensing image retrieval
residual net
spatial data
system optimization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4igl7EJ1ZXqejFQ7Fp0zQ5-kRBFvGFt5LHFAXtLrur4L93pu1WQcGLt5AMNHyTTDJJ-n2M7TthTWZ4GflU-UgkVkUWuEWHSEiIT8TXTEwPV3m_rx4f9fU3qS96E9bQAzfAHfqYg3BKWo5LJa69ygrDfYyf4JnRwlP0xV3Pt2SqjsEpDq1YNHykKeb1h6Mxp4tf3qq_TFegmqj_RxyuF5fzJbbY7grDo6Y3y2wGqhU23wqUP32ssmP6jYIOtsLuzXl4CjAMLxoxpBD3nuENIO4Q3lI7Vl2-YqzASpLMwvG0xu7Pz-5OLqJW_iByqRaTyORZTmTvVuoS0wCZlLEujZCyVGWWxGDAZyIXGrH2XIBUEq28zhxkNk98mq6z2WpQwQYLET1w4JSxSYxgGgU6dUmJRVtKLAbsYApJ4VpucJKoeCkwRyD4ii_4ArbX2Q4bRoxfrY4J2c6CWKzrCvRt0fq2-Mu3AetN_VK0U2tcYA6EgYh0agK22zXjpKCbDlPB4A1tNMJFl9B68z_6scUWEkqz65OXHpudjN5gm82598nzeLRTj7xPZkTb5Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Cohesion Intensive Deep Hashing for Remote Sensing Image Retrieval
URI https://www.proquest.com/docview/2550316184
https://www.proquest.com/docview/2986227429
https://doaj.org/article/d01e4c86b15841598b4a1d04ba15a94d
Volume 12
WOSCitedRecordID wos000515391700101&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VLRJcoOUhFsoqFVw4RI0Tx4lPFQtbtRKsohZQ4RL5MaGVYHfZ3SL1wm9nJutND6166SWx7FFkecb2zNj5PoC3TlqTG9HEPit9LFNbxhaFJYUoTBlPxLdITN8-FeNxeXqqq5BwW4Rrles1sV2o_dRxjnyPXF-yP6Yn2Z_9iZk1ik9XA4XGPdhkpDLZg83haFwdd1mWJCMTS-QKlzSj-H5vvhB8ACwCC8x6J2oB-6-tx-0mc_D4rt3bgkfBvYzer-xhGzZw8gQeBKbzs8unMOT_MThDFnWX16OPiLPocMWqFJETGx0jKRCjE26nqqPftOhQJXNvkWE-g68Hoy8fDuPAoxC7TMtlbIq8YNR4q3RD8YRKm0Q3RirVlE2eJmjQ57KQmpTmhURVKpLyOneY2yL1WfYcepPpBF9ApKxAh640Nk0kvUrUmUsbKtpGUbEP79ZjWrsAMs5cF79qCjZ4_Our8e_Dm052toLWuFFqyKrpJBgOu62Yzn_WYXbVPhFIfaDekT9FDlpppRE-ITsUudHS92FnrbU6zNFFfaWyPux2zTS7-MjETHB6QTKahotPs_XL2z_xCh6mHIm3yZkd6C3nF_ga7ru_y_PFfBDMctBG_AO-X3rCz38jelb5D2qvjj5X3_8Dzcjxag
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW6RyoTzFQgEj4MAhauw4Dx8qRCnVrrpdraCgcgp2PKGVYHe7uy3qn-I3MpNXDyBuPXBKZI8ix_N5PJ5J5gN4WWhnYyvLwEeZD7RyWeBQOlJIgorrifiqEtPnUToeZ8fHZrIGv9p_YfizytYmVobazwqOkW-T60v4Y3qSN_OzgFmjOLvaUmjUsDjAy590ZFvuDPdIv6-U2n9_9G4QNKwCQREZvQpsGqdcQ90lpiTvOlFlaEqrk6TMyliFaNHHOtWGXsFLjUmWkJQ3cYGxS5XnACiZ_HVNYM96sD4ZHk6-dFGdMCJIh7qugxpFJtxeLCUnnGXDOtPufBVBwB_2v9rU9jf_t-m4Dbca91m8rfF-B9Zwehc2Gib3k8t7sMv_m3AEUHQf54s9xLkY1KxRgpx08QEJoCg-cj81DX-QUaVG5hajhXcfPl3LKzyA3nQ2xYcgEiexwCKzToWaLhmaqFAl3boyods-vG51mBdNEXXm8vie02GK9Z1f6bsPLzrZeV065K9SuwyFToLLfVcNs8W3vLEeuQ8l0hhodOQvkgOaOW2lD2mdydga7fuw1aIkb2zQMr-CSB-ed91kPTglZKc4OycZQ9PF2Xrz6N-PeAYbg6PDUT4ajg8ew03FUYcqELUFvdXiHJ_AjeJidbpcPG2WhICv1w2735dZRzc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWwRceCMWCgQBBw7RJo7j2AeEul1WXbVarcpDvaWxPaGVYHfZ3YL61_h1zOTVA4hbD5xiOaPIyXwej2ec-QBeOWmLtIjL0Cfah1JYHVqMLSlEoeB6Ir6qxPT5MJtO9fGxmW3Br_ZfGD5W2drEylD7heMY-YBcX8If05MMyuZYxGw0frf8HjKDFGdaWzqNGiIHePGTtm_rt5MR6fq1EOP3H_f2w4ZhIHSJkZuwyNKM66lbZUrytJUoI1MWUqlSl6mIsECfykwaeh0fS1RakZQ3qcPUZsJzMJTM_7ZWWSR6sD3bG-4edRGeKCF4R7KuiZokJhqs1jEnn-OGgaZdBSuygD_WgmqBG9_-nz_NHbjVuNXBbj0P7sIWzu_BjYbh_fTiPgz5PxSODAbdof1ghLgM9ms2qYCc9-AICbgYfOD71DX5RsaWOplzjCbkA_h0Ja_wEHrzxRwfQaBsjA6dLqyIJF00msSJkpq2VNTsw5tWn7lriqszx8fXnDZZrPv8Uvd9eNnJLuuSIn-VGjIsOgkuA151LFZf8saq5D6KkcZAoyM_khxTbWUR-4jmX5wWRvo-7LSIyRvbtM4v4dKHF91tsiqcKirmuDgnGUOfi7P45vG_H_EcrhPW8sPJ9OAJ3BQcjKjiUzvQ26zO8Slccz82Z-vVs2Z2BHBy1aj7DRQrT6c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cohesion+Intensive+Deep+Hashing+for+Remote+Sensing+Image+Retrieval&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Han%2C+Lirong&rft.au=Li%2C+Peng&rft.au=Bai%2C+Xiao&rft.au=Grecos%2C+Christos&rft.date=2020-01-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=12&rft.issue=1&rft.spage=101&rft_id=info:doi/10.3390%2Frs12010101&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs12010101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon