Variations in ambient and elevated temperature mechanical behavior of IN718 manufactured by selective laser melting via process parameter control

The present study considers the effects of process parameters on the microstructural development and mechanical properties of SLM Inconel 718. A continuous scanning strategy was used in conjunction with changes in laser spot size to emphasize texture development in the samples; it was found that ali...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 780; p. 139184
Main Authors: McLouth, Tait D., Witkin, David B., Bean, Glenn E., Sitzman, Scott D., Adams, Paul M., Lohser, Julian R., Yang, Jenn-Ming, Zaldivar, Rafael J.
Format: Journal Article
Language:English
Published: Lausanne Elsevier B.V 07.04.2020
Elsevier BV
Subjects:
ISSN:0921-5093, 1873-4936
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The present study considers the effects of process parameters on the microstructural development and mechanical properties of SLM Inconel 718. A continuous scanning strategy was used in conjunction with changes in laser spot size to emphasize texture development in the samples; it was found that aligned laser scan vectors (continuous scans) enhanced the crystallographic and morphological texture that forms during solidification when compared to multi-directional scan vectors (island scans). Although room temperature tensile testing did not exhibit variation in material properties, creep rupture testing showed a significant difference in ductility and time to failure. As texture and preferred crystallographic orientation were increased parallel to the loading direction, an increase of 51% in creep elongation was observed for the continuous scanning strategy. This behavior is linked to differences in damage accumulation mechanisms in the microstructure based on grain boundary orientation and precipitation. Furthermore, comparison of the mechanical behavior of SLM and wrought materials showed that wrought had ~10% greater tensile yield strength at room temperature, while in creep rupture the increase in elongation was as high as 640%. The primary difference between SLM and wrought material contributing to this discrepancy was the difference in NbC distribution. Although small differences in mechanical behavior can be induced in SLM material through process parameter variation, the separation in properties when compared to a wrought product are more significant. •Laser focal shift and scanning strategy can enhance microstructural texture.•Microstructural texture persists through HIP and heat treatment.•SLM IN718 is shown to be environmentally sensitive due to NbC precipitation.•Wrought material displays superior high temperature ductility when compared to SLM.
AbstractList The present study considers the effects of process parameters on the microstructural development and mechanical properties of SLM Inconel 718. A continuous scanning strategy was used in conjunction with changes in laser spot size to emphasize texture development in the samples; it was found that aligned laser scan vectors (continuous scans) enhanced the crystallographic and morphological texture that forms during solidification when compared to multi-directional scan vectors (island scans). Although room temperature tensile testing did not exhibit variation in material properties, creep rupture testing showed a significant difference in ductility and time to failure. As texture and preferred crystallographic orientation were increased parallel to the loading direction, an increase of 51% in creep elongation was observed for the continuous scanning strategy. This behavior is linked to differences in damage accumulation mechanisms in the microstructure based on grain boundary orientation and precipitation. Furthermore, comparison of the mechanical behavior of SLM and wrought materials showed that wrought had ~10% greater tensile yield strength at room temperature, while in creep rupture the increase in elongation was as high as 640%. The primary difference between SLM and wrought material contributing to this discrepancy was the difference in NbC distribution. Although small differences in mechanical behavior can be induced in SLM material through process parameter variation, the separation in properties when compared to a wrought product are more significant.
The present study considers the effects of process parameters on the microstructural development and mechanical properties of SLM Inconel 718. A continuous scanning strategy was used in conjunction with changes in laser spot size to emphasize texture development in the samples; it was found that aligned laser scan vectors (continuous scans) enhanced the crystallographic and morphological texture that forms during solidification when compared to multi-directional scan vectors (island scans). Although room temperature tensile testing did not exhibit variation in material properties, creep rupture testing showed a significant difference in ductility and time to failure. As texture and preferred crystallographic orientation were increased parallel to the loading direction, an increase of 51% in creep elongation was observed for the continuous scanning strategy. This behavior is linked to differences in damage accumulation mechanisms in the microstructure based on grain boundary orientation and precipitation. Furthermore, comparison of the mechanical behavior of SLM and wrought materials showed that wrought had ~10% greater tensile yield strength at room temperature, while in creep rupture the increase in elongation was as high as 640%. The primary difference between SLM and wrought material contributing to this discrepancy was the difference in NbC distribution. Although small differences in mechanical behavior can be induced in SLM material through process parameter variation, the separation in properties when compared to a wrought product are more significant. •Laser focal shift and scanning strategy can enhance microstructural texture.•Microstructural texture persists through HIP and heat treatment.•SLM IN718 is shown to be environmentally sensitive due to NbC precipitation.•Wrought material displays superior high temperature ductility when compared to SLM.
ArticleNumber 139184
Author Sitzman, Scott D.
Bean, Glenn E.
Yang, Jenn-Ming
Witkin, David B.
Zaldivar, Rafael J.
Lohser, Julian R.
McLouth, Tait D.
Adams, Paul M.
Author_xml – sequence: 1
  givenname: Tait D.
  surname: McLouth
  fullname: McLouth, Tait D.
  email: tait.d.mclouth@aero.org
  organization: The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA, 90245, USA
– sequence: 2
  givenname: David B.
  surname: Witkin
  fullname: Witkin, David B.
  organization: The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA, 90245, USA
– sequence: 3
  givenname: Glenn E.
  surname: Bean
  fullname: Bean, Glenn E.
  organization: The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA, 90245, USA
– sequence: 4
  givenname: Scott D.
  surname: Sitzman
  fullname: Sitzman, Scott D.
  organization: The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA, 90245, USA
– sequence: 5
  givenname: Paul M.
  surname: Adams
  fullname: Adams, Paul M.
  organization: The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA, 90245, USA
– sequence: 6
  givenname: Julian R.
  surname: Lohser
  fullname: Lohser, Julian R.
  organization: The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA, 90245, USA
– sequence: 7
  givenname: Jenn-Ming
  surname: Yang
  fullname: Yang, Jenn-Ming
  organization: University of California, Los Angeles, Materials Science Department, 410 Westwood Plaza, Los Angeles, CA, 90095, USA
– sequence: 8
  givenname: Rafael J.
  surname: Zaldivar
  fullname: Zaldivar, Rafael J.
  organization: The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA, 90245, USA
BookMark eNp9kcuKVDEQhoOMYM_oC7gKuD5tbucScCODl4FBN4PbUEnqOGnOSdokfWAewzc2bbtyMatA5f-qKl-uyVVMEQl5y9meMz68P-zXgrAXTLSC1HxSL8iOT6PslJbDFdkxLXjXMy1fketSDowxrli_I79_QA5QQ4qFhkhhtQFjpRA9xQU3qOhpxfWIGeopI13RPUIMDhZq8RG2kDJNM737NvKJrhBPM7hz0FP7REtr4WrYkC5QMDd4qSH-pFsAeszJYSn0CBlWrO3WpVhzWl6TlzMsBd_8O2_Iw-dPD7dfu_vvX-5uP953TmpVu3G0qveKO60lWoaO-V6IyU4gpFN2Hr0f5qEXiNL2YtQj9z23TImG6Z7LG_Lu0rYt8uuEpZpDOuXYJhqhlBomybhsqemScjmVknE2LtS_umqGsBjOzNm_OZizf3P2by7-Gyr-Q485rJCfnoc-XCBsL98CZlNc-xCHPuSm0vgUnsP_ANeoo0I
CitedBy_id crossref_primary_10_1016_j_jmst_2023_11_030
crossref_primary_10_1016_j_jmapro_2022_01_067
crossref_primary_10_1016_j_mtcomm_2025_113058
crossref_primary_10_3390_met15020107
crossref_primary_10_1002_adem_202500306
crossref_primary_10_1016_j_jmrt_2025_03_136
crossref_primary_10_1016_j_ijplas_2025_104379
crossref_primary_10_1016_j_intermet_2025_108928
crossref_primary_10_1088_2053_1591_ac2193
crossref_primary_10_1016_j_surfcoat_2023_130253
crossref_primary_10_1016_j_msea_2020_140431
crossref_primary_10_1016_j_msea_2021_141721
crossref_primary_10_1016_j_matdes_2021_110161
crossref_primary_10_1016_j_msea_2024_147601
crossref_primary_10_1016_j_pmatsci_2023_101108
crossref_primary_10_1016_j_msea_2025_149029
crossref_primary_10_3390_app10103401
crossref_primary_10_1016_j_addma_2023_103860
crossref_primary_10_1016_j_jmrt_2025_06_119
crossref_primary_10_1016_j_matdes_2022_111567
crossref_primary_10_3390_jmmp8060297
crossref_primary_10_1007_s12598_025_03247_5
crossref_primary_10_1016_j_msea_2024_147527
crossref_primary_10_1016_j_msea_2022_142998
crossref_primary_10_3390_ma16062505
crossref_primary_10_1080_17452759_2020_1840783
crossref_primary_10_1002_adem_202200492
crossref_primary_10_1007_s11661_023_07035_7
crossref_primary_10_3390_ma16041377
crossref_primary_10_1016_j_addlet_2022_100037
crossref_primary_10_1016_j_msea_2021_141814
crossref_primary_10_1016_j_apsusc_2021_149397
crossref_primary_10_1016_j_actamat_2021_116876
crossref_primary_10_1016_j_jallcom_2020_158377
crossref_primary_10_1007_s10853_025_11359_7
crossref_primary_10_1007_s11665_021_05522_9
crossref_primary_10_1016_j_matdes_2022_110991
crossref_primary_10_1016_j_addma_2024_104267
crossref_primary_10_3390_ma18020276
crossref_primary_10_1016_j_matchar_2022_112339
crossref_primary_10_1016_j_matchar_2025_114935
crossref_primary_10_1016_j_msea_2022_143530
crossref_primary_10_1016_j_msea_2020_140583
crossref_primary_10_1016_j_scriptamat_2023_115942
crossref_primary_10_1007_s10853_022_07501_4
crossref_primary_10_3390_cryst12091243
crossref_primary_10_1016_j_ijleo_2021_167456
crossref_primary_10_1016_j_euromechsol_2024_105304
crossref_primary_10_1016_j_jmapro_2021_02_004
crossref_primary_10_1007_s00170_021_07719_7
crossref_primary_10_1016_j_addma_2022_102871
crossref_primary_10_1016_j_corsci_2025_113129
crossref_primary_10_1016_j_msea_2024_147304
crossref_primary_10_1016_j_ijplas_2021_102974
crossref_primary_10_1016_j_ijmachtools_2021_103804
crossref_primary_10_1007_s00170_023_12141_2
crossref_primary_10_1016_j_cherd_2021_05_018
crossref_primary_10_1016_j_addma_2021_101948
crossref_primary_10_1002_adem_202300819
crossref_primary_10_1016_j_jmst_2024_06_057
crossref_primary_10_1016_j_matdes_2021_109647
crossref_primary_10_3390_coatings13010189
crossref_primary_10_1007_s11665_025_11071_2
crossref_primary_10_1016_j_addma_2023_103491
crossref_primary_10_1007_s00170_022_09693_0
crossref_primary_10_1007_s00170_024_13402_4
crossref_primary_10_1016_j_ijmachtools_2022_103942
crossref_primary_10_1016_j_ijplas_2023_103831
Cites_doi 10.1016/S1003-6326(11)60814-5
10.1016/j.msea.2015.05.035
10.1016/j.msea.2019.03.103
10.1016/j.vacuum.2018.05.019
10.1016/j.jmatprotec.2018.01.040
10.1007/s11661-018-4812-z
10.3390/ma11060996
10.1016/j.addma.2018.10.027
10.1016/j.msea.2007.08.046
10.1016/j.matdes.2017.05.065
10.1016/0921-5093(94)90476-6
10.1016/j.scriptamat.2016.10.035
10.7449/1994/Superalloys_1994_581_592
10.1016/j.msea.2019.03.007
10.1016/0956-716X(94)90257-7
10.1016/j.matchar.2017.11.042
10.1016/j.msea.2017.02.062
10.1016/j.matdes.2018.04.019
10.1016/j.jallcom.2014.06.172
10.1016/0001-6160(88)90139-3
10.1007/s11665-019-03980-w
10.1179/026708309X12468927349451
10.1016/j.matdes.2016.12.026
10.1016/0956-716X(95)00120-K
10.1016/j.prostr.2016.06.072
10.1016/j.actamat.2011.12.032
10.1088/1361-651X/aa7369
10.1002/pssa.2211310234
10.1016/0001-6160(83)90194-3
10.1016/j.engfracmech.2008.09.003
10.3390/met7090367
10.1016/j.actamat.2012.11.052
10.1007/s40964-016-0013-8
10.1007/BF02642938
10.1007/s11661-019-05298-7
10.1179/030634583790421032
10.3390/ma12081293
10.7449/1991/Superalloys_1991_537_548
10.1016/0001-6160(89)90103-X
10.1016/j.msea.2004.05.053
10.1016/j.msea.2016.07.061
10.1016/0956-716X(94)90294-1
10.1016/j.matdes.2017.08.049
10.1016/j.msea.2016.10.069
10.1016/0025-5416(87)90264-3
10.1016/S1359-6454(01)00005-2
10.7449/1991/Superalloys_1991_549_562
10.1016/j.jallcom.2010.11.176
10.1016/j.addma.2016.11.006
10.1016/j.matdes.2017.11.060
10.7449/1991/Superalloys_1991_337_350
10.1016/j.addma.2018.04.024
10.3390/ma10111260
10.1007/s11665-016-2051-2
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Apr 7, 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Apr 7, 2020
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.msea.2020.139184
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4936
ExternalDocumentID 10_1016_j_msea_2020_139184
S0921509320302707
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SSM
SSZ
T5K
~02
~G-
29M
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
WUQ
~HD
7SR
8BQ
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JG9
SSH
ID FETCH-LOGICAL-c394t-77b45d41c993eb0ec0d5228b8a23c4bf7dd6f652ee3b527971d51b042b459513
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524357800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0921-5093
IngestDate Fri Jul 25 06:53:55 EDT 2025
Sat Nov 29 07:14:45 EST 2025
Tue Nov 18 20:27:42 EST 2025
Fri Feb 23 02:48:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Laser focal shift
Additive manufacturing
Creep rupture
Inconel 718
Scanning strategy
EBSD
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-77b45d41c993eb0ec0d5228b8a23c4bf7dd6f652ee3b527971d51b042b459513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2444683013
PQPubID 2045432
ParticipantIDs proquest_journals_2444683013
crossref_citationtrail_10_1016_j_msea_2020_139184
crossref_primary_10_1016_j_msea_2020_139184
elsevier_sciencedirect_doi_10_1016_j_msea_2020_139184
PublicationCentury 2000
PublicationDate 2020-04-07
PublicationDateYYYYMMDD 2020-04-07
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-07
  day: 07
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Materials science & engineering. A, Structural materials : properties, microstructure and processing
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Krupp (bib63) 2004; 387–389
Jiang (bib46) 2019; 755
Calandri (bib38) 2019; 12
Kuo, Kakehi (bib23) 2017; 7
ASTM E407 (bib34) 2015
Nix (bib55) 1989; 37
Chaturvedi, Han (bib36) 1983; 17
Gao, Dwyer, Wei (bib58) 1994; 625
ASTM E139 (bib33) 2018
Carter (bib7) 2014; 615
Donachie, Donachie (bib2) 2002
Burke, Miller (bib4) 1991; 718
Valerio, Gao, Wei (bib66) 1994; 30
Oblak, Paulonis, Duvall (bib35) 1974; 5
Kuo, Horikawa, Kakehi (bib16) 2017; 116
Pröbstle (bib24) 2016; 674
Witkin (bib28) 2019; 50
Liu (bib59) 1991; 178
Bean (bib9) 2018; 22
Sundararaman, Mukhopadhyay, Banerjee (bib1) 1997; 718
Chaturvedi, Han (bib51) 1987; 89
Kalluri (bib48) 1994
Chaturvedi (bib53) 1989
Christ, Wackerman, Krupp (bib61) 2016; 2
Xu (bib25) 2018; 256
Miao (bib21) 2011; 21
Thijs (bib41) 2013; 61
McLouth (bib10) 2018; 149
Liu (bib42) 2011; 509
Kuo, Horikawa, Kakehi (bib22) 2017; 129
Seede (bib37) 2018; 2
Devaux (bib50) 2008; 486
Ghosh (bib6) 2017; 25
Nickel Alloy (bib29) 1965
Brenne (bib26) 2016; 1
Tillmann (bib19) 2017; 13
Darvish (bib5) 2018; 135
Strondl (bib15) 2011; 27
Popovich (bib13) 2017; 131
Amato (bib18) 2012; 60
Bean (bib8) 2019; 28
ASTM E8 - Standard Test Methods for Tension Testing of Metallic Materials.
Sun, Hagihara, Nakano (bib43) 2018; 140
Shiozawa, Weertman (bib60) 1983; 31
Wan (bib17) 2019; 753
Shassere (bib12) 2018; 49
Brooks, Bridges (bib3) 1988
Kuo, Nagahari, Kakehi (bib45) 2018; 11
Pfaendtner, McMahon (bib62) 2001; 49
Bika, McCmahon (bib68) 1992; 131
Pang (bib67) 1994; 31
(bib31) 2001
Caliari (bib54) 2016; 25
Nadammal (bib11) 2017; 134
Kirka (bib14) 2017; 680
Sohrabi, Mirzadeh, Rafiei (bib20) 2018; 154
Goel (bib47) 2018
Gao, Dwyer, Wei (bib57) 1995; 32
Sundararaman, Mukhopadhyay, Banerjee (bib49) 1988; 36
Xu (bib39) 2018; 24
Hayes (bib56) 1994; 177
Tucho (bib40) 2017; 689
Carpenter, Kang, Chang (bib64) 1997; 625
Hautfenne, Nardone, De Bruycker (bib27) 2017
Yan, Xiong, Faierson (bib44) 2017; 10
Chlebus (bib30) 2015; 639
Wei (bib65) 2009; 76
Hayes (bib52) 1991; 718
Ghosh (10.1016/j.msea.2020.139184_bib6) 2017; 25
Brooks (10.1016/j.msea.2020.139184_bib3) 1988
Chaturvedi (10.1016/j.msea.2020.139184_bib53) 1989
Devaux (10.1016/j.msea.2020.139184_bib50) 2008; 486
Liu (10.1016/j.msea.2020.139184_bib42) 2011; 509
Xu (10.1016/j.msea.2020.139184_bib25) 2018; 256
Kirka (10.1016/j.msea.2020.139184_bib14) 2017; 680
Wan (10.1016/j.msea.2020.139184_bib17) 2019; 753
Carpenter (10.1016/j.msea.2020.139184_bib64) 1997; 625
Hayes (10.1016/j.msea.2020.139184_bib52) 1991; 718
Sundararaman (10.1016/j.msea.2020.139184_bib49) 1988; 36
Brenne (10.1016/j.msea.2020.139184_bib26) 2016; 1
Bean (10.1016/j.msea.2020.139184_bib8) 2019; 28
Liu (10.1016/j.msea.2020.139184_bib59) 1991; 178
Pang (10.1016/j.msea.2020.139184_bib67) 1994; 31
ASTM E139 (10.1016/j.msea.2020.139184_bib33) 2018
Calandri (10.1016/j.msea.2020.139184_bib38) 2019; 12
Nix (10.1016/j.msea.2020.139184_bib55) 1989; 37
Kuo (10.1016/j.msea.2020.139184_bib16) 2017; 116
Yan (10.1016/j.msea.2020.139184_bib44) 2017; 10
Krupp (10.1016/j.msea.2020.139184_bib63) 2004; 387–389
Gao (10.1016/j.msea.2020.139184_bib58) 1994; 625
Miao (10.1016/j.msea.2020.139184_bib21) 2011; 21
Chaturvedi (10.1016/j.msea.2020.139184_bib51) 1987; 89
Nadammal (10.1016/j.msea.2020.139184_bib11) 2017; 134
Popovich (10.1016/j.msea.2020.139184_bib13) 2017; 131
Wei (10.1016/j.msea.2020.139184_bib65) 2009; 76
Chaturvedi (10.1016/j.msea.2020.139184_bib36) 1983; 17
Bika (10.1016/j.msea.2020.139184_bib68) 1992; 131
Christ (10.1016/j.msea.2020.139184_bib61) 2016; 2
Kuo (10.1016/j.msea.2020.139184_bib45) 2018; 11
McLouth (10.1016/j.msea.2020.139184_bib10) 2018; 149
ASTM E407 (10.1016/j.msea.2020.139184_bib34) 2015
Bean (10.1016/j.msea.2020.139184_bib9) 2018; 22
Hayes (10.1016/j.msea.2020.139184_bib56) 1994; 177
10.1016/j.msea.2020.139184_bib32
Thijs (10.1016/j.msea.2020.139184_bib41) 2013; 61
Shassere (10.1016/j.msea.2020.139184_bib12) 2018; 49
Pröbstle (10.1016/j.msea.2020.139184_bib24) 2016; 674
Hautfenne (10.1016/j.msea.2020.139184_bib27) 2017
Darvish (10.1016/j.msea.2020.139184_bib5) 2018; 135
Sundararaman (10.1016/j.msea.2020.139184_bib1) 1997; 718
Strondl (10.1016/j.msea.2020.139184_bib15) 2011; 27
Pfaendtner (10.1016/j.msea.2020.139184_bib62) 2001; 49
Donachie (10.1016/j.msea.2020.139184_bib2) 2002
Xu (10.1016/j.msea.2020.139184_bib39) 2018; 24
Gao (10.1016/j.msea.2020.139184_bib57) 1995; 32
Witkin (10.1016/j.msea.2020.139184_bib28) 2019; 50
Shiozawa (10.1016/j.msea.2020.139184_bib60) 1983; 31
Burke (10.1016/j.msea.2020.139184_bib4) 1991; 718
Amato (10.1016/j.msea.2020.139184_bib18) 2012; 60
Chlebus (10.1016/j.msea.2020.139184_bib30) 2015; 639
Sun (10.1016/j.msea.2020.139184_bib43) 2018; 140
Valerio (10.1016/j.msea.2020.139184_bib66) 1994; 30
Tucho (10.1016/j.msea.2020.139184_bib40) 2017; 689
Tillmann (10.1016/j.msea.2020.139184_bib19) 2017; 13
Carter (10.1016/j.msea.2020.139184_bib7) 2014; 615
Kuo (10.1016/j.msea.2020.139184_bib22) 2017; 129
Seede (10.1016/j.msea.2020.139184_bib37) 2018; 2
Oblak (10.1016/j.msea.2020.139184_bib35) 1974; 5
Goel (10.1016/j.msea.2020.139184_bib47) 2018
Nickel Alloy (10.1016/j.msea.2020.139184_bib29) 1965
Sohrabi (10.1016/j.msea.2020.139184_bib20) 2018; 154
Kalluri (10.1016/j.msea.2020.139184_bib48) 1994
Caliari (10.1016/j.msea.2020.139184_bib54) 2016; 25
Kuo (10.1016/j.msea.2020.139184_bib23) 2017; 7
(10.1016/j.msea.2020.139184_bib31) 2001
Jiang (10.1016/j.msea.2020.139184_bib46) 2019; 755
References_xml – volume: 5
  start-page: 143
  year: 1974
  ident: bib35
  article-title: Coherency strengthening in Ni base alloys hardened by DO22 γ′ precipitates
  publication-title: Metall. Trans.
– volume: 486
  start-page: 117
  year: 2008
  end-page: 122
  ident: bib50
  article-title: Gamma double prime precipitation kinetic in Alloy 718
  publication-title: Mater. Sci. Eng., A
– volume: 49
  start-page: 5107
  year: 2018
  end-page: 5117
  ident: bib12
  article-title: Correlation of microstructure to creep response of hot isostatically pressed and aged electron beam melted Inconel 718
  publication-title: Metall. Mater. Trans.
– volume: 1
  start-page: 141
  year: 2016
  end-page: 151
  ident: bib26
  article-title: Microstructural design of Ni-base alloys for high-temperature applications: impact of heat treatment on microstructure and mechanical properties after selective laser melting
  publication-title: Prog. Addit. Manufact.
– volume: 129
  start-page: 74
  year: 2017
  end-page: 78
  ident: bib22
  article-title: Effects of build direction and heat treatment on creep properties of Ni-base superalloy built up by additive manufacturing
  publication-title: Scripta Mater.
– volume: 718
  start-page: 625
  year: 1997
  end-page: 706
  ident: bib1
  article-title: Carbide precipitation in nickel base superalloys 718 and 625 and their effect on mechanical properties
  publication-title: Superalloys
– volume: 36
  start-page: 847
  year: 1988
  end-page: 864
  ident: bib49
  article-title: Deformation behaviour of γ″ strengthened inconel 718
  publication-title: Acta Metall.
– volume: 28
  start-page: 1942
  year: 2019
  end-page: 1949
  ident: bib8
  article-title: Build orientation effects on texture and mechanical properties of selective laser melting inconel 718
  publication-title: J. Mater. Eng. Perform.
– volume: 61
  start-page: 1809
  year: 2013
  end-page: 1819
  ident: bib41
  article-title: Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder
  publication-title: Acta Mater.
– volume: 755
  start-page: 170
  year: 2019
  end-page: 180
  ident: bib46
  article-title: Varied heat treatments and properties of laser powder bed printed Inconel 718
  publication-title: Mater. Sci. Eng., A
– volume: 718
  start-page: 549
  year: 1991
  end-page: 562
  ident: bib52
  article-title: Creep deformation of inconel alloy 718
  publication-title: Superalloys
– volume: 11
  start-page: 996
  year: 2018
  ident: bib45
  article-title: The effect of post-processes on the microstructure and creep properties of Alloy718 built up by selective laser melting
  publication-title: Materials
– start-page: 489
  year: 1989
  end-page: 498
  ident: bib53
  article-title: Creep Deformation of Alloy 718. Superalloy 718-Metallurgy and Applications, the Minerals
– year: 1994
  ident: bib48
  article-title: Deformation and Damage Mechanisms in Inconel 718 Superalloy
– volume: 149
  start-page: 205
  year: 2018
  end-page: 213
  ident: bib10
  article-title: The effect of laser focus shift on microstructural variation of Inconel 718 produced by selective laser melting
  publication-title: Mater. Des.
– volume: 30
  year: 1994
  ident: bib66
  article-title: Environmental enhancement of creep crack growth in Inconel 718 by oxygen and water vapor
  publication-title: Scripta Metall. Mater.
– volume: 140
  start-page: 307
  year: 2018
  end-page: 316
  ident: bib43
  article-title: Effect of scanning strategy on texture formation in Ni-25at.%Mo alloys fabricated by selective laser melting
  publication-title: Mater. Des.
– volume: 154
  start-page: 235
  year: 2018
  end-page: 243
  ident: bib20
  article-title: Solidification behavior and Laves phase dissolution during homogenization heat treatment of Inconel 718 superalloy
  publication-title: Vacuum
– volume: 32
  start-page: 1169
  year: 1995
  end-page: 1174
  ident: bib57
  article-title: Niobium enrichment and environmental enhancement of creep crack growth in nickel-base superalloys
  publication-title: Scripta Metall. Mater.
– volume: 134
  start-page: 139
  year: 2017
  end-page: 150
  ident: bib11
  article-title: Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718
  publication-title: Mater. Des.
– volume: 25
  start-page: 2307
  year: 2016
  end-page: 2317
  ident: bib54
  article-title: Effect of double aging heat treatment on the short-term creep behavior of the inconel 718
  publication-title: J. Mater. Eng. Perform.
– volume: 674
  start-page: 299
  year: 2016
  end-page: 307
  ident: bib24
  article-title: Superior creep strength of a nickel-based superalloy produced by selective laser melting
  publication-title: Mater. Sci. Eng., A
– volume: 177
  start-page: 43
  year: 1994
  end-page: 53
  ident: bib56
  article-title: Effect of environment on the rupture behavior of alloys 909 and 718
  publication-title: Mater. Sci. Eng., A
– volume: 131
  start-page: 639
  year: 1992
  end-page: 649
  ident: bib68
  article-title: A kinetic model for dynamic embrittlement
  publication-title: Phys. Status Solidi
– volume: 60
  start-page: 2229
  year: 2012
  end-page: 2239
  ident: bib18
  article-title: Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting
  publication-title: Acta Mater.
– year: 1965
  ident: bib29
  article-title: Corrosion and heat resistant, bars, forgings, and rings 52.5Ni 19Cr 3.0Mo 5.1Cb 0.90Ti 0.50Al 19Fe, consumable electrode or vacuum induction melted 1775°F (968°C) solution and precipitation heat treated
  publication-title: SAE Int.
– volume: 12
  year: 2019
  ident: bib38
  article-title: Texture and microstructural features at different length scales in inconel 718 produced by selective laser melting
  publication-title: Materials
– year: 2002
  ident: bib2
  article-title: Superalloys: A Technical Guide
– volume: 21
  start-page: 1009
  year: 2011
  end-page: 1017
  ident: bib21
  article-title: Quantitative analysis of homogenization treatment of INCONEL718 superalloy
  publication-title: Trans. Nonferrous Metals Soc. China
– year: 2017
  ident: bib27
  article-title: Influence of Heat Treatments and Build Orientation on the Creep Strength of Additive Manufactured IN718
– volume: 50
  start-page: 3458
  year: 2019
  end-page: 3465
  ident: bib28
  article-title: Anomalous notch rupture behavior of nickel-based superalloy inconel 718 due to fabrication by additive manufacturing
  publication-title: Metall. Mater. Trans.
– volume: 387–389
  start-page: 409
  year: 2004
  end-page: 413
  ident: bib63
  article-title: Brittle intergranular fracture of a Ni-base superalloy at high temperatures by dynamic embrittlement
  publication-title: Mater. Sci. Eng., A
– volume: 689
  start-page: 220
  year: 2017
  end-page: 232
  ident: bib40
  article-title: Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment
  publication-title: Mater. Sci. Eng., A
– volume: 509
  start-page: 4505
  year: 2011
  end-page: 4509
  ident: bib42
  article-title: The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718
  publication-title: J. Alloys Compd.
– volume: 680
  start-page: 338
  year: 2017
  end-page: 346
  ident: bib14
  article-title: Mechanical behavior of post-processed Inconel 718 manufactured through the electron beam melting process
  publication-title: Mater. Sci. Eng., A
– reference: ASTM E8 - Standard Test Methods for Tension Testing of Metallic Materials.
– volume: 718
  start-page: 337
  year: 1991
  end-page: 350
  ident: bib4
  article-title: Precipitation in alloy 718: a combined Al3M and apfim investigation
  publication-title: Superalloys
– volume: 753
  start-page: 42
  year: 2019
  end-page: 48
  ident: bib17
  article-title: Effect of scanning strategy on mechanical properties of selective laser melted Inconel 718
  publication-title: Mater. Sci. Eng., A
– volume: 625
  start-page: 581
  year: 1994
  end-page: 592
  ident: bib58
  article-title: Chemical and microstructural aspects of creep crack growth in Inconel 718 alloy
  publication-title: Superalloys 718
– volume: 25
  year: 2017
  ident: bib6
  article-title: On the primary spacing and microsegregation of cellular dendrites in laser deposited Ni–Nb alloys
  publication-title: Model. Simulat. Mater. Sci. Eng.
– volume: 2
  start-page: 30
  year: 2018
  ident: bib37
  article-title: Microstructural and microhardness evolution from homogenization and hot isostatic pressing on selective laser melted Inconel 718: structure, texture, and phases
  publication-title: J. Manuf. Mater. Sci. Proc.
– volume: 13
  start-page: 93
  year: 2017
  end-page: 102
  ident: bib19
  article-title: Hot isostatic pressing of IN718 components manufactured by selective laser melting
  publication-title: Addit. Manufact.
– volume: 27
  start-page: 876
  year: 2011
  end-page: 883
  ident: bib15
  article-title: Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM)
  publication-title: Mater. Sci. Technol.
– volume: 131
  start-page: 12
  year: 2017
  end-page: 22
  ident: bib13
  article-title: Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting
  publication-title: Mater. Des.
– volume: 10
  year: 2017
  ident: bib44
  article-title: Grain structure control of additively manufactured metallic materials
  publication-title: Materials
– year: 2018
  ident: bib47
  article-title: The effect of location and post-treatment on the microstructure of EBM-built alloy 718
  publication-title: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications
– volume: 31
  start-page: 993
  year: 1983
  end-page: 1004
  ident: bib60
  article-title: Studies of nucleation mechanisms and the role of residual stresses in the grain boundary cavitation of a superalloy
  publication-title: Acta Metall.
– volume: 37
  start-page: 1067
  year: 1989
  end-page: 1077
  ident: bib55
  article-title: The principal facet stress as a parameter for predicting creep rupture under multiaxial stresses
  publication-title: Acta Metall.
– volume: 76
  start-page: 715
  year: 2009
  end-page: 727
  ident: bib65
  article-title: Oxygen enhanced crack growth in nickel-based superalloys and materials damage prognosis
  publication-title: Eng. Fract. Mech.
– volume: 178
  start-page: 537
  year: 1991
  end-page: 548
  ident: bib59
  article-title: Creep crack growth behaviour of Alloy 718
  publication-title: Superalloys
– volume: 256
  start-page: 13
  year: 2018
  end-page: 24
  ident: bib25
  article-title: Creep Behaviour of Inconel 718 Processed by laser powder bed fusion
  publication-title: J. Mater. Process. Technol.
– volume: 31
  year: 1994
  ident: bib67
  article-title: Surface enrichment and grain boundary segregation of niobium in inconel 718 single-and poly-crystals
  publication-title: Scripta Metall. Mater.
– volume: 17
  start-page: 145
  year: 1983
  end-page: 149
  ident: bib36
  article-title: Strengthening mechanisms in Inconel 718 superalloy
  publication-title: Met. Sci.
– volume: 22
  start-page: 207
  year: 2018
  end-page: 215
  ident: bib9
  article-title: Effect of laser focus shift on surface quality and density of Inconel 718 parts produced via selective laser melting
  publication-title: Addit. Manufact.
– year: 2015
  ident: bib34
  article-title: Standard Practice for Microetching Metals and Alloys
– volume: 24
  start-page: 486
  year: 2018
  end-page: 497
  ident: bib39
  article-title: Effect of post processing on the creep performance of laser powder bed fused Inconel 718
  publication-title: Addit. Manufact.
– volume: 135
  start-page: 183
  year: 2018
  end-page: 191
  ident: bib5
  article-title: Selective laser melting of Co-29Cr-6Mo alloy with laser power 180–360 W: Cellular growth, intercellular spacing and the related thermal condition
  publication-title: Mater. Char.
– start-page: 33
  year: 1988
  end-page: 42
  ident: bib3
  article-title: Metallurgical Stability of Inconel Alloy 718
– year: 2001
  ident: bib31
  article-title: Heat treatment wrought nickel alloy and cobalt alloy parts
  publication-title: SAE Int.
– volume: 639
  start-page: 647
  year: 2015
  end-page: 655
  ident: bib30
  article-title: Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting
  publication-title: Mater. Sci. Eng., A
– volume: 116
  start-page: 411
  year: 2017
  end-page: 418
  ident: bib16
  article-title: The effect of interdendritic δ phase on the mechanical properties of Alloy 718 built up by additive manufacturing
  publication-title: Mater. Des.
– volume: 615
  start-page: 338
  year: 2014
  end-page: 347
  ident: bib7
  article-title: The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy
  publication-title: J. Alloys Compd.
– volume: 7
  year: 2017
  ident: bib23
  article-title: Influence of powder surface contamination in the Ni-based superalloy Alloy718 fabricated by selective laser melting and hot isostatic pressing
  publication-title: Metals
– volume: 89
  start-page: L7
  year: 1987
  end-page: L10
  ident: bib51
  article-title: Effect of particle size on the creep rate of superalloy Inconel 718
  publication-title: Mater. Sci. Eng.
– volume: 2
  start-page: 557
  year: 2016
  end-page: 564
  ident: bib61
  article-title: On the mechanism of dynamic embrittlement and its effect on fatigue crack propagation in IN718 at 650°C
  publication-title: Procedia Struct. Integr.
– volume: 49
  start-page: 3369
  year: 2001
  end-page: 3377
  ident: bib62
  article-title: Oxygen-induced intergranular cracking of a Ni-base alloy at elevated temperatures—an example of dynamic embrittlement
  publication-title: Acta Mater.
– volume: 625
  start-page: 679
  year: 1997
  end-page: 688
  ident: bib64
  article-title: SAGBO Mechanism on high temperature cracking behavior of Ni-base superalloys
  publication-title: Superalloys 718
– year: 2018
  ident: bib33
  article-title: Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials
– volume: 21
  start-page: 1009
  issue: 5
  year: 2011
  ident: 10.1016/j.msea.2020.139184_bib21
  article-title: Quantitative analysis of homogenization treatment of INCONEL718 superalloy
  publication-title: Trans. Nonferrous Metals Soc. China
  doi: 10.1016/S1003-6326(11)60814-5
– volume: 639
  start-page: 647
  year: 2015
  ident: 10.1016/j.msea.2020.139184_bib30
  article-title: Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2015.05.035
– volume: 755
  start-page: 170
  year: 2019
  ident: 10.1016/j.msea.2020.139184_bib46
  article-title: Varied heat treatments and properties of laser powder bed printed Inconel 718
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2019.03.103
– volume: 154
  start-page: 235
  year: 2018
  ident: 10.1016/j.msea.2020.139184_bib20
  article-title: Solidification behavior and Laves phase dissolution during homogenization heat treatment of Inconel 718 superalloy
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2018.05.019
– volume: 256
  start-page: 13
  year: 2018
  ident: 10.1016/j.msea.2020.139184_bib25
  article-title: Creep Behaviour of Inconel 718 Processed by laser powder bed fusion
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2018.01.040
– volume: 49
  start-page: 5107
  issue: 10
  year: 2018
  ident: 10.1016/j.msea.2020.139184_bib12
  article-title: Correlation of microstructure to creep response of hot isostatically pressed and aged electron beam melted Inconel 718
  publication-title: Metall. Mater. Trans.
  doi: 10.1007/s11661-018-4812-z
– volume: 11
  start-page: 996
  issue: 6
  year: 2018
  ident: 10.1016/j.msea.2020.139184_bib45
  article-title: The effect of post-processes on the microstructure and creep properties of Alloy718 built up by selective laser melting
  publication-title: Materials
  doi: 10.3390/ma11060996
– volume: 24
  start-page: 486
  year: 2018
  ident: 10.1016/j.msea.2020.139184_bib39
  article-title: Effect of post processing on the creep performance of laser powder bed fused Inconel 718
  publication-title: Addit. Manufact.
  doi: 10.1016/j.addma.2018.10.027
– start-page: 489
  year: 1989
  ident: 10.1016/j.msea.2020.139184_bib53
– volume: 486
  start-page: 117
  issue: 1
  year: 2008
  ident: 10.1016/j.msea.2020.139184_bib50
  article-title: Gamma double prime precipitation kinetic in Alloy 718
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2007.08.046
– volume: 131
  start-page: 12
  year: 2017
  ident: 10.1016/j.msea.2020.139184_bib13
  article-title: Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.05.065
– volume: 177
  start-page: 43
  issue: 1
  year: 1994
  ident: 10.1016/j.msea.2020.139184_bib56
  article-title: Effect of environment on the rupture behavior of alloys 909 and 718
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/0921-5093(94)90476-6
– volume: 129
  start-page: 74
  year: 2017
  ident: 10.1016/j.msea.2020.139184_bib22
  article-title: Effects of build direction and heat treatment on creep properties of Ni-base superalloy built up by additive manufacturing
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2016.10.035
– volume: 625
  start-page: 581
  issue: 706
  year: 1994
  ident: 10.1016/j.msea.2020.139184_bib58
  article-title: Chemical and microstructural aspects of creep crack growth in Inconel 718 alloy
  publication-title: Superalloys 718
  doi: 10.7449/1994/Superalloys_1994_581_592
– volume: 753
  start-page: 42
  year: 2019
  ident: 10.1016/j.msea.2020.139184_bib17
  article-title: Effect of scanning strategy on mechanical properties of selective laser melted Inconel 718
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2019.03.007
– volume: 30
  issue: 10
  year: 1994
  ident: 10.1016/j.msea.2020.139184_bib66
  article-title: Environmental enhancement of creep crack growth in Inconel 718 by oxygen and water vapor
  publication-title: Scripta Metall. Mater.
  doi: 10.1016/0956-716X(94)90257-7
– year: 2015
  ident: 10.1016/j.msea.2020.139184_bib34
– volume: 135
  start-page: 183
  year: 2018
  ident: 10.1016/j.msea.2020.139184_bib5
  article-title: Selective laser melting of Co-29Cr-6Mo alloy with laser power 180–360 W: Cellular growth, intercellular spacing and the related thermal condition
  publication-title: Mater. Char.
  doi: 10.1016/j.matchar.2017.11.042
– volume: 689
  start-page: 220
  year: 2017
  ident: 10.1016/j.msea.2020.139184_bib40
  article-title: Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2017.02.062
– volume: 149
  start-page: 205
  year: 2018
  ident: 10.1016/j.msea.2020.139184_bib10
  article-title: The effect of laser focus shift on microstructural variation of Inconel 718 produced by selective laser melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.04.019
– volume: 615
  start-page: 338
  year: 2014
  ident: 10.1016/j.msea.2020.139184_bib7
  article-title: The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.06.172
– volume: 36
  start-page: 847
  issue: 4
  year: 1988
  ident: 10.1016/j.msea.2020.139184_bib49
  article-title: Deformation behaviour of γ″ strengthened inconel 718
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(88)90139-3
– volume: 28
  start-page: 1942
  year: 2019
  ident: 10.1016/j.msea.2020.139184_bib8
  article-title: Build orientation effects on texture and mechanical properties of selective laser melting inconel 718
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-019-03980-w
– volume: 27
  start-page: 876
  issue: 5
  year: 2011
  ident: 10.1016/j.msea.2020.139184_bib15
  article-title: Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM)
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/026708309X12468927349451
– volume: 116
  start-page: 411
  year: 2017
  ident: 10.1016/j.msea.2020.139184_bib16
  article-title: The effect of interdendritic δ phase on the mechanical properties of Alloy 718 built up by additive manufacturing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.12.026
– year: 2018
  ident: 10.1016/j.msea.2020.139184_bib33
– volume: 32
  start-page: 1169
  issue: 8
  year: 1995
  ident: 10.1016/j.msea.2020.139184_bib57
  article-title: Niobium enrichment and environmental enhancement of creep crack growth in nickel-base superalloys
  publication-title: Scripta Metall. Mater.
  doi: 10.1016/0956-716X(95)00120-K
– volume: 2
  start-page: 557
  year: 2016
  ident: 10.1016/j.msea.2020.139184_bib61
  article-title: On the mechanism of dynamic embrittlement and its effect on fatigue crack propagation in IN718 at 650°C
  publication-title: Procedia Struct. Integr.
  doi: 10.1016/j.prostr.2016.06.072
– volume: 60
  start-page: 2229
  issue: 5
  year: 2012
  ident: 10.1016/j.msea.2020.139184_bib18
  article-title: Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.12.032
– volume: 25
  issue: 6
  year: 2017
  ident: 10.1016/j.msea.2020.139184_bib6
  article-title: On the primary spacing and microsegregation of cellular dendrites in laser deposited Ni–Nb alloys
  publication-title: Model. Simulat. Mater. Sci. Eng.
  doi: 10.1088/1361-651X/aa7369
– volume: 625
  start-page: 679
  issue: 706
  year: 1997
  ident: 10.1016/j.msea.2020.139184_bib64
  article-title: SAGBO Mechanism on high temperature cracking behavior of Ni-base superalloys
  publication-title: Superalloys 718
– volume: 131
  start-page: 639
  issue: 2
  year: 1992
  ident: 10.1016/j.msea.2020.139184_bib68
  article-title: A kinetic model for dynamic embrittlement
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssa.2211310234
– ident: 10.1016/j.msea.2020.139184_bib32
– year: 1994
  ident: 10.1016/j.msea.2020.139184_bib48
– volume: 31
  start-page: 993
  issue: 7
  year: 1983
  ident: 10.1016/j.msea.2020.139184_bib60
  article-title: Studies of nucleation mechanisms and the role of residual stresses in the grain boundary cavitation of a superalloy
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(83)90194-3
– volume: 76
  start-page: 715
  issue: 5
  year: 2009
  ident: 10.1016/j.msea.2020.139184_bib65
  article-title: Oxygen enhanced crack growth in nickel-based superalloys and materials damage prognosis
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2008.09.003
– year: 2002
  ident: 10.1016/j.msea.2020.139184_bib2
– volume: 7
  issue: 9
  year: 2017
  ident: 10.1016/j.msea.2020.139184_bib23
  article-title: Influence of powder surface contamination in the Ni-based superalloy Alloy718 fabricated by selective laser melting and hot isostatic pressing
  publication-title: Metals
  doi: 10.3390/met7090367
– volume: 61
  start-page: 1809
  issue: 5
  year: 2013
  ident: 10.1016/j.msea.2020.139184_bib41
  article-title: Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.11.052
– volume: 1
  start-page: 141
  issue: 3
  year: 2016
  ident: 10.1016/j.msea.2020.139184_bib26
  article-title: Microstructural design of Ni-base alloys for high-temperature applications: impact of heat treatment on microstructure and mechanical properties after selective laser melting
  publication-title: Prog. Addit. Manufact.
  doi: 10.1007/s40964-016-0013-8
– volume: 5
  start-page: 143
  issue: 1
  year: 1974
  ident: 10.1016/j.msea.2020.139184_bib35
  article-title: Coherency strengthening in Ni base alloys hardened by DO22 γ′ precipitates
  publication-title: Metall. Trans.
  doi: 10.1007/BF02642938
– year: 2017
  ident: 10.1016/j.msea.2020.139184_bib27
– volume: 50
  start-page: 3458
  issue: 8
  year: 2019
  ident: 10.1016/j.msea.2020.139184_bib28
  article-title: Anomalous notch rupture behavior of nickel-based superalloy inconel 718 due to fabrication by additive manufacturing
  publication-title: Metall. Mater. Trans.
  doi: 10.1007/s11661-019-05298-7
– volume: 17
  start-page: 145
  issue: 3
  year: 1983
  ident: 10.1016/j.msea.2020.139184_bib36
  article-title: Strengthening mechanisms in Inconel 718 superalloy
  publication-title: Met. Sci.
  doi: 10.1179/030634583790421032
– volume: 12
  issue: 8
  year: 2019
  ident: 10.1016/j.msea.2020.139184_bib38
  article-title: Texture and microstructural features at different length scales in inconel 718 produced by selective laser melting
  publication-title: Materials
  doi: 10.3390/ma12081293
– volume: 178
  start-page: 537
  issue: 625
  year: 1991
  ident: 10.1016/j.msea.2020.139184_bib59
  article-title: Creep crack growth behaviour of Alloy 718
  publication-title: Superalloys
  doi: 10.7449/1991/Superalloys_1991_537_548
– year: 2018
  ident: 10.1016/j.msea.2020.139184_bib47
  article-title: The effect of location and post-treatment on the microstructure of EBM-built alloy 718
– volume: 37
  start-page: 1067
  issue: 4
  year: 1989
  ident: 10.1016/j.msea.2020.139184_bib55
  article-title: The principal facet stress as a parameter for predicting creep rupture under multiaxial stresses
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(89)90103-X
– volume: 387–389
  start-page: 409
  year: 2004
  ident: 10.1016/j.msea.2020.139184_bib63
  article-title: Brittle intergranular fracture of a Ni-base superalloy at high temperatures by dynamic embrittlement
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2004.05.053
– volume: 674
  start-page: 299
  year: 2016
  ident: 10.1016/j.msea.2020.139184_bib24
  article-title: Superior creep strength of a nickel-based superalloy produced by selective laser melting
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2016.07.061
– volume: 31
  issue: 3
  year: 1994
  ident: 10.1016/j.msea.2020.139184_bib67
  article-title: Surface enrichment and grain boundary segregation of niobium in inconel 718 single-and poly-crystals
  publication-title: Scripta Metall. Mater.
  doi: 10.1016/0956-716X(94)90294-1
– volume: 134
  start-page: 139
  year: 2017
  ident: 10.1016/j.msea.2020.139184_bib11
  article-title: Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.08.049
– volume: 680
  start-page: 338
  year: 2017
  ident: 10.1016/j.msea.2020.139184_bib14
  article-title: Mechanical behavior of post-processed Inconel 718 manufactured through the electron beam melting process
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2016.10.069
– volume: 89
  start-page: L7
  year: 1987
  ident: 10.1016/j.msea.2020.139184_bib51
  article-title: Effect of particle size on the creep rate of superalloy Inconel 718
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(87)90264-3
– volume: 49
  start-page: 3369
  issue: 16
  year: 2001
  ident: 10.1016/j.msea.2020.139184_bib62
  article-title: Oxygen-induced intergranular cracking of a Ni-base alloy at elevated temperatures—an example of dynamic embrittlement
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(01)00005-2
– volume: 718
  start-page: 549
  issue: 625
  year: 1991
  ident: 10.1016/j.msea.2020.139184_bib52
  article-title: Creep deformation of inconel alloy 718
  publication-title: Superalloys
  doi: 10.7449/1991/Superalloys_1991_549_562
– year: 1965
  ident: 10.1016/j.msea.2020.139184_bib29
  article-title: Corrosion and heat resistant, bars, forgings, and rings 52.5Ni 19Cr 3.0Mo 5.1Cb 0.90Ti 0.50Al 19Fe, consumable electrode or vacuum induction melted 1775°F (968°C) solution and precipitation heat treated
  publication-title: SAE Int.
– volume: 509
  start-page: 4505
  issue: 13
  year: 2011
  ident: 10.1016/j.msea.2020.139184_bib42
  article-title: The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.11.176
– start-page: 33
  year: 1988
  ident: 10.1016/j.msea.2020.139184_bib3
– volume: 13
  start-page: 93
  year: 2017
  ident: 10.1016/j.msea.2020.139184_bib19
  article-title: Hot isostatic pressing of IN718 components manufactured by selective laser melting
  publication-title: Addit. Manufact.
  doi: 10.1016/j.addma.2016.11.006
– volume: 718
  start-page: 625
  year: 1997
  ident: 10.1016/j.msea.2020.139184_bib1
  article-title: Carbide precipitation in nickel base superalloys 718 and 625 and their effect on mechanical properties
  publication-title: Superalloys
– year: 2001
  ident: 10.1016/j.msea.2020.139184_bib31
  article-title: Heat treatment wrought nickel alloy and cobalt alloy parts
  publication-title: SAE Int.
– volume: 140
  start-page: 307
  year: 2018
  ident: 10.1016/j.msea.2020.139184_bib43
  article-title: Effect of scanning strategy on texture formation in Ni-25at.%Mo alloys fabricated by selective laser melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.11.060
– volume: 718
  start-page: 337
  issue: 625
  year: 1991
  ident: 10.1016/j.msea.2020.139184_bib4
  article-title: Precipitation in alloy 718: a combined Al3M and apfim investigation
  publication-title: Superalloys
  doi: 10.7449/1991/Superalloys_1991_337_350
– volume: 22
  start-page: 207
  year: 2018
  ident: 10.1016/j.msea.2020.139184_bib9
  article-title: Effect of laser focus shift on surface quality and density of Inconel 718 parts produced via selective laser melting
  publication-title: Addit. Manufact.
  doi: 10.1016/j.addma.2018.04.024
– volume: 2
  start-page: 30
  issue: 2
  year: 2018
  ident: 10.1016/j.msea.2020.139184_bib37
  article-title: Microstructural and microhardness evolution from homogenization and hot isostatic pressing on selective laser melted Inconel 718: structure, texture, and phases
  publication-title: J. Manuf. Mater. Sci. Proc.
– volume: 10
  issue: 11
  year: 2017
  ident: 10.1016/j.msea.2020.139184_bib44
  article-title: Grain structure control of additively manufactured metallic materials
  publication-title: Materials
  doi: 10.3390/ma10111260
– volume: 25
  start-page: 2307
  issue: 6
  year: 2016
  ident: 10.1016/j.msea.2020.139184_bib54
  article-title: Effect of double aging heat treatment on the short-term creep behavior of the inconel 718
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-016-2051-2
SSID ssj0001405
Score 2.567934
Snippet The present study considers the effects of process parameters on the microstructural development and mechanical properties of SLM Inconel 718. A continuous...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 139184
SubjectTerms Additive manufacturing
Creep (materials)
Creep rupture
Crystallography
Damage accumulation
Ductility tests
EBSD
Elongation
Grain boundaries
High temperature
Inconel 718
Laser beam melting
Laser focal shift
Lasers
Material properties
Mechanical properties
Microstructure
Nickel base alloys
Niobium carbide
Process parameters
Room temperature
Rupture
Scanning
Scanning strategy
Solidification
Superalloys
Texture
Yield strength
Title Variations in ambient and elevated temperature mechanical behavior of IN718 manufactured by selective laser melting via process parameter control
URI https://dx.doi.org/10.1016/j.msea.2020.139184
https://www.proquest.com/docview/2444683013
Volume 780
WOSCitedRecordID wos000524357800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4936
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001405
  issn: 0921-5093
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF61KQdAQjxFoaA9cLMc-Zm1jymEl0qERIRys3btteQqdqPEjQr_gn_MzD5sE9SKHrhEkbM7Wnk-ex75ZoaQNyziMi8EhCWpSN0o5LkLdj52Ux6jteVJLFSf2TM2nyfLZfr14PC-rYXZrVjTJFdX6fq_qhqugbKxdPYW6u6EwgX4DkqHT1A7fP6T4r9D9NszxHktKksjx1Jyjh4m9qMyzZSdWmLtr1KVLdlX5SVzMCfIbb3E0ofLjXZUt2pqDpKNwOmWG9i8UrTpXcWdtS45cLCZeI0kG0uDH_q_X3ir74Fj64kQerJvijh2ppp8hm1tVUuQutuC2Ys1_nmwwS6wuKxGOuHWrJWm6YE6hrXIKuV4hnMCFTJ51Trvxn2yqTXTyBS13zntfjmVOjH8AYxy48y669-q9qfNGauuFkaYyZsEnqLbsGECNPBdcJfCoS1geqyUeZuDd-zrAXZ_GRqd8zgf14DSMYof94v_7Oq9Z207DqSl151nKCNDGZmWcUiOAhanyYgcTT_Nlp87zwKCYUXJtSc3RWCar7h_kuscrT2XQ_lRi4fkgQmA6FQD9xE5kM1jcm_QFvMJ-dVDmFYNNRCmoF1qIUwHEKY9hKmFML0oqYIwHUKYih-0gzBVEKYGwhQgTA12aAdhaiD8lCzezxZvP7pmdIibh2nUQswooriI_Bzcbyk8mXsFBBqJSHgQ5pEoWVFMykkcSBmKOGAp84vYF2DAYBvEHOEzMmouGvmc0FLmZcgSeHN5UZR7ceIlJQrkYsJ8OUmPiW9vc5abtvo43WWVXa_gY-J0e9a6qcyNq2Orvcw8m9rdzQCMN-47sarOzPtpm4E3H00SsOrhi1sd4iW52z9EJ2QET7Z8Re7ku7babl4boP4GV6_olA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variations+in+ambient+and+elevated+temperature+mechanical+behavior+of+IN718+manufactured+by+selective+laser+melting+via+process+parameter+control&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=McLouth%2C+Tait+D.&rft.au=Witkin%2C+David+B.&rft.au=Bean%2C+Glenn+E.&rft.au=Sitzman%2C+Scott+D.&rft.date=2020-04-07&rft.issn=0921-5093&rft.volume=780&rft.spage=139184&rft_id=info:doi/10.1016%2Fj.msea.2020.139184&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_msea_2020_139184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon