A Constrained Graph-Based Semi-Supervised Algorithm Combined with Particle Cooperation and Competition for Hyperspectral Image Classification

Semi-supervised learning (SSL) focuses on the way to improve learning efficiency through the use of labeled and unlabeled samples concurrently. However, recent research indicates that the classification performance might be deteriorated by the unlabeled samples. Here, we proposed a novel graph-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Jg. 13; H. 2; S. 193
Hauptverfasser: He, Ziping, Xia, Kewen, Li, Tiejun, Zu, Baokai, Yin, Zhixian, Zhang, Jiangnan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.01.2021
Schlagworte:
ISSN:2072-4292, 2072-4292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Semi-supervised learning (SSL) focuses on the way to improve learning efficiency through the use of labeled and unlabeled samples concurrently. However, recent research indicates that the classification performance might be deteriorated by the unlabeled samples. Here, we proposed a novel graph-based semi-supervised algorithm combined with particle cooperation and competition, which can improve the model performance effectively by using unlabeled samples. First, for the purpose of reducing the generation of label noise, we used an efficient constrained graph construction approach to calculate the affinity matrix, which is capable of constructing a highly correlated similarity relationship between the graph and the samples. Then, we introduced a particle competition and cooperation mechanism into label propagation, which could detect and re-label misclassified samples dynamically, thus stopping the propagation of wrong labels and allowing the overall model to obtain better classification performance by using predicted labeled samples. Finally, we applied the proposed model into hyperspectral image classification. The experiments used three real hyperspectral datasets to verify and evaluate the performance of our proposal. From the obtained results on three public datasets, our proposal shows great hyperspectral image classification performance when compared to traditional graph-based SSL algorithms.
AbstractList Semi-supervised learning (SSL) focuses on the way to improve learning efficiency through the use of labeled and unlabeled samples concurrently. However, recent research indicates that the classification performance might be deteriorated by the unlabeled samples. Here, we proposed a novel graph-based semi-supervised algorithm combined with particle cooperation and competition, which can improve the model performance effectively by using unlabeled samples. First, for the purpose of reducing the generation of label noise, we used an efficient constrained graph construction approach to calculate the affinity matrix, which is capable of constructing a highly correlated similarity relationship between the graph and the samples. Then, we introduced a particle competition and cooperation mechanism into label propagation, which could detect and re-label misclassified samples dynamically, thus stopping the propagation of wrong labels and allowing the overall model to obtain better classification performance by using predicted labeled samples. Finally, we applied the proposed model into hyperspectral image classification. The experiments used three real hyperspectral datasets to verify and evaluate the performance of our proposal. From the obtained results on three public datasets, our proposal shows great hyperspectral image classification performance when compared to traditional graph-based SSL algorithms.
Author Yin, Zhixian
He, Ziping
Xia, Kewen
Zhang, Jiangnan
Li, Tiejun
Zu, Baokai
Author_xml – sequence: 1
  givenname: Ziping
  surname: He
  fullname: He, Ziping
– sequence: 2
  givenname: Kewen
  surname: Xia
  fullname: Xia, Kewen
– sequence: 3
  givenname: Tiejun
  surname: Li
  fullname: Li, Tiejun
– sequence: 4
  givenname: Baokai
  surname: Zu
  fullname: Zu, Baokai
– sequence: 5
  givenname: Zhixian
  surname: Yin
  fullname: Yin, Zhixian
– sequence: 6
  givenname: Jiangnan
  surname: Zhang
  fullname: Zhang, Jiangnan
BookMark eNptkcFq3DAQhkVIoGmaS5_AkEspuJU0km0dt0ubLARaSHoWI1neaLEtV_Km5CH6ztV6U1pCddH8o--fYTSvyekYRkfIW0Y_ACj6MSYGlFOm4IScc1rzUnDFT_-JX5HLlHY0HwCmqDgnv1bFOoxpjuhH1xbXEaeH8hOmHN-5wZd3-8nFR3_Qq34bop8fhuwYzIL_zLL4hnH2tnc5HTKMsw9jgWN7wCY3-0V3IRY3T_k5Tc7mbn2xGXCbPT2m5DtvF9sbctZhn9zl831Bvn_5fL--KW-_Xm_Wq9vSghJzqSqnkFGoamEAG97aqm4rRl1llTPUSgvGSjBSNlXnjKKm4RKEaCwawSoBF2RzrNsG3Okp-gHjkw7o9ZIIcaufh9I1cI4SRcupFI42xjYICloB1EHVqlzr3bHWFMOPvUuzHnyyru9xdGGfNJeMsYZJWmf06gW6C_s45kk1F3XNQFIpM0WPlI0hpeg6bf28fM9hS71mVB_Wrf-uO1vev7D8mek_8G-HCazO
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3328388
crossref_primary_10_1109_JSTARS_2022_3173999
crossref_primary_10_3390_rs15153793
crossref_primary_10_1007_s10462_021_10018_y
crossref_primary_10_1007_s10707_021_00443_0
crossref_primary_10_1016_j_eswa_2022_117479
crossref_primary_10_1080_01431161_2022_2048916
crossref_primary_10_1007_s00362_024_01578_6
crossref_primary_10_1117_1_JRS_16_026513
crossref_primary_10_1134_S1054661824010085
crossref_primary_10_1109_JSTARS_2022_3192127
crossref_primary_10_1007_s10462_023_10397_4
crossref_primary_10_1016_j_compag_2023_108577
Cites_doi 10.3390/rs12061012
10.1609/aaai.v30i1.10302
10.3390/rs12020297
10.1109/JSTARS.2018.2880562
10.1109/SBRN.2012.16
10.1109/JSTARS.2017.2770144
10.1109/JSTARS.2018.2869376
10.3390/rs11242974
10.1109/TGRS.2013.2275613
10.1016/j.patrec.2018.05.001
10.1109/LGRS.2014.2380313
10.1109/JSTARS.2015.2453411
10.1007/s10115-013-0706-y
10.1364/JOSAA.381158
10.1109/TGRS.2018.2884771
10.1109/JSTARS.2018.2809781
10.3390/rs11060654
10.1109/TKDE.2011.119
10.1016/j.patrec.2018.10.001
10.1109/IGARSS.2018.8519132
10.1145/2623330.2623731
10.1109/ICCV.2013.323
10.1109/TGRS.2018.2888485
10.1109/ACCESS.2019.2947742
10.3390/rs12182976
10.1109/JSTARS.2015.2396577
10.3390/rs9040386
10.1109/LGRS.2019.2924059
10.1117/1.JRS.14.024522
10.1109/SSIAI.2018.8470307
10.1016/j.neucom.2014.08.082
10.1109/JSTARS.2018.2873051
10.1109/LGRS.2019.2928009
10.1109/TGRS.2004.842481
10.3390/rs12010159
10.1109/TGRS.2008.916090
10.3390/rs12091528
10.3390/rs10040515
10.1109/TGRS.2018.2838665
10.3390/rs10060817
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs13020193
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_7322a5a4d2054e08bc8a393d430e36d9
10_3390_rs13020193
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-96e9a103674b3a82dc67d610e6c9eb0c5c3bc53b5586feb90b8253448cab41643
IEDL.DBID BENPR
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000611949800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:40:33 EDT 2025
Fri Sep 05 07:31:45 EDT 2025
Mon Oct 20 02:59:40 EDT 2025
Tue Nov 18 21:41:53 EST 2025
Sat Nov 29 07:15:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-96e9a103674b3a82dc67d610e6c9eb0c5c3bc53b5586feb90b8253448cab41643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2477135055?pq-origsite=%requestingapplication%
PQID 2477135055
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_7322a5a4d2054e08bc8a393d430e36d9
proquest_miscellaneous_2511181507
proquest_journals_2477135055
crossref_citationtrail_10_3390_rs13020193
crossref_primary_10_3390_rs13020193
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Mukherjee (ref_17) 2017; 11
Cao (ref_46) 2020; 14
Breve (ref_26) 2011; 24
Kang (ref_49) 2013; 52
ref_14
Breve (ref_28) 2015; 160
ref_12
ref_11
ref_10
ref_19
Tu (ref_37) 2018; 11
Peerbhay (ref_36) 2015; 8
Zhou (ref_15) 2019; 57
Vanegas (ref_2) 2019; 123
Zhang (ref_35) 2018; 11
ref_25
ref_24
Raveaux (ref_23) 2020; 134
ref_22
ref_20
Fahime (ref_48) 2019; 13
ref_27
Liu (ref_13) 2018; 12
Haut (ref_32) 2018; 56
Triguero (ref_21) 2015; 42
Liu (ref_31) 2018; 11
Ham (ref_34) 2005; 43
Blanzieri (ref_38) 2008; 46
Zhao (ref_47) 2020; 17
ref_39
Mohanty (ref_18) 2019; 57
Gao (ref_30) 2014; 12
Xia (ref_45) 2020; 17
Hoang (ref_9) 2019; 7
Ahmadi (ref_16) 2020; 37
ref_44
ref_43
Priya (ref_33) 2015; 12
ref_42
ref_41
ref_40
ref_1
ref_3
ref_8
ref_5
ref_4
ref_7
ref_6
Tan (ref_29) 2015; 8
References_xml – ident: ref_14
  doi: 10.3390/rs12061012
– ident: ref_5
– ident: ref_25
  doi: 10.1609/aaai.v30i1.10302
– ident: ref_40
  doi: 10.3390/rs12020297
– volume: 12
  start-page: 1
  year: 2018
  ident: ref_13
  article-title: Superpixel-Based Semisupervised Active Learning for Hyperspectral Image Classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2880562
– ident: ref_27
  doi: 10.1109/SBRN.2012.16
– volume: 11
  start-page: 1203
  year: 2017
  ident: ref_17
  article-title: Spatially Constrained Semisupervised Local Angular Discriminant Analysis for Hyperspectral Images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2770144
– volume: 11
  start-page: 4063
  year: 2018
  ident: ref_37
  article-title: Hyperspectral Image Classification via Weighted Joint Nearest Neighbor and Sparse Representation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2869376
– ident: ref_41
  doi: 10.3390/rs11242974
– ident: ref_8
– ident: ref_4
– volume: 52
  start-page: 3742
  year: 2013
  ident: ref_49
  article-title: Feature Extraction of Hyperspectral Images with Image Fusion and Recursive Filtering
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2275613
– volume: 134
  start-page: 77
  year: 2020
  ident: ref_23
  article-title: Efficient k-nearest neighbors search in graph space
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.05.001
– volume: 12
  start-page: 1071
  year: 2015
  ident: ref_33
  article-title: Superpixels for Spatially Reinforced Bayesian Classification of Hyperspectral Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2380313
– volume: 8
  start-page: 4647
  year: 2015
  ident: ref_29
  article-title: GPU Parallel Implementation of Support Vector Machines for Hyperspectral Image Classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2453411
– volume: 42
  start-page: 245
  year: 2015
  ident: ref_21
  article-title: Self-labeled techniques for semi-supervised learning: Taxonomy, software and empirical study
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-013-0706-y
– volume: 37
  start-page: 606
  year: 2020
  ident: ref_16
  article-title: Semisupervised classification of hyperspectral images with low-rank representation kernel
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.381158
– volume: 57
  start-page: 3423
  year: 2019
  ident: ref_18
  article-title: A Semisupervised Spatial Spectral Regularized Manifold Local Scaling Cut with HGF for Dimensionality Reduction of Hyperspectral Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2884771
– volume: 11
  start-page: 1082
  year: 2018
  ident: ref_35
  article-title: Cascaded Random Forest for Hyperspectral Image Classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2809781
– ident: ref_42
  doi: 10.3390/rs11060654
– volume: 12
  start-page: 349
  year: 2014
  ident: ref_30
  article-title: Subspace-Based Support Vector Machines for Hyperspectral Image Classification
  publication-title: IEEE Geosci. Remote Sens. Lett.
– ident: ref_7
– ident: ref_3
– ident: ref_24
– volume: 24
  start-page: 1686
  year: 2011
  ident: ref_26
  article-title: Particle Competition and Cooperation in Networks for Semi-Supervised Learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.119
– volume: 123
  start-page: 97
  year: 2019
  ident: ref_2
  article-title: Scalable multi-label annotation via semi-supervised kernel semantic embedding
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.10.001
– ident: ref_11
  doi: 10.1109/IGARSS.2018.8519132
– ident: ref_22
  doi: 10.1145/2623330.2623731
– ident: ref_1
  doi: 10.1109/ICCV.2013.323
– volume: 57
  start-page: 3813
  year: 2019
  ident: ref_15
  article-title: Semisupervised Stacked Autoencoder With Cotraining for Hyperspectral Image Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2888485
– volume: 7
  start-page: 152187
  year: 2019
  ident: ref_9
  article-title: Detecting mobile traffic anomalies through physical control channel fingerprinting: A deep semi-supervised approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2947742
– ident: ref_20
  doi: 10.3390/rs12182976
– volume: 8
  start-page: 3107
  year: 2015
  ident: ref_36
  article-title: Random Forests Unsupervised Classification: The Detection and Mapping of Solanum mauritianum Infestations in Plantation Forestry Using Hyperspectral Data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2396577
– ident: ref_44
  doi: 10.3390/rs9040386
– ident: ref_6
– volume: 17
  start-page: 539
  year: 2020
  ident: ref_47
  article-title: Semisupervised Hyperspectral Image Classification with Cluster-Based Conditional Generative Adversarial Net
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2924059
– ident: ref_50
– volume: 14
  start-page: 024522
  year: 2020
  ident: ref_46
  article-title: Semisupervised hyperspectral imagery classification based on a three-dimensional convolutional adversarial autoencoder model with low sample requirements
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.14.024522
– ident: ref_10
  doi: 10.1109/SSIAI.2018.8470307
– volume: 160
  start-page: 63
  year: 2015
  ident: ref_28
  article-title: Particle competition and cooperation for semi-supervised learning with label noise
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.082
– volume: 11
  start-page: 4086
  year: 2018
  ident: ref_31
  article-title: Semisupervised Hyperspectral Image Classification via Laplacian Least Squares Support Vector Machine in Sum Space and Random Sampling
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2873051
– volume: 17
  start-page: 666
  year: 2020
  ident: ref_45
  article-title: Hyperspectral and LiDAR Classification with Semisupervised Graph Fusion
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2928009
– volume: 43
  start-page: 492
  year: 2005
  ident: ref_34
  article-title: Investigation of the random forest framework for classification of hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.842481
– ident: ref_19
  doi: 10.3390/rs12010159
– volume: 46
  start-page: 1804
  year: 2008
  ident: ref_38
  article-title: Nearest Neighbor Classification of Remote Sensing Images with the Maximal Margin Principle
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.916090
– ident: ref_39
  doi: 10.3390/rs12091528
– ident: ref_43
  doi: 10.3390/rs10040515
– volume: 13
  start-page: 036512
  year: 2019
  ident: ref_48
  article-title: Improving semisupervised hyperspectral unmixing using spatial correlation under a polynomial postnonlinear mixing model
  publication-title: J. Appl. Remote Sens.
– volume: 56
  start-page: 6440
  year: 2018
  ident: ref_32
  article-title: Active Learning with Convolutional Neural Networks for Hyperspectral Image Classification Using a New Bayesian Approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2838665
– ident: ref_12
  doi: 10.3390/rs10060817
SSID ssj0000331904
Score 2.3557563
Snippet Semi-supervised learning (SSL) focuses on the way to improve learning efficiency through the use of labeled and unlabeled samples concurrently. However, recent...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 193
SubjectTerms Accuracy
Algorithms
artificial intelligence
Classification
Competition
Cooperation
data collection
Datasets
exhibitions
graph construction
hyperspectral image classification
hyperspectral imagery
Hyperspectral imaging
Image classification
label propagation
learning
model validation
Noise
Noise generation
particle competition and cooperation
Performance evaluation
Propagation
Remote sensing
sampling
Semi-supervised learning
sounds
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA4ignuRdXVxXJUs68VDY6bTSSfHUXTdiwgqeGvyqF4Fp2eYh-CP8D9blW7HAYW97LHT1ZCuqlTqy6M-xg6ljxj4S48W0D4rTOhnxlid1XTDx5caQNWJbKK8vDR3d_ZqieqLzoS15YFbxR2X6HFOuSLmmFyAMD4YJ62MhRQgdUxX90Rpl8BUisESXUsUbT1Sibj-eDKlLTqRdpiXZqBUqP9DHE6Ty_lXttFlhXzQ9maTrUDzja13BOX3z1vsZcCJWjMROkDkv6k5O8EZKPJrGD5k1_MxDXp6Hjz-HSHivx_iF0OfxGmxlV91_4rNozG0hueuiSQ2hrZmEccUll8gNG1vYE6wT3-GGHF44s6kU0Xps212e352c3qRdUwKWZC2mGVWg3V9nKzKwktn8hh0GTFxAh0seBFUkD4o6ZUyugZvhUfgKBG5BecxYyvkd7bajBrYYZz4v3Vdg5LCIHRRxuVoVGWgHxHOWd9jR2_arUJXZpyU81gh3CBLVO-W6LFfC9lxW1zjU6kTMtJCggpipwZ0k6pTXfUvN-mxvTcTV90onVZ5URJDoVCqx34uXuP4ok0T18BojjKYkWIWhGnz7v_oxw_2JadTMWkRZ4-tziZz2Gdr4Wn2MJ0cJCd-BXcz9mU
  priority: 102
  providerName: Directory of Open Access Journals
Title A Constrained Graph-Based Semi-Supervised Algorithm Combined with Particle Cooperation and Competition for Hyperspectral Image Classification
URI https://www.proquest.com/docview/2477135055
https://www.proquest.com/docview/2511181507
https://doaj.org/article/7322a5a4d2054e08bc8a393d430e36d9
Volume 13
WOSCitedRecordID wos000611949800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagRYIL5VWxtKyM4MIhajaOHfuEdqst7YFVxIJUuETxI22lbhKyu0hc-Af858443i0SiAuXSLHHieUZj2fG9nyEvGHaguLPNHBA6CiVZhRJqURU4Q0fnQnneOXBJrLZTJ6fqzwE3JbhWOVGJ3pFbRuDMfKjJM0QTS7m_F37LULUKNxdDRAad8kuZioDOd-dTGf5x22UJWYgYnHa5yVl4N8fdUvcqov9TvNvK5FP2P-HPvaLzMne_3bvEXkYzEs67uXhMbnj6ifkfkA6v_zxlPwaU8To9MgQztL3WBxNYCmzdO4WV9F83aL2wPfx9QX8YXW5gBYL7ckxakvzIG1Q3LSulyBa1hbJWtcnP6JgC9NT8HH7q5wd9OlsAaqLehBOPJ7kmz0jn0-mn45PowDJEBmm0lWkhFPlCFa9LNWslIk1IrNggTlhlNOx4YZpw5nmXIrKaRVr8EAZuICm1GD6pWyf7NRN7Z4TikDioqocZ7EEH4jLMgHp4NKNLPiFSg_I2w17ChPylePgXBfgtyAri1tWDsjrLW3bZ-n4K9UEubylwMzavqDpLoowdEUGGq7kZWoTMGZdLLWRJVPMpix2TFg1IIcbASjCdF8Wt9wfkFfbapiouPtS1q5ZAw2YtmBOgf394t-fOCAPEjw44-M8h2Rn1a3dS3LPfF9dLbthkPChDx4M8ajqHJ8_p_DM-Veoz88-5F9uAA-fDFY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKlceCMCBRYBBw5WHa93vXtAKIGWRC1RRIvUm_E-3FZqEpMHqD-Cv8JvZGbtpEggbj1w9Hps2bvffjuzj_kAXnLjkPgzgy0gTZQq24mU0jIq6YSPyaT3ogxiE9lwqI6P9WgDfq7OwtC2yhUnBqJ2U0tz5DtJmpGaXCzE2-prRKpRtLq6ktCoYbHvL75jyDZ_M3iP7fsqSfZ2j971o0ZVILJcp4tIS6-LDhJ3lhpeqMRZmTl0Iry02pvYCsuNFdwIoWTpjY4NBlEcoxhbGPReUo7vvQabKU-laMFmb3c4-rSe1Yk5QjpO6zyonOt4ZzanpcE4rGz_NvIFgYA_-D8Manu3_rfquA03G_eZdWu834ENP7kLW42S--nFPfjRZaRBGpQvvGMfqDjq4VDt2KEfn0WHy4rYka675yf4R4vTMT4xNsGcZqXZqOlNWDytfN1DWDFxZFb5OrkTQ1-f9TGGr4-qzvCbBmOkZhZERmn7VXjsPny-ktp4AK3JdOIfAiOhdFmWXvBYYYwnVJEg-oXyHYdxrzZteL2CQ26bfOxUOec5xmUEnfwSOm14sbat6iwkf7XqEarWFpQ5PBRMZyd5U3V5hgxeiCJ1CTrrPlbGqoJr7lIeey6dbsP2CnB5Q2fz_BJtbXi-vo1ERKtLxcRPl2iDrju6ixhfPPr3K57BVv_o40F-MBjuP4YbCW0SCnNa29BazJb-CVy33xZn89nTpncx-HLVCP4FvbVing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAEX3ohAgUXAgYMVx-u1dw8IJbShUVEUUZB6M96H20qNY_IA9Ufwh_h1zKztFAnErQeOXo-tZP3N7Hz7mA_gJdcWA3-q8QskOoil6QdSqiQo6ISPThPnROHFJtLJRB4dqekW_GzPwtC2yjYm-kBt54bmyHtRnJKaXChEr2i2RUx3R2-rrwEpSNFKayunUUPkwJ1_R_q2fDPexW_9KopGe5_e7QeNwkBguIpXgUqcyvsYxNNY81xG1iSpxYTCJUY5HRphuDaCayFkUjitQo2EiiOjMbnGTCbm-N4rsJ1yJD0d2B7uTaYfNzM8IUd4h3FdE5VzFfYWS1omDP0q92-joBcL-GMs8APc6Nb_3DW34WaTVrNB7Qd3YMuVd-F6o_B-cn4PfgwYaZN6RQxn2XtqDoY4hFt26GanweG6oqhJ14OzY_xHq5MZPjHT3pxmq9m08TJsnleu9hyWl5bMKlcXfWLIAdg-cvv6COsCf9N4hiGbefFR2pblH7sPny-lNx5Ap5yX7iEwElBPisIJHkrkfkLmEXqFkK5vkQ8r3YXXLTQy09Rpp845y5CvEYyyCxh14cXGtqqrk_zVakgI21hQRXHfMF8cZ03XZSlG9lzksY0wiXeh1EbmXHEb89DxxKou7LTgy5owt8wukNeF55vbGKBo1Skv3XyNNpjSYxqJvOPRv1_xDK4hbLMP48nBY7gR0d4hP9W1A53VYu2ewFXzbXW6XDxtHI3Bl8sG8C9uWWth
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Constrained+Graph-Based+Semi-Supervised+Algorithm+Combined+with+Particle+Cooperation+and+Competition+for+Hyperspectral+Image+Classification&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.date=2021-01-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=2&rft.spage=193&rft_id=info:doi/10.3390%2Frs13020193&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon