A Fast Distributed Algorithm for Large-Scale Demand Response Aggregation
A major challenge to implementing residential demand response is that of aligning the objectives of many households, each of which aims to minimize its payments and maximize its comfort level, while balancing this with the objectives of an aggregator that aims to minimize the cost of electricity pur...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on smart grid Jg. 7; H. 4; S. 2094 - 2107 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.07.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1949-3053, 1949-3061 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A major challenge to implementing residential demand response is that of aligning the objectives of many households, each of which aims to minimize its payments and maximize its comfort level, while balancing this with the objectives of an aggregator that aims to minimize the cost of electricity purchased in a pooled wholesale market. This paper presents a fast distributed algorithm for aggregating a large number of households with a mixture of discrete and continuous energy levels. A distinctive feature of the method in this paper is that the nonconvex demand response (DR) problem is decomposed in terms of households as opposed to devices, which allows incorporating more intricate couplings between energy storage devices, appliances, and distributed energy resources. The proposed method is a fast distributed algorithm applied to the double smoothed dual function of the adopted DR model. The method is tested on systems with up to 2560 households, each with 10 devices on average. The proposed algorithm is designed to terminate in 60 iterations irrespective of system size, which can be ideal for an on-line version of this problem. Moreover, numerical results show that with minimal parameter tuning, the algorithm exhibits a very similar convergence behavior throughout the studied systems and converges to near-optimal solutions, which corroborates its scalability. |
|---|---|
| AbstractList | A major challenge to implementing residential demand response is that of aligning the objectives of many households, each of which aims to minimize its payments and maximize its comfort level, while balancing this with the objectives of an aggregator that aims to minimize the cost of electricity purchased in a pooled wholesale market. This paper presents a fast distributed algorithm for aggregating a large number of households with a mixture of discrete and continuous energy levels. A distinctive feature of the method in this paper is that the nonconvex demand response (DR) problem is decomposed in terms of households as opposed to devices, which allows incorporating more intricate couplings between energy storage devices, appliances, and distributed energy resources. The proposed method is a fast distributed algorithm applied to the double smoothed dual function of the adopted DR model. The method is tested on systems with up to 2560 households, each with 10 devices on average. The proposed algorithm is designed to terminate in 60 iterations irrespective of system size, which can be ideal for an on-line version of this problem. Moreover, numerical results show that with minimal parameter tuning, the algorithm exhibits a very similar convergence behavior throughout the studied systems and converges to near-optimal solutions, which corroborates its scalability. |
| Author | Chapman, Archie C. Verbic, Gregor Mhanna, Sleiman |
| Author_xml | – sequence: 1 givenname: Sleiman surname: Mhanna fullname: Mhanna, Sleiman email: sleiman.mhanna@sydney.edu.au organization: Univ. of Sydney, Sydney, NSW, Australia – sequence: 2 givenname: Archie C. surname: Chapman fullname: Chapman, Archie C. organization: Univ. of Sydney, Sydney, NSW, Australia – sequence: 3 givenname: Gregor surname: Verbic fullname: Verbic, Gregor organization: Univ. of Sydney, Sydney, NSW, Australia |
| BookMark | eNp9kDFPwzAQhS1UJErpjsQSiYUlxY5jOx6rlrZIlZBomS0nuQRXSVxsd-Dfk9KqAwO33A3fu7v3btGgsx0gdE_whBAsn7eb5STBhE8SRrlI8RUaEpnKmGJOBpeZ0Rs09n6H-6KU8kQO0WoaLbQP0dz44Ex-CFBG06a2zoTPNqqsi9ba1RBvCt1ANIdWd2X0Dn5vOw_RtK4d1DoY292h60o3HsbnPkIfi5ftbBWv35avs-k6LqhMQyyzilKWEcoqmZeYcSglS7mEJOFSpDKvJC8qrTGTONdpTnBWCA7Qm-K5FCUdoafT3r2zXwfwQbXGF9A0ugN78IpkCWMJoUL06OMfdGcPruu_U0TILJP9XdxT_EQVznrvoFKFCb-WgtOmUQSrY8aqz1gdM1bnjHsh_iPcO9Nq9_2f5OEkMQBwwUVKaSoo_QEwFYZv |
| CODEN | ITSGBQ |
| CitedBy_id | crossref_primary_10_1016_j_est_2022_104056 crossref_primary_10_1016_j_ijepes_2021_107025 crossref_primary_10_1016_j_enbuild_2021_111731 crossref_primary_10_1109_TSG_2016_2629515 crossref_primary_10_1016_j_energy_2018_07_132 crossref_primary_10_1109_TPWRS_2018_2874255 crossref_primary_10_1016_j_rser_2021_111890 crossref_primary_10_1049_iet_gtd_2018_5299 crossref_primary_10_1016_j_apenergy_2023_121018 crossref_primary_10_3390_en12193727 crossref_primary_10_1016_j_ijepes_2024_110407 crossref_primary_10_1016_j_rser_2017_05_118 crossref_primary_10_1016_j_jclepro_2022_135441 crossref_primary_10_1109_TSG_2017_2663780 crossref_primary_10_1049_gtd2_12392 crossref_primary_10_1016_j_apenergy_2020_115851 crossref_primary_10_1109_TSG_2020_2979435 crossref_primary_10_1016_j_rser_2024_115242 crossref_primary_10_1109_TPWRS_2018_2867476 crossref_primary_10_1109_TSG_2017_2768520 crossref_primary_10_1016_j_energy_2017_05_114 crossref_primary_10_1109_TSG_2019_2932621 crossref_primary_10_1109_TAC_2019_2927925 crossref_primary_10_3390_s20072157 crossref_primary_10_1109_TSTE_2019_2892603 crossref_primary_10_1109_ACCESS_2020_2968000 crossref_primary_10_1016_j_knosys_2021_107133 crossref_primary_10_1109_TIE_2018_2826454 crossref_primary_10_3390_en11020384 crossref_primary_10_1016_j_apenergy_2023_120770 crossref_primary_10_1016_j_rser_2020_110000 crossref_primary_10_1007_s12652_018_0761_z crossref_primary_10_1109_TSG_2019_2926956 crossref_primary_10_1016_j_compchemeng_2022_107777 crossref_primary_10_1016_j_energy_2025_136296 crossref_primary_10_1016_j_jprocont_2019_12_011 crossref_primary_10_1109_TPWRS_2022_3227178 crossref_primary_10_1016_j_apenergy_2020_115495 crossref_primary_10_1109_TII_2017_2787121 crossref_primary_10_1109_TII_2020_2998479 crossref_primary_10_3390_en17236182 crossref_primary_10_3390_app10020594 crossref_primary_10_1016_j_energy_2020_118267 crossref_primary_10_3390_app9235226 crossref_primary_10_1016_j_ifacol_2016_10_771 crossref_primary_10_1109_TSG_2017_2686873 crossref_primary_10_1109_TSG_2018_2878445 crossref_primary_10_1109_TSG_2020_2965221 crossref_primary_10_1061__ASCE_EY_1943_7897_0000623 crossref_primary_10_1109_ACCESS_2019_2911301 crossref_primary_10_1109_ACCESS_2020_2994462 crossref_primary_10_1007_s40565_018_0426_0 crossref_primary_10_1109_ACCESS_2020_3040391 crossref_primary_10_1109_TCC_2021_3117956 crossref_primary_10_1109_TSMC_2022_3218039 crossref_primary_10_1016_j_apenergy_2021_117159 crossref_primary_10_1109_ACCESS_2020_2978196 crossref_primary_10_1109_TSTE_2018_2815502 crossref_primary_10_1049_gtd2_12570 crossref_primary_10_1109_TPWRS_2017_2771945 crossref_primary_10_3390_pr7080499 crossref_primary_10_1134_S0005117918060036 crossref_primary_10_1016_j_buildenv_2024_111988 crossref_primary_10_1109_TSG_2025_3570439 crossref_primary_10_1109_TIA_2020_2988853 crossref_primary_10_3390_app8030452 crossref_primary_10_1109_JSYST_2017_2713798 crossref_primary_10_1016_j_apenergy_2021_118362 crossref_primary_10_1007_s10479_022_05054_y crossref_primary_10_1109_ACCESS_2018_2872929 crossref_primary_10_1109_MPE_2021_3072820 crossref_primary_10_1109_TII_2017_2670065 |
| Cites_doi | 10.1109/TSG.2014.2346511 10.1109/TSG.2013.2296714 10.1109/TSG.2013.2264970 10.1137/110826102 10.1109/TII.2014.2316639 10.1109/TSG.2015.2429152 10.1109/TPWRS.2009.2037232 10.1109/TSG.2014.2350831 10.1109/TSG.2013.2291330 10.1109/TSG.2014.2310395 10.1109/TETC.2014.2335541 10.1109/TSG.2014.2363098 10.1109/TSG.2015.2413813 10.1109/CDC.2011.6161081 10.1109/TSG.2014.2325912 10.1109/TSG.2015.2419818 10.1145/2018536.2018546 10.1109/CDC.2012.6426193 10.1016/0362-546X(94)00186-L 10.1109/TSG.2014.2388357 10.1109/TSG.2013.2258179 10.1109/TSG.2014.2352650 10.1109/CDC.2011.6161103 10.1109/PES.2011.6039082 10.1109/TSG.2015.2445491 10.1109/TSG.2015.2430364 10.1109/ISGT-Asia.2012.6303137 10.1109/TSG.2011.2176518 10.1109/TSG.2012.2212729 10.1109/TSG.2016.2522923 10.1109/TSG.2013.2291003 10.1109/GlobalSIP.2013.6737021 10.1007/978-1-4419-8853-9 10.1109/TSG.2014.2375671 10.1109/TSG.2015.2459753 10.1109/TSG.2012.2206060 10.1007/978-3-642-46092-0 10.1109/TSG.2014.2313347 10.1007/s10107-004-0552-5 10.1109/TSG.2013.2257893 10.1109/TSG.2013.2279110 10.1109/SMARTGRID.2010.5622077 10.1109/TSG.2014.2349352 10.1109/TSG.2015.2479557 10.1109/TSG.2013.2274521 10.1109/TSG.2014.2318836 10.1109/TSG.2015.2457905 10.1109/TSG.2013.2290894 10.1109/TSP.2013.2248002 10.1109/TSG.2015.2419814 10.1109/TSG.2014.2318894 10.1109/TSG.2015.2469669 10.1109/TSG.2016.2516559 10.1109/TSG.2012.2201182 10.1109/TSG.2012.2223766 10.1109/IREP.2013.6629395 10.1109/TSG.2015.2431324 10.1109/TSG.2015.2467213 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.1109/TSG.2016.2536740 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1949-3061 |
| EndPage | 2107 |
| ExternalDocumentID | 4096834541 10_1109_TSG_2016_2536740 7433473 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Australian Research Council through the Australian Research Council’s Linkage Projects Funding Scheme grantid: LP110200784 funderid: 10.13039/501100000923 – fundername: Ausgrid |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M RIG |
| ID | FETCH-LOGICAL-c394t-98f3358135f9bd056ed95469e2269749bf96cfaa0590ba4b108c76ee7406b97d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 91 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379696800034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1949-3053 |
| IngestDate | Thu Oct 02 15:26:47 EDT 2025 Mon Jun 30 09:52:18 EDT 2025 Tue Nov 18 21:44:03 EST 2025 Sat Nov 29 03:45:49 EST 2025 Tue Aug 26 16:42:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Dual decomposition smart grid accelerated gradient methods smoothing techniques mixed-integer variables energy management demand response aggregation |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-98f3358135f9bd056ed95469e2269749bf96cfaa0590ba4b108c76ee7406b97d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1798894690 |
| PQPubID | 2040408 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSG_2016_2536740 crossref_primary_10_1109_TSG_2016_2536740 ieee_primary_7433473 proquest_miscellaneous_1825521377 proquest_journals_1798894690 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-07-01 |
| PublicationDateYYYYMMDD | 2016-07-01 |
| PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on smart grid |
| PublicationTitleAbbrev | TSG |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref52 rajan (ref55) 2005 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 fourer (ref66) 1989 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 (ref57) 2015 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 (ref64) 2016 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref63 ref65 ref21 ausubel (ref53) 2006 ref28 liu (ref22) 2014; 8 ref27 ref29 bertsekas (ref60) 1999 boyd (ref61) 2008 ref62 (ref67) 2015 |
| References_xml | – ident: ref33 doi: 10.1109/TSG.2014.2346511 – ident: ref27 doi: 10.1109/TSG.2013.2296714 – ident: ref14 doi: 10.1109/TSG.2013.2264970 – ident: ref63 doi: 10.1137/110826102 – year: 2016 ident: ref64 publication-title: Appliance Energy Usage Guide – ident: ref44 doi: 10.1109/TII.2014.2316639 – ident: ref7 doi: 10.1109/TSG.2015.2429152 – volume: 8 start-page: 1084 year: 2014 ident: ref22 article-title: Peak-to-average ratio constrained demand-side management with consumer's preference in residential smart grid publication-title: IEEE J Emerg Sel Topics Power Electron – ident: ref56 doi: 10.1109/TPWRS.2009.2037232 – ident: ref16 doi: 10.1109/TSG.2014.2350831 – ident: ref32 doi: 10.1109/TSG.2013.2291330 – ident: ref11 doi: 10.1109/TSG.2014.2310395 – ident: ref23 doi: 10.1109/TETC.2014.2335541 – ident: ref49 doi: 10.1109/TSG.2014.2363098 – ident: ref6 doi: 10.1109/TSG.2015.2413813 – ident: ref2 doi: 10.1109/CDC.2011.6161081 – ident: ref17 doi: 10.1109/TSG.2014.2325912 – ident: ref31 doi: 10.1109/TSG.2015.2419818 – ident: ref1 doi: 10.1145/2018536.2018546 – ident: ref41 doi: 10.1109/CDC.2012.6426193 – ident: ref59 doi: 10.1016/0362-546X(94)00186-L – ident: ref18 doi: 10.1109/TSG.2014.2388357 – ident: ref29 doi: 10.1109/TSG.2013.2258179 – ident: ref65 doi: 10.1109/TSG.2014.2352650 – ident: ref46 doi: 10.1109/CDC.2011.6161103 – year: 2015 ident: ref67 publication-title: Gurobi Optimizer Reference Manual – year: 2005 ident: ref55 article-title: Minimum up/down polytopes of the unit commitment problem with start-up costs – ident: ref21 doi: 10.1109/PES.2011.6039082 – ident: ref5 doi: 10.1109/TSG.2015.2445491 – ident: ref37 doi: 10.1109/TSG.2015.2430364 – ident: ref8 doi: 10.1109/ISGT-Asia.2012.6303137 – ident: ref26 doi: 10.1109/TSG.2011.2176518 – ident: ref4 doi: 10.1109/TSG.2012.2212729 – ident: ref52 doi: 10.1109/TSG.2016.2522923 – ident: ref47 doi: 10.1109/TSG.2013.2291003 – ident: ref28 doi: 10.1109/GlobalSIP.2013.6737021 – ident: ref54 doi: 10.1007/978-1-4419-8853-9 – ident: ref50 doi: 10.1109/TSG.2014.2375671 – ident: ref45 doi: 10.1109/TSG.2015.2459753 – year: 2015 ident: ref57 publication-title: Thermal Model of a House – ident: ref39 doi: 10.1109/TSG.2012.2206060 – ident: ref58 doi: 10.1007/978-3-642-46092-0 – ident: ref43 doi: 10.1109/TSG.2014.2313347 – ident: ref62 doi: 10.1007/s10107-004-0552-5 – year: 1989 ident: ref66 publication-title: Algorithms and Model Formulations in Mathematical Programming – ident: ref48 doi: 10.1109/TSG.2013.2257893 – ident: ref15 doi: 10.1109/TSG.2013.2279110 – ident: ref24 doi: 10.1109/SMARTGRID.2010.5622077 – ident: ref3 doi: 10.1109/TSG.2014.2349352 – year: 1999 ident: ref60 publication-title: Nonlinear Programming Belmont – ident: ref34 doi: 10.1109/TSG.2015.2479557 – ident: ref9 doi: 10.1109/TSG.2013.2274521 – ident: ref20 doi: 10.1109/TSG.2014.2318836 – ident: ref51 doi: 10.1109/TSG.2015.2457905 – year: 2006 ident: ref53 publication-title: The Clock-Proxy Auction A Practical Combinatorial Auction Design – ident: ref10 doi: 10.1109/TSG.2013.2290894 – ident: ref40 doi: 10.1109/TSP.2013.2248002 – ident: ref38 doi: 10.1109/TSG.2015.2419814 – ident: ref42 doi: 10.1109/TSG.2014.2318894 – year: 2008 ident: ref61 publication-title: Subgradient Methods Lecture Notes of EE392o – ident: ref35 doi: 10.1109/TSG.2015.2469669 – ident: ref19 doi: 10.1109/TSG.2016.2516559 – ident: ref13 doi: 10.1109/TSG.2012.2201182 – ident: ref25 doi: 10.1109/TSG.2012.2223766 – ident: ref12 doi: 10.1109/IREP.2013.6629395 – ident: ref30 doi: 10.1109/TSG.2015.2431324 – ident: ref36 doi: 10.1109/TSG.2015.2467213 |
| SSID | ssj0000333629 |
| Score | 2.4915981 |
| Snippet | A major challenge to implementing residential demand response is that of aligning the objectives of many households, each of which aims to minimize its... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2094 |
| SubjectTerms | accelerated gradient methods Algorithm design and analysis Algorithms Couplings demand response aggregation Devices Direct reduction Distributed algorithms Dual decomposition Electric utilities energy management Energy resources Energy states Households Load management Markets Mathematical models mixed-integer variables Residential energy smart grid smoothing techniques Temperature distribution Tuning |
| Title | A Fast Distributed Algorithm for Large-Scale Demand Response Aggregation |
| URI | https://ieeexplore.ieee.org/document/7433473 https://www.proquest.com/docview/1798894690 https://www.proquest.com/docview/1825521377 |
| Volume | 7 |
| WOSCitedRecordID | wos000379696800034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1949-3061 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000333629 issn: 1949-3053 databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UPOjBt1hfrOBFMDZmk2z2WNTqQUR84S1sspMqaCpt6u93ZpMGQRG8JWTyYCa7M988AQ45WoZBoDzSppEXok08EyKd-r7NTRBndX3F07W6uUmen_XtDBy3tTCI6JLP8IQPXSzfDvMJu8q6pO1kqOQszCql6lqt1p_iS0l7sXZB5JDD-ZGcRiV93X24v-Q0rvgkiGSs2NPxTQu5sSo_9mKnYPrL__u0FVhqDEnRqyW_CjNYrsHit_aC63DVE30zrsQ5N8fluVZoRe9tMBy9Vi_vgqxVcc154N49yQnFOb6b0oq7OmkWRW9AUHzgBLcBj_2Lh7Mrr5mc4OVSh5Wnk0JyYzMZFTqzZOOg1REBYZJKTABCZ4WO88IYrjzNTJid-kmuYkTiTJxpZeUmzJXDErdAsGPI2KzIbGRJqobxTRKgCsxpTKZF0oHulJNp3rQV5-kWb6mDF75Oifcp8z5teN-Bo_aOj7qlxh-068zrlq5hcwd2p8JKmzU3Tl3rNc1wvwMH7WVaLRwCMSUOJ0RDgJgMFqnU9u9P3oEFfn-dkLsLc9Vognswn39Wr-PRvvvlvgCfs9Cy |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8BmwR72BdMdANmJF6QSJvGSRw_VoPSaaVC0E28RU586ZAgndp0f__unDRC2oS0t0S5RNbvYt_3HcAJR8swCJRH0jTyQrSJZ0KkW9-3uQnirK6v-DFWk0lyd6evN-CsrYVBRJd8hl2-dLF8O89X7CrrkbSToZKb8CIKw6BfV2u1HhVfSjqNtQsjhxzQj-Q6Lunr3vT2khO54m4QyVixr-OJHHKDVf46jZ2IGb75v8W9hdeNKikGNe_fwQaW7-HVkwaDuzAaiKFZVuKc2-PyZCu0YvAwmy_uq5-PgvRVMeZMcO-WOIXiHB9NacVNnTaLYjAjY3zmWLcH34cX0y8jr5md4OVSh5Wnk0JyazMZFTqzpOWg1RGZwsSXmEwInRU6zgtjuPY0M2HW95NcxYiETJxpZeUH2CrnJe6DYNeQsVmR2cgSXw1bOEmAKjD9mJSLpAO9NZJp3jQW5_kWD6kzMHydEvYpY5822HfgtH3jV91U4xnaXca6pWtg7sDBmllps-uWqWu-ptng78Bx-5j2CwdBTInzFdGQSUwqi1Tq47-__Bm2R9OrcTr-Ovn2CXZ4LXV67gFsVYsVHsLL_Hd1v1wcud_vD6VL0_k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fast+Distributed+Algorithm+for+Large-Scale+Demand+Response+Aggregation&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Mhanna%2C+Sleiman&rft.au=Chapman%2C+Archie+C&rft.au=Verbic%2C+Gregor&rft.date=2016-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=7&rft.issue=4&rft.spage=2094&rft_id=info:doi/10.1109%2FTSG.2016.2536740&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4096834541 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon |