A Method Combining Line Detection and Semantic Segmentation for Power Line Extraction from Unmanned Aerial Vehicle Images
Power line extraction is the basic task of power line inspection with unmanned aerial vehicle (UAV) images. However, due to the complex backgrounds and limited characteristics, power line extraction from images is a difficult problem. In this paper, we construct a power line data set using UAV image...
Saved in:
| Published in: | Remote sensing (Basel, Switzerland) Vol. 14; no. 6; p. 1367 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.03.2022
|
| Subjects: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Power line extraction is the basic task of power line inspection with unmanned aerial vehicle (UAV) images. However, due to the complex backgrounds and limited characteristics, power line extraction from images is a difficult problem. In this paper, we construct a power line data set using UAV images and classify the data according to the image clutter (IC). A method combining line detection and semantic segmentation is used. This method is divided into three steps: First, a multi-scale LSD is used to determine power line candidate regions. Then, based on the object-based Markov random field (OMRF), a weighted region adjacency graph (WRAG) is constructed using the distance and angle information of line segments to capture the complex interaction between objects, which is introduced into the Gibbs joint distribution of the label field. Meanwhile, the Gaussian mixture model is utilized to form the likelihood function by taking the spectral and texture features. Finally, a Kalman filter (KF) and the least-squares method are used to realize power line pixel tracking and fitting. Experiments are carried out on test images in the data set. Compared with common power line extraction methods, the proposed algorithm shows better performance on images with different IC. This study can provide help and guidance for power line inspection. |
|---|---|
| AbstractList | Power line extraction is the basic task of power line inspection with unmanned aerial vehicle (UAV) images. However, due to the complex backgrounds and limited characteristics, power line extraction from images is a difficult problem. In this paper, we construct a power line data set using UAV images and classify the data according to the image clutter (IC). A method combining line detection and semantic segmentation is used. This method is divided into three steps: First, a multi-scale LSD is used to determine power line candidate regions. Then, based on the object-based Markov random field (OMRF), a weighted region adjacency graph (WRAG) is constructed using the distance and angle information of line segments to capture the complex interaction between objects, which is introduced into the Gibbs joint distribution of the label field. Meanwhile, the Gaussian mixture model is utilized to form the likelihood function by taking the spectral and texture features. Finally, a Kalman filter (KF) and the least-squares method are used to realize power line pixel tracking and fitting. Experiments are carried out on test images in the data set. Compared with common power line extraction methods, the proposed algorithm shows better performance on images with different IC. This study can provide help and guidance for power line inspection. |
| Author | Zhao, Wenbo Dong, Qing Zuo, Zhengli |
| Author_xml | – sequence: 1 givenname: Wenbo orcidid: 0000-0002-2593-1149 surname: Zhao fullname: Zhao, Wenbo – sequence: 2 givenname: Qing surname: Dong fullname: Dong, Qing – sequence: 3 givenname: Zhengli surname: Zuo fullname: Zuo, Zhengli |
| BookMark | eNptUV1rFDEUDVLBtvbFXxDoSyms5msyM4_LturCioLW15CPO9ssM0mbZNH-e7MdpaWYlxyScw73nHuCjkIMgNA7St5z3pMPKVNBJOWyfYWOGWnZQrCeHT3Db9BZzjtSD-e0J-IYPSzxFyi30eFVnIwPPmzxxgfAV1DAFh8D1sHh7zDpULytYDtBKPrxZ4gJf4u_IM2S698l6VkzpDjhm1BFARxeQvJ6xD_h1tsR8HrSW8hv0etBjxnO_t6n6Obj9Y_V58Xm66f1arlZWN6LsuikY4YMjHUGaEWOmkEbqTW3sgPRuQG46Yw1rWkaJxklRlINtQdret4AP0Xr2ddFvVN3yU86PaiovXp8iGmrdCqHwZTkxLRSNpS2WghXfUlrwJGeD8AayavXxex1l-L9HnJRk88WxlEHiPusmBRd17aEsEo9f0HdxX0KNemBxYRkNV5lkZllU8w5waCsn8utVfpRUaIOq1VPq62SyxeSf5n-Q_4Du6ClWQ |
| CitedBy_id | crossref_primary_10_1038_s41598_025_86753_x crossref_primary_10_1155_2023_1987988 crossref_primary_10_1016_j_eswa_2025_129417 crossref_primary_10_1155_2022_8955292 crossref_primary_10_1109_TCSVT_2022_3216313 crossref_primary_10_3390_s23063343 crossref_primary_10_1007_s42835_023_01641_6 crossref_primary_10_3390_drones6110362 crossref_primary_10_1016_j_eswa_2023_120359 crossref_primary_10_3390_drones9070505 crossref_primary_10_3390_rs14164095 crossref_primary_10_1007_s11554_024_01615_5 crossref_primary_10_1016_j_ast_2022_107909 crossref_primary_10_1016_j_isprsjprs_2024_03_012 crossref_primary_10_3390_rs14184575 crossref_primary_10_1007_s10489_025_06411_7 crossref_primary_10_3390_drones6060138 crossref_primary_10_3389_fenrg_2022_960842 |
| Cites_doi | 10.1109/TIE.2017.2668994 10.1080/01431161.2018.1563841 10.1109/TPAMI.2008.300 10.1109/JSTARS.2014.2361756 10.1109/TIP.2014.2387020 10.1109/ICNSURV.2015.7121269 10.1016/j.ijepes.2017.12.016 10.1109/ACCESS.2017.2725387 10.1007/s00138-009-0206-y 10.1016/j.patcog.2014.11.018 10.1109/ACCESS.2019.2939025 10.1109/LGRS.2007.895714 10.1016/j.patcog.2015.07.004 10.1109/TII.2018.2794320 10.1109/TAES.2014.120732 10.1109/TAES.2009.5259175 10.1109/TGRS.2008.2010457 10.1117/12.2029069 10.1016/j.imavis.2011.06.005 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs14061367 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest MSED ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_630b7665117a44d3b807bed093fe2563 10_3390_rs14061367 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c394t-86d2b0f228be12b0d1bfab6aa3c68e48dfe3b8bcb7b55d6210b61ae061cb935e3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000774623800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Mon Nov 10 04:26:55 EST 2025 Thu Sep 04 18:31:41 EDT 2025 Fri Jul 25 09:28:28 EDT 2025 Sat Nov 29 07:19:05 EST 2025 Tue Nov 18 22:38:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-86d2b0f228be12b0d1bfab6aa3c68e48dfe3b8bcb7b55d6210b61ae061cb935e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2593-1149 |
| OpenAccessLink | https://www.proquest.com/docview/2642462394?pq-origsite=%requestingapplication% |
| PQID | 2642462394 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_630b7665117a44d3b807bed093fe2563 proquest_miscellaneous_2648877002 proquest_journals_2642462394 crossref_citationtrail_10_3390_rs14061367 crossref_primary_10_3390_rs14061367 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Li (ref_16) 2007; 12 Goio (ref_28) 2010; 32 Zhou (ref_6) 2018; 14 Sun (ref_32) 2018; 56 Yan (ref_15) 2007; 4 Li (ref_9) 2010; 21 ref_14 Wen (ref_43) 2001; 12 Lopez (ref_31) 2015; 48 Liu (ref_37) 2018; 36 Zhang (ref_21) 2018; 51 Li (ref_35) 2019; 35 Sun (ref_1) 2011; 3 Wang (ref_10) 2015; 35 Zhang (ref_19) 2014; 50 Shan (ref_7) 2017; 64 Huang (ref_11) 2015; 41 ref_39 Song (ref_23) 2014; 35 Xu (ref_24) 2015; 24 Guo (ref_29) 2017; 53 Peng (ref_2) 2019; 45 Li (ref_42) 2017; 5 Zheng (ref_44) 2015; 8 Hao (ref_13) 2014; 40 Liu (ref_30) 2019; 5 Chen (ref_18) 2016; 49 Peng (ref_5) 2019; 45 Grigoryan (ref_26) 2011; 29 Berni (ref_4) 2009; 47 Tan (ref_17) 2012; 10 Song (ref_22) 2014; 129 Shen (ref_38) 2019; 49 Chen (ref_12) 2011; 37 Zhao (ref_20) 2019; 7 Wang (ref_34) 2019; 11 ref_41 Van (ref_3) 2018; 99 Herumurti (ref_25) 2013; 8892 Wang (ref_33) 2020; 38 Candamo (ref_8) 2009; 45 Wang (ref_36) 2018; 56 Ju (ref_45) 2020; S02 ref_27 Zheng (ref_40) 2019; 40 |
| References_xml | – volume: 40 start-page: 368 year: 2014 ident: ref_13 article-title: Wavelet image recognition of ice thickness on transmission lines publication-title: High Volt. Eng. – volume: 64 start-page: 4810 year: 2017 ident: ref_7 article-title: Multiple auxiliaries assisted airborne power line detection publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2668994 – volume: 40 start-page: 4441 year: 2019 ident: ref_40 article-title: Segmentation for remote sensing imagery using the object-based Gaussian–Markov random field model with region coefficients publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1563841 – volume: 38 start-page: 9 year: 2020 ident: ref_33 article-title: Improved LSD Algorithm Based on Entropy Adaptive Gaussian Pyramid publication-title: J. Jilin Univ. Inf. Sci. Ed. – volume: 35 start-page: 1109 year: 2014 ident: ref_23 article-title: Pattern identification algorithm with adaptive threshold interval based extended Hough transform publication-title: Chin. J. Sci. Instrum. – volume: 32 start-page: 722 year: 2010 ident: ref_28 article-title: LSD: A Fast Line Segment Detector with a False Detection Control publication-title: Pattern Anal. Mach. Intell. IEEE Trans. doi: 10.1109/TPAMI.2008.300 – volume: 8 start-page: 1924 year: 2015 ident: ref_44 article-title: Semantic Segmentation of Remote Sensing Imagery Using Object-Based Markov Random Field Model with Regional Penalties publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2361756 – volume: 45 start-page: 368 year: 2019 ident: ref_5 article-title: Broadband Satellite Communication System in the Intelligent Inspection of Electric Powe Line Base on Large Scale Unmanned Helicopter publication-title: High Volt. Eng. – volume: 24 start-page: 813 year: 2015 ident: ref_24 article-title: Accurate and robust line segment extraction using minimum entropy with Hough transform publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2387020 – ident: ref_14 doi: 10.1109/ICNSURV.2015.7121269 – volume: 12 start-page: 1660 year: 2001 ident: ref_43 article-title: A Robust Approach to Extracting Straight Lines publication-title: J. Softw. – volume: 99 start-page: 107 year: 2018 ident: ref_3 article-title: Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2017.12.016 – volume: 12 start-page: 1041 year: 2007 ident: ref_16 article-title: Automatic Extraction of Power Lines from Aerial Images publication-title: J. Image Graph. – volume: S02 start-page: 166 year: 2020 ident: ref_45 article-title: Power Line Extraction in Aerial Photogrammetry DOM Based on LSD Algorithm publication-title: Electr. Power Surv. Des. – volume: 45 start-page: 922 year: 2019 ident: ref_2 article-title: Automatic Recognition of Insulator from UAV Infrared Image Based on Periodic Textural Feature publication-title: High Volt. Eng. – ident: ref_39 – volume: 5 start-page: 13835 year: 2017 ident: ref_42 article-title: Image sequence matching using both holistic and local features for loop closure detection publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2725387 – volume: 56 start-page: 82 year: 2018 ident: ref_32 article-title: Improvement of SIFT Feature Matching Algorithm Based on Image Gradient Information Enhancement publication-title: J. Jilin Univ. Sci. Ed. – volume: 129 start-page: 350 year: 2014 ident: ref_22 article-title: Power line detection from optical images publication-title: Neuro Comput. – volume: 49 start-page: 273 year: 2019 ident: ref_38 article-title: Fast Multi-Threshold Otsu Algorithm with Complete Linear Time Complexity publication-title: J. Jilin Univ. Eng. Technol. Ed. – volume: 21 start-page: 677 year: 2010 ident: ref_9 article-title: Towards automatic power line detection for a UAV surveillance system using pulse coupled neural filter and an improved Hough transform publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-009-0206-y – volume: 48 start-page: 2164 year: 2015 ident: ref_31 article-title: Two-View Line Matching Algorithm Based on Context and Appearance in Low-Textured Images publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.11.018 – volume: 51 start-page: 8 year: 2018 ident: ref_21 article-title: Research on fast extraction algorithm of power line in complex ground object background publication-title: Eng. J. Wuhan Univ. – volume: 5 start-page: 915 year: 2019 ident: ref_30 article-title: Path Edge Recognition Strategy Based on Improved LSD and AP Clustering publication-title: J. Graph. – volume: 41 start-page: 808 year: 2015 ident: ref_11 article-title: Galloping monitoring method of transmission line based on image matching publication-title: High Volt. Eng – volume: 7 start-page: 125333 year: 2019 ident: ref_20 article-title: Power line extraction from aerial images Using Object-based Markov Random Field with anisotropic weighted penalty publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939025 – ident: ref_27 – volume: 35 start-page: 33 year: 2019 ident: ref_35 article-title: Infrared Image Feature Extraction Based on Otsu and Canny Operator publication-title: J. Shaanxi Univ. Technol. Nat. Sci. Ed. – volume: 4 start-page: 387 year: 2007 ident: ref_15 article-title: Automatic extraction of power lines from aerial images publication-title: Geosci. Remote Sens. Lett. IEEE doi: 10.1109/LGRS.2007.895714 – volume: 11 start-page: 81 year: 2019 ident: ref_34 article-title: Image Segmentation Algorithm Based on Improved Otsu Algorithm and Artificial Fish Swarm Optimization publication-title: Packag. J. – ident: ref_41 – volume: 49 start-page: 174 year: 2016 ident: ref_18 article-title: Automatic power line extraction from high resolution remote sensing imagery based on an improved radon transform publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.07.004 – volume: 3 start-page: 93 year: 2011 ident: ref_1 article-title: Application of GIS + GPS Intelligent Inspection System in Transmission Line Management publication-title: J. Anhui Electr. Eng. Prof. Tech. Coll. – volume: 14 start-page: 2705 year: 2018 ident: ref_6 article-title: Energyefficient industrial Internet of UAVs for power line inspection in smart grid publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2794320 – volume: 36 start-page: 91 year: 2018 ident: ref_37 article-title: SIFT Image Matching Algorithm Based on Edge Information publication-title: J. Jilin Univ. Inf. Sci. Ed. – volume: 35 start-page: 2404 year: 2015 ident: ref_10 article-title: Broken strand and foreign body fault detection method for power transmission line based on unmanned aerial vehicle image publication-title: J. Comput. Appl. – volume: 50 start-page: 2890 year: 2014 ident: ref_19 article-title: Pylon line spatial correlation assisted transmission line detection publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2014.120732 – volume: 45 start-page: 937 year: 2009 ident: ref_8 article-title: Detection of thin lines using low-quality video from low-altitude aircraft in urban settings publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2009.5259175 – volume: 47 start-page: 722 year: 2009 ident: ref_4 article-title: Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2010457 – volume: 10 start-page: 70 year: 2012 ident: ref_17 article-title: Automatic Extraction of Power Lines in Helicopter Power Line Inspection publication-title: Geospat. Inf. – volume: 8892 start-page: 88920A year: 2013 ident: ref_25 article-title: Automatic urban road extraction on DSM data based on fuzzy ART, region growing, morphological operations and Radon transform publication-title: Proc. SPIE doi: 10.1117/12.2029069 – volume: 29 start-page: 797 year: 2011 ident: ref_26 article-title: Comments on “Generalised finite Radon transform for N × N images” publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2011.06.005 – volume: 37 start-page: 904 year: 2011 ident: ref_12 article-title: Application of digital image processing and photogrammetric technology to sag measuring method publication-title: High Volt. Eng. – volume: 53 start-page: 219 year: 2017 ident: ref_29 article-title: Lane Classification Algorithm Combined LDA and LSD publication-title: Comput. Eng. Appl. – volume: 56 start-page: 179 year: 2018 ident: ref_36 article-title: Automatic power line extraction from high resolution remote sensing imagery based on an improved radon transform publication-title: J. Jilin Univ. Sci. Ed. |
| SSID | ssj0000331904 |
| Score | 2.4024084 |
| Snippet | Power line extraction is the basic task of power line inspection with unmanned aerial vehicle (UAV) images. However, due to the complex backgrounds and limited... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1367 |
| SubjectTerms | Accuracy Algorithms Clutter Construction data collection Datasets Fault diagnosis Fields (mathematics) Image classification Image segmentation Inspection Kalman filters least squares Least squares method Methods object-based Markov random field (OMRF) power line extraction Power lines Probabilistic models probability Remote sensing Semantic segmentation Semantics texture unmanned aerial vehicle (UAV) image Unmanned aerial vehicles weighted region adjacency graph (WRAG) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4igl7EJ64vInrxUGybNE2P62PRg8uCD7yVTDpVwa2yW0X_vZO07goKXryFdlLCZDIzH83Mx9gBZcAawCZBGBoTUMS3QYYGCKqULuOwaHXpySbSfl_f3WWDb1Rf7k5Y0x64UdyREiGkSlFekBopCwE6TAELAuIlUrj2fT7DNPsGprwPFmRaoWz6kQrC9UejceRjlyeUn0Yg36j_hx_2waW3xBbbrJB3m9UssxmsVth8S1D-8LHKPrr80nM9czrA4EkdOMFI5KdY-8tUFTdVwa9wSJp6tDS4H7ZVRRWnvJQPHBtaM-XsvR415QzcFZfwm4omkbflXW-N_BYf3Cr4xZB8zXiN3fTOrk_Og5Y1IbAik3WgVRFDWMaxBoxoVERQGlDGCKs0Sl2USEoECykkSaEI8oGKDJJuLGQiQbHOZqvnCjcYFzqJZUIbFplCamnpYxBpAkgmo7SgTDrs8EuTuW1bijtmi6ecoIXTej7VeoftT2RfmkYav0oduw2ZSLjm1_4BmUTemkT-l0l02PbXdubtiRznlPjFUjki-A7bm7yms-R-kJgKn1-9DPnclILE5n-sY4stxK5Ywt9Y22az9egVd9icfasfx6Ndb7CfSPrvlw priority: 102 providerName: Directory of Open Access Journals |
| Title | A Method Combining Line Detection and Semantic Segmentation for Power Line Extraction from Unmanned Aerial Vehicle Images |
| URI | https://www.proquest.com/docview/2642462394 https://www.proquest.com/docview/2648877002 https://doaj.org/article/630b7665117a44d3b807bed093fe2563 |
| Volume | 14 |
| WOSCitedRecordID | wos000774623800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZaqFQu0KdYSleu6KWHiCROHOeEFlhUDqyiAhXtJfIrgNTNQhIQXPrbmXG8u4dWvfQSWfFDtmc8Dz_mI-QzWMBCKZ0GYShlABpfB7mVClyVCi0ObbWoHNhENpmIi4u88Bturb9WOZeJTlCbmcY98l1Q3HHCEch77-Y2QNQoPF31EBrPySpGKgM-X90fT4pvi12WkAGLhUkfl5SBf7_btJHTYQ5YfqmJXMD-P-SxUzJHG__bvVdk3ZuXdNTzw2vyzNZvyEuPdH71-JY8juiJA42mIAmUQ4eg4I9aemg7dyurprI29NROYcqvNSQup_55Uk3BwKUFwqr1VcYPXdO_i6D4SoWe11AJxDYdObam3-0V9oIeT0Fote_I-dH47OBr4OEXAg3D6ALBTazCKo6FshGkTKQqqbiUTHNhE2Eqy5RQWmUqTQ0H31HxSFqYXK1yllr2nqzUs9puEspEGicpUD6SJhGJhsZUJMDTkjnYF1U6IF_mpCi1j02OEBm_SvBRkGzlkmwDsrMoe9NH5PhrqX2k6KIERtF2P2bNZekXZclZqDLOwebMZJIYGE2YKWvCnFUWTEE2INtzYpd-abflktID8mmRDYsST1pkbWd3rgwI7wy0zda_m_hA1mJ8T-EutW2Tla65sx_JC33fXbfN0HPz0G0UDPFa6il-f4_hW6Q_Ib84Pil-PAGJBQXj |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1dT9RAFL3BxQRfxM-4gDpGffChoe200-kDMYssYQNsNgqGtzpfBRK2i21B90_5G70zbXcfNL7x4FvTzkz6cXrOve3cOQDvMALmUqrY830hPFR85aVGSExVchtxKKN47swmkvGYn52lkxX41dXC2GmVHSc6otYzZb-Rb6NwhxGzRt4fr7971jXK_l3tLDQaWBya-Q9M2aqd0R4-3_dhuD88-XTgta4CnsLOtceZDqWfhyGXJsAtHchcSCYEVYybiOvcUMmlkomMY80wJZIsEAZ1T8mUxobiuPdgNaJI6z1Y3R2OJ58XX3V8ipD2o2YdVEpTf7usAqeZzsh-qXzOIOAP_neitr_-v92OR_CwDZ_JoMH7Y1gxxRNYa53cL-ZPYT4gx84UmyDTSed-QTDfNmTP1G7WWUFEockXM0VIXSrcOJ-25VcFwQCeTKxtXNNl-LMum7oPYqtwyGmBnVCWyMC9tuSrubBnQUZTJOXqGZzeyZU_h14xK8wLIJTHYRQjsgOhIx4pHEwGHDNJkWL8lMd9-NA9-ky1a69bC5CrDHMwC5NsCZM-vF20vW5WHPlrq12LoEULu0q42zErz7OWdDJGfZkwhjF1IqJI49X4iTTaT2luMNSlfdjqwJW11FVlS2T14c3iMJKO_ZMkCjO7cW1QnBJU041_D_Ea1g5Ojo-yo9H4cBMehLZ2xE3g24JeXd6Yl3Bf3daXVfmqfZMIfLtrtP4G-QRfuw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aG2Jcxs9phQFGwIFD1CROHOeAUEdbUQ2qChjaLfhXtklrOpIM1n-Nv45nJ2kPIG47cIsS24qTz-97z_bzB_ASPWAupYo93xfCQ8ZXXmqExFAltx6HMornTmwimU758XE624BfXS6M3VbZ2URnqPVC2TnyPhJ3GDEr5N3P220Rs-H47cV3zypI2ZXWTk6jgcihWf7E8K16Mxniv34VhuPRl3fvvVZhwFPYUO1xpkPp52HIpQnwSgcyF5IJQRXjJuI6N1RyqWQi41gzDI8kC4RBDlQypbGh2O4N2ErQycAxtnUwms4-rWZ4fIrw9qPmTFRKU79fVoHjTydqv2ZBJxbwBxc4ghvf-Z8_zV3Yad1qMmjGwT3YMMV92G4V3k-XD2A5IB-dWDZBCyidKgbBONyQoandbrSCiEKTz2aOUDtTeHEyb9OyCoKOPZlZObmmyuiqLpt8EGKzc8hRgZWQrsjADWfy1ZzatyCTORrr6iEcXUvPd2GzWBRmDwjlcRjFiPhA6IhHChuTAccIU6ToV-VxD153MMhUeya7lQY5zzA2s5DJ1pDpwYtV2YvmJJK_ljqwaFqVsKeHuxuL8iRrjVHGqC8TxtDXTkQUaeyNn0ij_ZTmBl1g2oP9DmhZa9KqbI2yHjxfPUZjZFeYRGEWl64MklaCLPvo3008g1sI0ezDZHr4GG6HNqXE7evbh826vDRP4Kb6UZ9V5dN2UBH4dt1g_Q0U22h- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+Combining+Line+Detection+and+Semantic+Segmentation+for+Power+Line+Extraction+from+Unmanned+Aerial+Vehicle+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhao%2C+Wenbo&rft.au=Dong%2C+Qing&rft.au=Zuo%2C+Zhengli&rft.date=2022-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=6&rft_id=info:doi/10.3390%2Frs14061367&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |