A Method Combining Line Detection and Semantic Segmentation for Power Line Extraction from Unmanned Aerial Vehicle Images

Power line extraction is the basic task of power line inspection with unmanned aerial vehicle (UAV) images. However, due to the complex backgrounds and limited characteristics, power line extraction from images is a difficult problem. In this paper, we construct a power line data set using UAV image...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 14; no. 6; p. 1367
Main Authors: Zhao, Wenbo, Dong, Qing, Zuo, Zhengli
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.03.2022
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Power line extraction is the basic task of power line inspection with unmanned aerial vehicle (UAV) images. However, due to the complex backgrounds and limited characteristics, power line extraction from images is a difficult problem. In this paper, we construct a power line data set using UAV images and classify the data according to the image clutter (IC). A method combining line detection and semantic segmentation is used. This method is divided into three steps: First, a multi-scale LSD is used to determine power line candidate regions. Then, based on the object-based Markov random field (OMRF), a weighted region adjacency graph (WRAG) is constructed using the distance and angle information of line segments to capture the complex interaction between objects, which is introduced into the Gibbs joint distribution of the label field. Meanwhile, the Gaussian mixture model is utilized to form the likelihood function by taking the spectral and texture features. Finally, a Kalman filter (KF) and the least-squares method are used to realize power line pixel tracking and fitting. Experiments are carried out on test images in the data set. Compared with common power line extraction methods, the proposed algorithm shows better performance on images with different IC. This study can provide help and guidance for power line inspection.
AbstractList Power line extraction is the basic task of power line inspection with unmanned aerial vehicle (UAV) images. However, due to the complex backgrounds and limited characteristics, power line extraction from images is a difficult problem. In this paper, we construct a power line data set using UAV images and classify the data according to the image clutter (IC). A method combining line detection and semantic segmentation is used. This method is divided into three steps: First, a multi-scale LSD is used to determine power line candidate regions. Then, based on the object-based Markov random field (OMRF), a weighted region adjacency graph (WRAG) is constructed using the distance and angle information of line segments to capture the complex interaction between objects, which is introduced into the Gibbs joint distribution of the label field. Meanwhile, the Gaussian mixture model is utilized to form the likelihood function by taking the spectral and texture features. Finally, a Kalman filter (KF) and the least-squares method are used to realize power line pixel tracking and fitting. Experiments are carried out on test images in the data set. Compared with common power line extraction methods, the proposed algorithm shows better performance on images with different IC. This study can provide help and guidance for power line inspection.
Author Zhao, Wenbo
Dong, Qing
Zuo, Zhengli
Author_xml – sequence: 1
  givenname: Wenbo
  orcidid: 0000-0002-2593-1149
  surname: Zhao
  fullname: Zhao, Wenbo
– sequence: 2
  givenname: Qing
  surname: Dong
  fullname: Dong, Qing
– sequence: 3
  givenname: Zhengli
  surname: Zuo
  fullname: Zuo, Zhengli
BookMark eNptUV1rFDEUDVLBtvbFXxDoSyms5msyM4_LturCioLW15CPO9ssM0mbZNH-e7MdpaWYlxyScw73nHuCjkIMgNA7St5z3pMPKVNBJOWyfYWOGWnZQrCeHT3Db9BZzjtSD-e0J-IYPSzxFyi30eFVnIwPPmzxxgfAV1DAFh8D1sHh7zDpULytYDtBKPrxZ4gJf4u_IM2S698l6VkzpDjhm1BFARxeQvJ6xD_h1tsR8HrSW8hv0etBjxnO_t6n6Obj9Y_V58Xm66f1arlZWN6LsuikY4YMjHUGaEWOmkEbqTW3sgPRuQG46Yw1rWkaJxklRlINtQdret4AP0Xr2ddFvVN3yU86PaiovXp8iGmrdCqHwZTkxLRSNpS2WghXfUlrwJGeD8AayavXxex1l-L9HnJRk88WxlEHiPusmBRd17aEsEo9f0HdxX0KNemBxYRkNV5lkZllU8w5waCsn8utVfpRUaIOq1VPq62SyxeSf5n-Q_4Du6ClWQ
CitedBy_id crossref_primary_10_1038_s41598_025_86753_x
crossref_primary_10_1155_2023_1987988
crossref_primary_10_1016_j_eswa_2025_129417
crossref_primary_10_1155_2022_8955292
crossref_primary_10_1109_TCSVT_2022_3216313
crossref_primary_10_3390_s23063343
crossref_primary_10_1007_s42835_023_01641_6
crossref_primary_10_3390_drones6110362
crossref_primary_10_1016_j_eswa_2023_120359
crossref_primary_10_3390_drones9070505
crossref_primary_10_3390_rs14164095
crossref_primary_10_1007_s11554_024_01615_5
crossref_primary_10_1016_j_ast_2022_107909
crossref_primary_10_1016_j_isprsjprs_2024_03_012
crossref_primary_10_3390_rs14184575
crossref_primary_10_1007_s10489_025_06411_7
crossref_primary_10_3390_drones6060138
crossref_primary_10_3389_fenrg_2022_960842
Cites_doi 10.1109/TIE.2017.2668994
10.1080/01431161.2018.1563841
10.1109/TPAMI.2008.300
10.1109/JSTARS.2014.2361756
10.1109/TIP.2014.2387020
10.1109/ICNSURV.2015.7121269
10.1016/j.ijepes.2017.12.016
10.1109/ACCESS.2017.2725387
10.1007/s00138-009-0206-y
10.1016/j.patcog.2014.11.018
10.1109/ACCESS.2019.2939025
10.1109/LGRS.2007.895714
10.1016/j.patcog.2015.07.004
10.1109/TII.2018.2794320
10.1109/TAES.2014.120732
10.1109/TAES.2009.5259175
10.1109/TGRS.2008.2010457
10.1117/12.2029069
10.1016/j.imavis.2011.06.005
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14061367
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest MSED
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_630b7665117a44d3b807bed093fe2563
10_3390_rs14061367
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-86d2b0f228be12b0d1bfab6aa3c68e48dfe3b8bcb7b55d6210b61ae061cb935e3
IEDL.DBID BENPR
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000774623800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Mon Nov 10 04:26:55 EST 2025
Thu Sep 04 18:31:41 EDT 2025
Fri Jul 25 09:28:28 EDT 2025
Sat Nov 29 07:19:05 EST 2025
Tue Nov 18 22:38:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-86d2b0f228be12b0d1bfab6aa3c68e48dfe3b8bcb7b55d6210b61ae061cb935e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2593-1149
OpenAccessLink https://www.proquest.com/docview/2642462394?pq-origsite=%requestingapplication%
PQID 2642462394
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_630b7665117a44d3b807bed093fe2563
proquest_miscellaneous_2648877002
proquest_journals_2642462394
crossref_citationtrail_10_3390_rs14061367
crossref_primary_10_3390_rs14061367
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_16) 2007; 12
Goio (ref_28) 2010; 32
Zhou (ref_6) 2018; 14
Sun (ref_32) 2018; 56
Yan (ref_15) 2007; 4
Li (ref_9) 2010; 21
ref_14
Wen (ref_43) 2001; 12
Lopez (ref_31) 2015; 48
Liu (ref_37) 2018; 36
Zhang (ref_21) 2018; 51
Li (ref_35) 2019; 35
Sun (ref_1) 2011; 3
Wang (ref_10) 2015; 35
Zhang (ref_19) 2014; 50
Shan (ref_7) 2017; 64
Huang (ref_11) 2015; 41
ref_39
Song (ref_23) 2014; 35
Xu (ref_24) 2015; 24
Guo (ref_29) 2017; 53
Peng (ref_2) 2019; 45
Li (ref_42) 2017; 5
Zheng (ref_44) 2015; 8
Hao (ref_13) 2014; 40
Liu (ref_30) 2019; 5
Chen (ref_18) 2016; 49
Peng (ref_5) 2019; 45
Grigoryan (ref_26) 2011; 29
Berni (ref_4) 2009; 47
Tan (ref_17) 2012; 10
Song (ref_22) 2014; 129
Shen (ref_38) 2019; 49
Chen (ref_12) 2011; 37
Zhao (ref_20) 2019; 7
Wang (ref_34) 2019; 11
ref_41
Van (ref_3) 2018; 99
Herumurti (ref_25) 2013; 8892
Wang (ref_33) 2020; 38
Candamo (ref_8) 2009; 45
Wang (ref_36) 2018; 56
Ju (ref_45) 2020; S02
ref_27
Zheng (ref_40) 2019; 40
References_xml – volume: 40
  start-page: 368
  year: 2014
  ident: ref_13
  article-title: Wavelet image recognition of ice thickness on transmission lines
  publication-title: High Volt. Eng.
– volume: 64
  start-page: 4810
  year: 2017
  ident: ref_7
  article-title: Multiple auxiliaries assisted airborne power line detection
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2668994
– volume: 40
  start-page: 4441
  year: 2019
  ident: ref_40
  article-title: Segmentation for remote sensing imagery using the object-based Gaussian–Markov random field model with region coefficients
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1563841
– volume: 38
  start-page: 9
  year: 2020
  ident: ref_33
  article-title: Improved LSD Algorithm Based on Entropy Adaptive Gaussian Pyramid
  publication-title: J. Jilin Univ. Inf. Sci. Ed.
– volume: 35
  start-page: 1109
  year: 2014
  ident: ref_23
  article-title: Pattern identification algorithm with adaptive threshold interval based extended Hough transform
  publication-title: Chin. J. Sci. Instrum.
– volume: 32
  start-page: 722
  year: 2010
  ident: ref_28
  article-title: LSD: A Fast Line Segment Detector with a False Detection Control
  publication-title: Pattern Anal. Mach. Intell. IEEE Trans.
  doi: 10.1109/TPAMI.2008.300
– volume: 8
  start-page: 1924
  year: 2015
  ident: ref_44
  article-title: Semantic Segmentation of Remote Sensing Imagery Using Object-Based Markov Random Field Model with Regional Penalties
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2361756
– volume: 45
  start-page: 368
  year: 2019
  ident: ref_5
  article-title: Broadband Satellite Communication System in the Intelligent Inspection of Electric Powe Line Base on Large Scale Unmanned Helicopter
  publication-title: High Volt. Eng.
– volume: 24
  start-page: 813
  year: 2015
  ident: ref_24
  article-title: Accurate and robust line segment extraction using minimum entropy with Hough transform
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2387020
– ident: ref_14
  doi: 10.1109/ICNSURV.2015.7121269
– volume: 12
  start-page: 1660
  year: 2001
  ident: ref_43
  article-title: A Robust Approach to Extracting Straight Lines
  publication-title: J. Softw.
– volume: 99
  start-page: 107
  year: 2018
  ident: ref_3
  article-title: Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2017.12.016
– volume: 12
  start-page: 1041
  year: 2007
  ident: ref_16
  article-title: Automatic Extraction of Power Lines from Aerial Images
  publication-title: J. Image Graph.
– volume: S02
  start-page: 166
  year: 2020
  ident: ref_45
  article-title: Power Line Extraction in Aerial Photogrammetry DOM Based on LSD Algorithm
  publication-title: Electr. Power Surv. Des.
– volume: 45
  start-page: 922
  year: 2019
  ident: ref_2
  article-title: Automatic Recognition of Insulator from UAV Infrared Image Based on Periodic Textural Feature
  publication-title: High Volt. Eng.
– ident: ref_39
– volume: 5
  start-page: 13835
  year: 2017
  ident: ref_42
  article-title: Image sequence matching using both holistic and local features for loop closure detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2725387
– volume: 56
  start-page: 82
  year: 2018
  ident: ref_32
  article-title: Improvement of SIFT Feature Matching Algorithm Based on Image Gradient Information Enhancement
  publication-title: J. Jilin Univ. Sci. Ed.
– volume: 129
  start-page: 350
  year: 2014
  ident: ref_22
  article-title: Power line detection from optical images
  publication-title: Neuro Comput.
– volume: 49
  start-page: 273
  year: 2019
  ident: ref_38
  article-title: Fast Multi-Threshold Otsu Algorithm with Complete Linear Time Complexity
  publication-title: J. Jilin Univ. Eng. Technol. Ed.
– volume: 21
  start-page: 677
  year: 2010
  ident: ref_9
  article-title: Towards automatic power line detection for a UAV surveillance system using pulse coupled neural filter and an improved Hough transform
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-009-0206-y
– volume: 48
  start-page: 2164
  year: 2015
  ident: ref_31
  article-title: Two-View Line Matching Algorithm Based on Context and Appearance in Low-Textured Images
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.11.018
– volume: 51
  start-page: 8
  year: 2018
  ident: ref_21
  article-title: Research on fast extraction algorithm of power line in complex ground object background
  publication-title: Eng. J. Wuhan Univ.
– volume: 5
  start-page: 915
  year: 2019
  ident: ref_30
  article-title: Path Edge Recognition Strategy Based on Improved LSD and AP Clustering
  publication-title: J. Graph.
– volume: 41
  start-page: 808
  year: 2015
  ident: ref_11
  article-title: Galloping monitoring method of transmission line based on image matching
  publication-title: High Volt. Eng
– volume: 7
  start-page: 125333
  year: 2019
  ident: ref_20
  article-title: Power line extraction from aerial images Using Object-based Markov Random Field with anisotropic weighted penalty
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939025
– ident: ref_27
– volume: 35
  start-page: 33
  year: 2019
  ident: ref_35
  article-title: Infrared Image Feature Extraction Based on Otsu and Canny Operator
  publication-title: J. Shaanxi Univ. Technol. Nat. Sci. Ed.
– volume: 4
  start-page: 387
  year: 2007
  ident: ref_15
  article-title: Automatic extraction of power lines from aerial images
  publication-title: Geosci. Remote Sens. Lett. IEEE
  doi: 10.1109/LGRS.2007.895714
– volume: 11
  start-page: 81
  year: 2019
  ident: ref_34
  article-title: Image Segmentation Algorithm Based on Improved Otsu Algorithm and Artificial Fish Swarm Optimization
  publication-title: Packag. J.
– ident: ref_41
– volume: 49
  start-page: 174
  year: 2016
  ident: ref_18
  article-title: Automatic power line extraction from high resolution remote sensing imagery based on an improved radon transform
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.07.004
– volume: 3
  start-page: 93
  year: 2011
  ident: ref_1
  article-title: Application of GIS + GPS Intelligent Inspection System in Transmission Line Management
  publication-title: J. Anhui Electr. Eng. Prof. Tech. Coll.
– volume: 14
  start-page: 2705
  year: 2018
  ident: ref_6
  article-title: Energyefficient industrial Internet of UAVs for power line inspection in smart grid
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2794320
– volume: 36
  start-page: 91
  year: 2018
  ident: ref_37
  article-title: SIFT Image Matching Algorithm Based on Edge Information
  publication-title: J. Jilin Univ. Inf. Sci. Ed.
– volume: 35
  start-page: 2404
  year: 2015
  ident: ref_10
  article-title: Broken strand and foreign body fault detection method for power transmission line based on unmanned aerial vehicle image
  publication-title: J. Comput. Appl.
– volume: 50
  start-page: 2890
  year: 2014
  ident: ref_19
  article-title: Pylon line spatial correlation assisted transmission line detection
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2014.120732
– volume: 45
  start-page: 937
  year: 2009
  ident: ref_8
  article-title: Detection of thin lines using low-quality video from low-altitude aircraft in urban settings
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2009.5259175
– volume: 47
  start-page: 722
  year: 2009
  ident: ref_4
  article-title: Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2010457
– volume: 10
  start-page: 70
  year: 2012
  ident: ref_17
  article-title: Automatic Extraction of Power Lines in Helicopter Power Line Inspection
  publication-title: Geospat. Inf.
– volume: 8892
  start-page: 88920A
  year: 2013
  ident: ref_25
  article-title: Automatic urban road extraction on DSM data based on fuzzy ART, region growing, morphological operations and Radon transform
  publication-title: Proc. SPIE
  doi: 10.1117/12.2029069
– volume: 29
  start-page: 797
  year: 2011
  ident: ref_26
  article-title: Comments on “Generalised finite Radon transform for N × N images”
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2011.06.005
– volume: 37
  start-page: 904
  year: 2011
  ident: ref_12
  article-title: Application of digital image processing and photogrammetric technology to sag measuring method
  publication-title: High Volt. Eng.
– volume: 53
  start-page: 219
  year: 2017
  ident: ref_29
  article-title: Lane Classification Algorithm Combined LDA and LSD
  publication-title: Comput. Eng. Appl.
– volume: 56
  start-page: 179
  year: 2018
  ident: ref_36
  article-title: Automatic power line extraction from high resolution remote sensing imagery based on an improved radon transform
  publication-title: J. Jilin Univ. Sci. Ed.
SSID ssj0000331904
Score 2.4024084
Snippet Power line extraction is the basic task of power line inspection with unmanned aerial vehicle (UAV) images. However, due to the complex backgrounds and limited...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1367
SubjectTerms Accuracy
Algorithms
Clutter
Construction
data collection
Datasets
Fault diagnosis
Fields (mathematics)
Image classification
Image segmentation
Inspection
Kalman filters
least squares
Least squares method
Methods
object-based Markov random field (OMRF)
power line extraction
Power lines
Probabilistic models
probability
Remote sensing
Semantic segmentation
Semantics
texture
unmanned aerial vehicle (UAV) image
Unmanned aerial vehicles
weighted region adjacency graph (WRAG)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4igl7EJ64vInrxUGybNE2P62PRg8uCD7yVTDpVwa2yW0X_vZO07goKXryFdlLCZDIzH83Mx9gBZcAawCZBGBoTUMS3QYYGCKqULuOwaHXpySbSfl_f3WWDb1Rf7k5Y0x64UdyREiGkSlFekBopCwE6TAELAuIlUrj2fT7DNPsGprwPFmRaoWz6kQrC9UejceRjlyeUn0Yg36j_hx_2waW3xBbbrJB3m9UssxmsVth8S1D-8LHKPrr80nM9czrA4EkdOMFI5KdY-8tUFTdVwa9wSJp6tDS4H7ZVRRWnvJQPHBtaM-XsvR415QzcFZfwm4omkbflXW-N_BYf3Cr4xZB8zXiN3fTOrk_Og5Y1IbAik3WgVRFDWMaxBoxoVERQGlDGCKs0Sl2USEoECykkSaEI8oGKDJJuLGQiQbHOZqvnCjcYFzqJZUIbFplCamnpYxBpAkgmo7SgTDrs8EuTuW1bijtmi6ecoIXTej7VeoftT2RfmkYav0oduw2ZSLjm1_4BmUTemkT-l0l02PbXdubtiRznlPjFUjki-A7bm7yms-R-kJgKn1-9DPnclILE5n-sY4stxK5Ywt9Y22az9egVd9icfasfx6Ndb7CfSPrvlw
  priority: 102
  providerName: Directory of Open Access Journals
Title A Method Combining Line Detection and Semantic Segmentation for Power Line Extraction from Unmanned Aerial Vehicle Images
URI https://www.proquest.com/docview/2642462394
https://www.proquest.com/docview/2648877002
https://doaj.org/article/630b7665117a44d3b807bed093fe2563
Volume 14
WOSCitedRecordID wos000774623800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZaqFQu0KdYSleu6KWHiCROHOeEFlhUDqyiAhXtJfIrgNTNQhIQXPrbmXG8u4dWvfQSWfFDtmc8Dz_mI-QzWMBCKZ0GYShlABpfB7mVClyVCi0ObbWoHNhENpmIi4u88Bturb9WOZeJTlCbmcY98l1Q3HHCEch77-Y2QNQoPF31EBrPySpGKgM-X90fT4pvi12WkAGLhUkfl5SBf7_btJHTYQ5YfqmJXMD-P-SxUzJHG__bvVdk3ZuXdNTzw2vyzNZvyEuPdH71-JY8juiJA42mIAmUQ4eg4I9aemg7dyurprI29NROYcqvNSQup_55Uk3BwKUFwqr1VcYPXdO_i6D4SoWe11AJxDYdObam3-0V9oIeT0Fote_I-dH47OBr4OEXAg3D6ALBTazCKo6FshGkTKQqqbiUTHNhE2Eqy5RQWmUqTQ0H31HxSFqYXK1yllr2nqzUs9puEspEGicpUD6SJhGJhsZUJMDTkjnYF1U6IF_mpCi1j02OEBm_SvBRkGzlkmwDsrMoe9NH5PhrqX2k6KIERtF2P2bNZekXZclZqDLOwebMZJIYGE2YKWvCnFUWTEE2INtzYpd-abflktID8mmRDYsST1pkbWd3rgwI7wy0zda_m_hA1mJ8T-EutW2Tla65sx_JC33fXbfN0HPz0G0UDPFa6il-f4_hW6Q_Ib84Pil-PAGJBQXj
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1dT9RAFL3BxQRfxM-4gDpGffChoe200-kDMYssYQNsNgqGtzpfBRK2i21B90_5G70zbXcfNL7x4FvTzkz6cXrOve3cOQDvMALmUqrY830hPFR85aVGSExVchtxKKN47swmkvGYn52lkxX41dXC2GmVHSc6otYzZb-Rb6NwhxGzRt4fr7971jXK_l3tLDQaWBya-Q9M2aqd0R4-3_dhuD88-XTgta4CnsLOtceZDqWfhyGXJsAtHchcSCYEVYybiOvcUMmlkomMY80wJZIsEAZ1T8mUxobiuPdgNaJI6z1Y3R2OJ58XX3V8ipD2o2YdVEpTf7usAqeZzsh-qXzOIOAP_neitr_-v92OR_CwDZ_JoMH7Y1gxxRNYa53cL-ZPYT4gx84UmyDTSed-QTDfNmTP1G7WWUFEockXM0VIXSrcOJ-25VcFwQCeTKxtXNNl-LMum7oPYqtwyGmBnVCWyMC9tuSrubBnQUZTJOXqGZzeyZU_h14xK8wLIJTHYRQjsgOhIx4pHEwGHDNJkWL8lMd9-NA9-ky1a69bC5CrDHMwC5NsCZM-vF20vW5WHPlrq12LoEULu0q42zErz7OWdDJGfZkwhjF1IqJI49X4iTTaT2luMNSlfdjqwJW11FVlS2T14c3iMJKO_ZMkCjO7cW1QnBJU041_D_Ea1g5Ojo-yo9H4cBMehLZ2xE3g24JeXd6Yl3Bf3daXVfmqfZMIfLtrtP4G-QRfuw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aG2Jcxs9phQFGwIFD1CROHOeAUEdbUQ2qChjaLfhXtklrOpIM1n-Nv45nJ2kPIG47cIsS24qTz-97z_bzB_ASPWAupYo93xfCQ8ZXXmqExFAltx6HMornTmwimU758XE624BfXS6M3VbZ2URnqPVC2TnyPhJ3GDEr5N3P220Rs-H47cV3zypI2ZXWTk6jgcihWf7E8K16Mxniv34VhuPRl3fvvVZhwFPYUO1xpkPp52HIpQnwSgcyF5IJQRXjJuI6N1RyqWQi41gzDI8kC4RBDlQypbGh2O4N2ErQycAxtnUwms4-rWZ4fIrw9qPmTFRKU79fVoHjTydqv2ZBJxbwBxc4ghvf-Z8_zV3Yad1qMmjGwT3YMMV92G4V3k-XD2A5IB-dWDZBCyidKgbBONyQoandbrSCiEKTz2aOUDtTeHEyb9OyCoKOPZlZObmmyuiqLpt8EGKzc8hRgZWQrsjADWfy1ZzatyCTORrr6iEcXUvPd2GzWBRmDwjlcRjFiPhA6IhHChuTAccIU6ToV-VxD153MMhUeya7lQY5zzA2s5DJ1pDpwYtV2YvmJJK_ljqwaFqVsKeHuxuL8iRrjVHGqC8TxtDXTkQUaeyNn0ij_ZTmBl1g2oP9DmhZa9KqbI2yHjxfPUZjZFeYRGEWl64MklaCLPvo3008g1sI0ezDZHr4GG6HNqXE7evbh826vDRP4Kb6UZ9V5dN2UBH4dt1g_Q0U22h-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+Combining+Line+Detection+and+Semantic+Segmentation+for+Power+Line+Extraction+from+Unmanned+Aerial+Vehicle+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Zhao%2C+Wenbo&rft.au=Dong%2C+Qing&rft.au=Zuo%2C+Zhengli&rft.date=2022-03-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=6&rft_id=info:doi/10.3390%2Frs14061367&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon