Variations in ambient and elevated temperature mechanical behavior of IN718 manufactured by selective laser melting via process parameter control
The present study considers the effects of process parameters on the microstructural development and mechanical properties of SLM Inconel 718. A continuous scanning strategy was used in conjunction with changes in laser spot size to emphasize texture development in the samples; it was found that ali...
Saved in:
| Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 780; p. 139184 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Lausanne
Elsevier B.V
07.04.2020
Elsevier BV |
| Subjects: | |
| ISSN: | 0921-5093, 1873-4936 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The present study considers the effects of process parameters on the microstructural development and mechanical properties of SLM Inconel 718. A continuous scanning strategy was used in conjunction with changes in laser spot size to emphasize texture development in the samples; it was found that aligned laser scan vectors (continuous scans) enhanced the crystallographic and morphological texture that forms during solidification when compared to multi-directional scan vectors (island scans). Although room temperature tensile testing did not exhibit variation in material properties, creep rupture testing showed a significant difference in ductility and time to failure. As texture and preferred crystallographic orientation were increased parallel to the loading direction, an increase of 51% in creep elongation was observed for the continuous scanning strategy. This behavior is linked to differences in damage accumulation mechanisms in the microstructure based on grain boundary orientation and precipitation. Furthermore, comparison of the mechanical behavior of SLM and wrought materials showed that wrought had ~10% greater tensile yield strength at room temperature, while in creep rupture the increase in elongation was as high as 640%. The primary difference between SLM and wrought material contributing to this discrepancy was the difference in NbC distribution. Although small differences in mechanical behavior can be induced in SLM material through process parameter variation, the separation in properties when compared to a wrought product are more significant.
•Laser focal shift and scanning strategy can enhance microstructural texture.•Microstructural texture persists through HIP and heat treatment.•SLM IN718 is shown to be environmentally sensitive due to NbC precipitation.•Wrought material displays superior high temperature ductility when compared to SLM. |
|---|---|
| AbstractList | The present study considers the effects of process parameters on the microstructural development and mechanical properties of SLM Inconel 718. A continuous scanning strategy was used in conjunction with changes in laser spot size to emphasize texture development in the samples; it was found that aligned laser scan vectors (continuous scans) enhanced the crystallographic and morphological texture that forms during solidification when compared to multi-directional scan vectors (island scans). Although room temperature tensile testing did not exhibit variation in material properties, creep rupture testing showed a significant difference in ductility and time to failure. As texture and preferred crystallographic orientation were increased parallel to the loading direction, an increase of 51% in creep elongation was observed for the continuous scanning strategy. This behavior is linked to differences in damage accumulation mechanisms in the microstructure based on grain boundary orientation and precipitation. Furthermore, comparison of the mechanical behavior of SLM and wrought materials showed that wrought had ~10% greater tensile yield strength at room temperature, while in creep rupture the increase in elongation was as high as 640%. The primary difference between SLM and wrought material contributing to this discrepancy was the difference in NbC distribution. Although small differences in mechanical behavior can be induced in SLM material through process parameter variation, the separation in properties when compared to a wrought product are more significant. The present study considers the effects of process parameters on the microstructural development and mechanical properties of SLM Inconel 718. A continuous scanning strategy was used in conjunction with changes in laser spot size to emphasize texture development in the samples; it was found that aligned laser scan vectors (continuous scans) enhanced the crystallographic and morphological texture that forms during solidification when compared to multi-directional scan vectors (island scans). Although room temperature tensile testing did not exhibit variation in material properties, creep rupture testing showed a significant difference in ductility and time to failure. As texture and preferred crystallographic orientation were increased parallel to the loading direction, an increase of 51% in creep elongation was observed for the continuous scanning strategy. This behavior is linked to differences in damage accumulation mechanisms in the microstructure based on grain boundary orientation and precipitation. Furthermore, comparison of the mechanical behavior of SLM and wrought materials showed that wrought had ~10% greater tensile yield strength at room temperature, while in creep rupture the increase in elongation was as high as 640%. The primary difference between SLM and wrought material contributing to this discrepancy was the difference in NbC distribution. Although small differences in mechanical behavior can be induced in SLM material through process parameter variation, the separation in properties when compared to a wrought product are more significant. •Laser focal shift and scanning strategy can enhance microstructural texture.•Microstructural texture persists through HIP and heat treatment.•SLM IN718 is shown to be environmentally sensitive due to NbC precipitation.•Wrought material displays superior high temperature ductility when compared to SLM. |
| ArticleNumber | 139184 |
| Author | Sitzman, Scott D. Bean, Glenn E. Yang, Jenn-Ming Witkin, David B. Zaldivar, Rafael J. Lohser, Julian R. McLouth, Tait D. Adams, Paul M. |
| Author_xml | – sequence: 1 givenname: Tait D. surname: McLouth fullname: McLouth, Tait D. email: tait.d.mclouth@aero.org organization: The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA, 90245, USA – sequence: 2 givenname: David B. surname: Witkin fullname: Witkin, David B. organization: The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA, 90245, USA – sequence: 3 givenname: Glenn E. surname: Bean fullname: Bean, Glenn E. organization: The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA, 90245, USA – sequence: 4 givenname: Scott D. surname: Sitzman fullname: Sitzman, Scott D. organization: The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA, 90245, USA – sequence: 5 givenname: Paul M. surname: Adams fullname: Adams, Paul M. organization: The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA, 90245, USA – sequence: 6 givenname: Julian R. surname: Lohser fullname: Lohser, Julian R. organization: The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA, 90245, USA – sequence: 7 givenname: Jenn-Ming surname: Yang fullname: Yang, Jenn-Ming organization: University of California, Los Angeles, Materials Science Department, 410 Westwood Plaza, Los Angeles, CA, 90095, USA – sequence: 8 givenname: Rafael J. surname: Zaldivar fullname: Zaldivar, Rafael J. organization: The Aerospace Corporation, 2310 E. El Segundo Blvd., El Segundo, CA, 90245, USA |
| BookMark | eNp9kcuKVDEQhoOMYM_oC7gKuD5tbucScCODl4FBN4PbUEnqOGnOSdokfWAewzc2bbtyMatA5f-qKl-uyVVMEQl5y9meMz68P-zXgrAXTLSC1HxSL8iOT6PslJbDFdkxLXjXMy1fketSDowxrli_I79_QA5QQ4qFhkhhtQFjpRA9xQU3qOhpxfWIGeopI13RPUIMDhZq8RG2kDJNM737NvKJrhBPM7hz0FP7REtr4WrYkC5QMDd4qSH-pFsAeszJYSn0CBlWrO3WpVhzWl6TlzMsBd_8O2_Iw-dPD7dfu_vvX-5uP953TmpVu3G0qveKO60lWoaO-V6IyU4gpFN2Hr0f5qEXiNL2YtQj9z23TImG6Z7LG_Lu0rYt8uuEpZpDOuXYJhqhlBomybhsqemScjmVknE2LtS_umqGsBjOzNm_OZizf3P2by7-Gyr-Q485rJCfnoc-XCBsL98CZlNc-xCHPuSm0vgUnsP_ANeoo0I |
| CitedBy_id | crossref_primary_10_1016_j_jmst_2023_11_030 crossref_primary_10_1016_j_jmapro_2022_01_067 crossref_primary_10_1016_j_mtcomm_2025_113058 crossref_primary_10_3390_met15020107 crossref_primary_10_1002_adem_202500306 crossref_primary_10_1016_j_jmrt_2025_03_136 crossref_primary_10_1016_j_ijplas_2025_104379 crossref_primary_10_1016_j_intermet_2025_108928 crossref_primary_10_1088_2053_1591_ac2193 crossref_primary_10_1016_j_surfcoat_2023_130253 crossref_primary_10_1016_j_msea_2020_140431 crossref_primary_10_1016_j_msea_2021_141721 crossref_primary_10_1016_j_matdes_2021_110161 crossref_primary_10_1016_j_msea_2024_147601 crossref_primary_10_1016_j_pmatsci_2023_101108 crossref_primary_10_1016_j_msea_2025_149029 crossref_primary_10_3390_app10103401 crossref_primary_10_1016_j_addma_2023_103860 crossref_primary_10_1016_j_jmrt_2025_06_119 crossref_primary_10_1016_j_matdes_2022_111567 crossref_primary_10_3390_jmmp8060297 crossref_primary_10_1007_s12598_025_03247_5 crossref_primary_10_1016_j_msea_2024_147527 crossref_primary_10_1016_j_msea_2022_142998 crossref_primary_10_3390_ma16062505 crossref_primary_10_1080_17452759_2020_1840783 crossref_primary_10_1002_adem_202200492 crossref_primary_10_1007_s11661_023_07035_7 crossref_primary_10_3390_ma16041377 crossref_primary_10_1016_j_addlet_2022_100037 crossref_primary_10_1016_j_msea_2021_141814 crossref_primary_10_1016_j_apsusc_2021_149397 crossref_primary_10_1016_j_actamat_2021_116876 crossref_primary_10_1016_j_jallcom_2020_158377 crossref_primary_10_1007_s10853_025_11359_7 crossref_primary_10_1007_s11665_021_05522_9 crossref_primary_10_1016_j_matdes_2022_110991 crossref_primary_10_1016_j_addma_2024_104267 crossref_primary_10_3390_ma18020276 crossref_primary_10_1016_j_matchar_2022_112339 crossref_primary_10_1016_j_matchar_2025_114935 crossref_primary_10_1016_j_msea_2022_143530 crossref_primary_10_1016_j_msea_2020_140583 crossref_primary_10_1016_j_scriptamat_2023_115942 crossref_primary_10_1007_s10853_022_07501_4 crossref_primary_10_3390_cryst12091243 crossref_primary_10_1016_j_ijleo_2021_167456 crossref_primary_10_1016_j_euromechsol_2024_105304 crossref_primary_10_1016_j_jmapro_2021_02_004 crossref_primary_10_1007_s00170_021_07719_7 crossref_primary_10_1016_j_addma_2022_102871 crossref_primary_10_1016_j_corsci_2025_113129 crossref_primary_10_1016_j_msea_2024_147304 crossref_primary_10_1016_j_ijplas_2021_102974 crossref_primary_10_1016_j_ijmachtools_2021_103804 crossref_primary_10_1007_s00170_023_12141_2 crossref_primary_10_1016_j_cherd_2021_05_018 crossref_primary_10_1016_j_addma_2021_101948 crossref_primary_10_1002_adem_202300819 crossref_primary_10_1016_j_jmst_2024_06_057 crossref_primary_10_1016_j_matdes_2021_109647 crossref_primary_10_3390_coatings13010189 crossref_primary_10_1007_s11665_025_11071_2 crossref_primary_10_1016_j_addma_2023_103491 crossref_primary_10_1007_s00170_022_09693_0 crossref_primary_10_1007_s00170_024_13402_4 crossref_primary_10_1016_j_ijmachtools_2022_103942 crossref_primary_10_1016_j_ijplas_2023_103831 |
| Cites_doi | 10.1016/S1003-6326(11)60814-5 10.1016/j.msea.2015.05.035 10.1016/j.msea.2019.03.103 10.1016/j.vacuum.2018.05.019 10.1016/j.jmatprotec.2018.01.040 10.1007/s11661-018-4812-z 10.3390/ma11060996 10.1016/j.addma.2018.10.027 10.1016/j.msea.2007.08.046 10.1016/j.matdes.2017.05.065 10.1016/0921-5093(94)90476-6 10.1016/j.scriptamat.2016.10.035 10.7449/1994/Superalloys_1994_581_592 10.1016/j.msea.2019.03.007 10.1016/0956-716X(94)90257-7 10.1016/j.matchar.2017.11.042 10.1016/j.msea.2017.02.062 10.1016/j.matdes.2018.04.019 10.1016/j.jallcom.2014.06.172 10.1016/0001-6160(88)90139-3 10.1007/s11665-019-03980-w 10.1179/026708309X12468927349451 10.1016/j.matdes.2016.12.026 10.1016/0956-716X(95)00120-K 10.1016/j.prostr.2016.06.072 10.1016/j.actamat.2011.12.032 10.1088/1361-651X/aa7369 10.1002/pssa.2211310234 10.1016/0001-6160(83)90194-3 10.1016/j.engfracmech.2008.09.003 10.3390/met7090367 10.1016/j.actamat.2012.11.052 10.1007/s40964-016-0013-8 10.1007/BF02642938 10.1007/s11661-019-05298-7 10.1179/030634583790421032 10.3390/ma12081293 10.7449/1991/Superalloys_1991_537_548 10.1016/0001-6160(89)90103-X 10.1016/j.msea.2004.05.053 10.1016/j.msea.2016.07.061 10.1016/0956-716X(94)90294-1 10.1016/j.matdes.2017.08.049 10.1016/j.msea.2016.10.069 10.1016/0025-5416(87)90264-3 10.1016/S1359-6454(01)00005-2 10.7449/1991/Superalloys_1991_549_562 10.1016/j.jallcom.2010.11.176 10.1016/j.addma.2016.11.006 10.1016/j.matdes.2017.11.060 10.7449/1991/Superalloys_1991_337_350 10.1016/j.addma.2018.04.024 10.3390/ma10111260 10.1007/s11665-016-2051-2 |
| ContentType | Journal Article |
| Copyright | 2020 Copyright Elsevier BV Apr 7, 2020 |
| Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Apr 7, 2020 |
| DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
| DOI | 10.1016/j.msea.2020.139184 |
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-4936 |
| ExternalDocumentID | 10_1016_j_msea_2020_139184 S0921509320302707 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SMS SPC SPCBC SSM SSZ T5K ~02 ~G- 29M 6TJ 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW WUQ ~HD 7SR 8BQ 8FD AFXIZ AGCQF AGRNS BNPGV JG9 SSH |
| ID | FETCH-LOGICAL-c394t-77b45d41c993eb0ec0d5228b8a23c4bf7dd6f652ee3b527971d51b042b459513 |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524357800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0921-5093 |
| IngestDate | Fri Jul 25 06:53:55 EDT 2025 Sat Nov 29 07:14:45 EST 2025 Tue Nov 18 20:27:42 EST 2025 Fri Feb 23 02:48:07 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Laser focal shift Additive manufacturing Creep rupture Inconel 718 Scanning strategy EBSD |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c394t-77b45d41c993eb0ec0d5228b8a23c4bf7dd6f652ee3b527971d51b042b459513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2444683013 |
| PQPubID | 2045432 |
| ParticipantIDs | proquest_journals_2444683013 crossref_citationtrail_10_1016_j_msea_2020_139184 crossref_primary_10_1016_j_msea_2020_139184 elsevier_sciencedirect_doi_10_1016_j_msea_2020_139184 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-07 |
| PublicationDateYYYYMMDD | 2020-04-07 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Lausanne |
| PublicationPlace_xml | – name: Lausanne |
| PublicationTitle | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Krupp (bib63) 2004; 387–389 Jiang (bib46) 2019; 755 Calandri (bib38) 2019; 12 Kuo, Kakehi (bib23) 2017; 7 ASTM E407 (bib34) 2015 Nix (bib55) 1989; 37 Chaturvedi, Han (bib36) 1983; 17 Gao, Dwyer, Wei (bib58) 1994; 625 ASTM E139 (bib33) 2018 Carter (bib7) 2014; 615 Donachie, Donachie (bib2) 2002 Burke, Miller (bib4) 1991; 718 Valerio, Gao, Wei (bib66) 1994; 30 Oblak, Paulonis, Duvall (bib35) 1974; 5 Kuo, Horikawa, Kakehi (bib16) 2017; 116 Pröbstle (bib24) 2016; 674 Witkin (bib28) 2019; 50 Liu (bib59) 1991; 178 Bean (bib9) 2018; 22 Sundararaman, Mukhopadhyay, Banerjee (bib1) 1997; 718 Chaturvedi, Han (bib51) 1987; 89 Kalluri (bib48) 1994 Chaturvedi (bib53) 1989 Christ, Wackerman, Krupp (bib61) 2016; 2 Xu (bib25) 2018; 256 Miao (bib21) 2011; 21 Thijs (bib41) 2013; 61 McLouth (bib10) 2018; 149 Liu (bib42) 2011; 509 Kuo, Horikawa, Kakehi (bib22) 2017; 129 Seede (bib37) 2018; 2 Devaux (bib50) 2008; 486 Ghosh (bib6) 2017; 25 Nickel Alloy (bib29) 1965 Brenne (bib26) 2016; 1 Tillmann (bib19) 2017; 13 Darvish (bib5) 2018; 135 Strondl (bib15) 2011; 27 Popovich (bib13) 2017; 131 Amato (bib18) 2012; 60 Bean (bib8) 2019; 28 ASTM E8 - Standard Test Methods for Tension Testing of Metallic Materials. Sun, Hagihara, Nakano (bib43) 2018; 140 Shiozawa, Weertman (bib60) 1983; 31 Wan (bib17) 2019; 753 Shassere (bib12) 2018; 49 Brooks, Bridges (bib3) 1988 Kuo, Nagahari, Kakehi (bib45) 2018; 11 Pfaendtner, McMahon (bib62) 2001; 49 Bika, McCmahon (bib68) 1992; 131 Pang (bib67) 1994; 31 (bib31) 2001 Caliari (bib54) 2016; 25 Nadammal (bib11) 2017; 134 Kirka (bib14) 2017; 680 Sohrabi, Mirzadeh, Rafiei (bib20) 2018; 154 Goel (bib47) 2018 Gao, Dwyer, Wei (bib57) 1995; 32 Sundararaman, Mukhopadhyay, Banerjee (bib49) 1988; 36 Xu (bib39) 2018; 24 Hayes (bib56) 1994; 177 Tucho (bib40) 2017; 689 Carpenter, Kang, Chang (bib64) 1997; 625 Hautfenne, Nardone, De Bruycker (bib27) 2017 Yan, Xiong, Faierson (bib44) 2017; 10 Chlebus (bib30) 2015; 639 Wei (bib65) 2009; 76 Hayes (bib52) 1991; 718 Ghosh (10.1016/j.msea.2020.139184_bib6) 2017; 25 Brooks (10.1016/j.msea.2020.139184_bib3) 1988 Chaturvedi (10.1016/j.msea.2020.139184_bib53) 1989 Devaux (10.1016/j.msea.2020.139184_bib50) 2008; 486 Liu (10.1016/j.msea.2020.139184_bib42) 2011; 509 Xu (10.1016/j.msea.2020.139184_bib25) 2018; 256 Kirka (10.1016/j.msea.2020.139184_bib14) 2017; 680 Wan (10.1016/j.msea.2020.139184_bib17) 2019; 753 Carpenter (10.1016/j.msea.2020.139184_bib64) 1997; 625 Hayes (10.1016/j.msea.2020.139184_bib52) 1991; 718 Sundararaman (10.1016/j.msea.2020.139184_bib49) 1988; 36 Brenne (10.1016/j.msea.2020.139184_bib26) 2016; 1 Bean (10.1016/j.msea.2020.139184_bib8) 2019; 28 Liu (10.1016/j.msea.2020.139184_bib59) 1991; 178 Pang (10.1016/j.msea.2020.139184_bib67) 1994; 31 ASTM E139 (10.1016/j.msea.2020.139184_bib33) 2018 Calandri (10.1016/j.msea.2020.139184_bib38) 2019; 12 Nix (10.1016/j.msea.2020.139184_bib55) 1989; 37 Kuo (10.1016/j.msea.2020.139184_bib16) 2017; 116 Yan (10.1016/j.msea.2020.139184_bib44) 2017; 10 Krupp (10.1016/j.msea.2020.139184_bib63) 2004; 387–389 Gao (10.1016/j.msea.2020.139184_bib58) 1994; 625 Miao (10.1016/j.msea.2020.139184_bib21) 2011; 21 Chaturvedi (10.1016/j.msea.2020.139184_bib51) 1987; 89 Nadammal (10.1016/j.msea.2020.139184_bib11) 2017; 134 Popovich (10.1016/j.msea.2020.139184_bib13) 2017; 131 Wei (10.1016/j.msea.2020.139184_bib65) 2009; 76 Chaturvedi (10.1016/j.msea.2020.139184_bib36) 1983; 17 Bika (10.1016/j.msea.2020.139184_bib68) 1992; 131 Christ (10.1016/j.msea.2020.139184_bib61) 2016; 2 Kuo (10.1016/j.msea.2020.139184_bib45) 2018; 11 McLouth (10.1016/j.msea.2020.139184_bib10) 2018; 149 ASTM E407 (10.1016/j.msea.2020.139184_bib34) 2015 Bean (10.1016/j.msea.2020.139184_bib9) 2018; 22 Hayes (10.1016/j.msea.2020.139184_bib56) 1994; 177 10.1016/j.msea.2020.139184_bib32 Thijs (10.1016/j.msea.2020.139184_bib41) 2013; 61 Shassere (10.1016/j.msea.2020.139184_bib12) 2018; 49 Pröbstle (10.1016/j.msea.2020.139184_bib24) 2016; 674 Hautfenne (10.1016/j.msea.2020.139184_bib27) 2017 Darvish (10.1016/j.msea.2020.139184_bib5) 2018; 135 Sundararaman (10.1016/j.msea.2020.139184_bib1) 1997; 718 Strondl (10.1016/j.msea.2020.139184_bib15) 2011; 27 Pfaendtner (10.1016/j.msea.2020.139184_bib62) 2001; 49 Donachie (10.1016/j.msea.2020.139184_bib2) 2002 Xu (10.1016/j.msea.2020.139184_bib39) 2018; 24 Gao (10.1016/j.msea.2020.139184_bib57) 1995; 32 Witkin (10.1016/j.msea.2020.139184_bib28) 2019; 50 Shiozawa (10.1016/j.msea.2020.139184_bib60) 1983; 31 Burke (10.1016/j.msea.2020.139184_bib4) 1991; 718 Amato (10.1016/j.msea.2020.139184_bib18) 2012; 60 Chlebus (10.1016/j.msea.2020.139184_bib30) 2015; 639 Sun (10.1016/j.msea.2020.139184_bib43) 2018; 140 Valerio (10.1016/j.msea.2020.139184_bib66) 1994; 30 Tucho (10.1016/j.msea.2020.139184_bib40) 2017; 689 Tillmann (10.1016/j.msea.2020.139184_bib19) 2017; 13 Carter (10.1016/j.msea.2020.139184_bib7) 2014; 615 Kuo (10.1016/j.msea.2020.139184_bib22) 2017; 129 Seede (10.1016/j.msea.2020.139184_bib37) 2018; 2 Oblak (10.1016/j.msea.2020.139184_bib35) 1974; 5 Goel (10.1016/j.msea.2020.139184_bib47) 2018 Nickel Alloy (10.1016/j.msea.2020.139184_bib29) 1965 Sohrabi (10.1016/j.msea.2020.139184_bib20) 2018; 154 Kalluri (10.1016/j.msea.2020.139184_bib48) 1994 Caliari (10.1016/j.msea.2020.139184_bib54) 2016; 25 Kuo (10.1016/j.msea.2020.139184_bib23) 2017; 7 (10.1016/j.msea.2020.139184_bib31) 2001 Jiang (10.1016/j.msea.2020.139184_bib46) 2019; 755 |
| References_xml | – volume: 5 start-page: 143 year: 1974 ident: bib35 article-title: Coherency strengthening in Ni base alloys hardened by DO22 γ′ precipitates publication-title: Metall. Trans. – volume: 486 start-page: 117 year: 2008 end-page: 122 ident: bib50 article-title: Gamma double prime precipitation kinetic in Alloy 718 publication-title: Mater. Sci. Eng., A – volume: 49 start-page: 5107 year: 2018 end-page: 5117 ident: bib12 article-title: Correlation of microstructure to creep response of hot isostatically pressed and aged electron beam melted Inconel 718 publication-title: Metall. Mater. Trans. – volume: 1 start-page: 141 year: 2016 end-page: 151 ident: bib26 article-title: Microstructural design of Ni-base alloys for high-temperature applications: impact of heat treatment on microstructure and mechanical properties after selective laser melting publication-title: Prog. Addit. Manufact. – volume: 129 start-page: 74 year: 2017 end-page: 78 ident: bib22 article-title: Effects of build direction and heat treatment on creep properties of Ni-base superalloy built up by additive manufacturing publication-title: Scripta Mater. – volume: 718 start-page: 625 year: 1997 end-page: 706 ident: bib1 article-title: Carbide precipitation in nickel base superalloys 718 and 625 and their effect on mechanical properties publication-title: Superalloys – volume: 36 start-page: 847 year: 1988 end-page: 864 ident: bib49 article-title: Deformation behaviour of γ″ strengthened inconel 718 publication-title: Acta Metall. – volume: 28 start-page: 1942 year: 2019 end-page: 1949 ident: bib8 article-title: Build orientation effects on texture and mechanical properties of selective laser melting inconel 718 publication-title: J. Mater. Eng. Perform. – volume: 61 start-page: 1809 year: 2013 end-page: 1819 ident: bib41 article-title: Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder publication-title: Acta Mater. – volume: 755 start-page: 170 year: 2019 end-page: 180 ident: bib46 article-title: Varied heat treatments and properties of laser powder bed printed Inconel 718 publication-title: Mater. Sci. Eng., A – volume: 718 start-page: 549 year: 1991 end-page: 562 ident: bib52 article-title: Creep deformation of inconel alloy 718 publication-title: Superalloys – volume: 11 start-page: 996 year: 2018 ident: bib45 article-title: The effect of post-processes on the microstructure and creep properties of Alloy718 built up by selective laser melting publication-title: Materials – start-page: 489 year: 1989 end-page: 498 ident: bib53 article-title: Creep Deformation of Alloy 718. Superalloy 718-Metallurgy and Applications, the Minerals – year: 1994 ident: bib48 article-title: Deformation and Damage Mechanisms in Inconel 718 Superalloy – volume: 149 start-page: 205 year: 2018 end-page: 213 ident: bib10 article-title: The effect of laser focus shift on microstructural variation of Inconel 718 produced by selective laser melting publication-title: Mater. Des. – volume: 30 year: 1994 ident: bib66 article-title: Environmental enhancement of creep crack growth in Inconel 718 by oxygen and water vapor publication-title: Scripta Metall. Mater. – volume: 140 start-page: 307 year: 2018 end-page: 316 ident: bib43 article-title: Effect of scanning strategy on texture formation in Ni-25at.%Mo alloys fabricated by selective laser melting publication-title: Mater. Des. – volume: 154 start-page: 235 year: 2018 end-page: 243 ident: bib20 article-title: Solidification behavior and Laves phase dissolution during homogenization heat treatment of Inconel 718 superalloy publication-title: Vacuum – volume: 32 start-page: 1169 year: 1995 end-page: 1174 ident: bib57 article-title: Niobium enrichment and environmental enhancement of creep crack growth in nickel-base superalloys publication-title: Scripta Metall. Mater. – volume: 134 start-page: 139 year: 2017 end-page: 150 ident: bib11 article-title: Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718 publication-title: Mater. Des. – volume: 25 start-page: 2307 year: 2016 end-page: 2317 ident: bib54 article-title: Effect of double aging heat treatment on the short-term creep behavior of the inconel 718 publication-title: J. Mater. Eng. Perform. – volume: 674 start-page: 299 year: 2016 end-page: 307 ident: bib24 article-title: Superior creep strength of a nickel-based superalloy produced by selective laser melting publication-title: Mater. Sci. Eng., A – volume: 177 start-page: 43 year: 1994 end-page: 53 ident: bib56 article-title: Effect of environment on the rupture behavior of alloys 909 and 718 publication-title: Mater. Sci. Eng., A – volume: 131 start-page: 639 year: 1992 end-page: 649 ident: bib68 article-title: A kinetic model for dynamic embrittlement publication-title: Phys. Status Solidi – volume: 60 start-page: 2229 year: 2012 end-page: 2239 ident: bib18 article-title: Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting publication-title: Acta Mater. – year: 1965 ident: bib29 article-title: Corrosion and heat resistant, bars, forgings, and rings 52.5Ni 19Cr 3.0Mo 5.1Cb 0.90Ti 0.50Al 19Fe, consumable electrode or vacuum induction melted 1775°F (968°C) solution and precipitation heat treated publication-title: SAE Int. – volume: 12 year: 2019 ident: bib38 article-title: Texture and microstructural features at different length scales in inconel 718 produced by selective laser melting publication-title: Materials – year: 2002 ident: bib2 article-title: Superalloys: A Technical Guide – volume: 21 start-page: 1009 year: 2011 end-page: 1017 ident: bib21 article-title: Quantitative analysis of homogenization treatment of INCONEL718 superalloy publication-title: Trans. Nonferrous Metals Soc. China – year: 2017 ident: bib27 article-title: Influence of Heat Treatments and Build Orientation on the Creep Strength of Additive Manufactured IN718 – volume: 50 start-page: 3458 year: 2019 end-page: 3465 ident: bib28 article-title: Anomalous notch rupture behavior of nickel-based superalloy inconel 718 due to fabrication by additive manufacturing publication-title: Metall. Mater. Trans. – volume: 387–389 start-page: 409 year: 2004 end-page: 413 ident: bib63 article-title: Brittle intergranular fracture of a Ni-base superalloy at high temperatures by dynamic embrittlement publication-title: Mater. Sci. Eng., A – volume: 689 start-page: 220 year: 2017 end-page: 232 ident: bib40 article-title: Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment publication-title: Mater. Sci. Eng., A – volume: 509 start-page: 4505 year: 2011 end-page: 4509 ident: bib42 article-title: The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718 publication-title: J. Alloys Compd. – volume: 680 start-page: 338 year: 2017 end-page: 346 ident: bib14 article-title: Mechanical behavior of post-processed Inconel 718 manufactured through the electron beam melting process publication-title: Mater. Sci. Eng., A – reference: ASTM E8 - Standard Test Methods for Tension Testing of Metallic Materials. – volume: 718 start-page: 337 year: 1991 end-page: 350 ident: bib4 article-title: Precipitation in alloy 718: a combined Al3M and apfim investigation publication-title: Superalloys – volume: 753 start-page: 42 year: 2019 end-page: 48 ident: bib17 article-title: Effect of scanning strategy on mechanical properties of selective laser melted Inconel 718 publication-title: Mater. Sci. Eng., A – volume: 625 start-page: 581 year: 1994 end-page: 592 ident: bib58 article-title: Chemical and microstructural aspects of creep crack growth in Inconel 718 alloy publication-title: Superalloys 718 – volume: 25 year: 2017 ident: bib6 article-title: On the primary spacing and microsegregation of cellular dendrites in laser deposited Ni–Nb alloys publication-title: Model. Simulat. Mater. Sci. Eng. – volume: 2 start-page: 30 year: 2018 ident: bib37 article-title: Microstructural and microhardness evolution from homogenization and hot isostatic pressing on selective laser melted Inconel 718: structure, texture, and phases publication-title: J. Manuf. Mater. Sci. Proc. – volume: 13 start-page: 93 year: 2017 end-page: 102 ident: bib19 article-title: Hot isostatic pressing of IN718 components manufactured by selective laser melting publication-title: Addit. Manufact. – volume: 27 start-page: 876 year: 2011 end-page: 883 ident: bib15 article-title: Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM) publication-title: Mater. Sci. Technol. – volume: 131 start-page: 12 year: 2017 end-page: 22 ident: bib13 article-title: Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting publication-title: Mater. Des. – volume: 10 year: 2017 ident: bib44 article-title: Grain structure control of additively manufactured metallic materials publication-title: Materials – year: 2018 ident: bib47 article-title: The effect of location and post-treatment on the microstructure of EBM-built alloy 718 publication-title: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications – volume: 31 start-page: 993 year: 1983 end-page: 1004 ident: bib60 article-title: Studies of nucleation mechanisms and the role of residual stresses in the grain boundary cavitation of a superalloy publication-title: Acta Metall. – volume: 37 start-page: 1067 year: 1989 end-page: 1077 ident: bib55 article-title: The principal facet stress as a parameter for predicting creep rupture under multiaxial stresses publication-title: Acta Metall. – volume: 76 start-page: 715 year: 2009 end-page: 727 ident: bib65 article-title: Oxygen enhanced crack growth in nickel-based superalloys and materials damage prognosis publication-title: Eng. Fract. Mech. – volume: 178 start-page: 537 year: 1991 end-page: 548 ident: bib59 article-title: Creep crack growth behaviour of Alloy 718 publication-title: Superalloys – volume: 256 start-page: 13 year: 2018 end-page: 24 ident: bib25 article-title: Creep Behaviour of Inconel 718 Processed by laser powder bed fusion publication-title: J. Mater. Process. Technol. – volume: 31 year: 1994 ident: bib67 article-title: Surface enrichment and grain boundary segregation of niobium in inconel 718 single-and poly-crystals publication-title: Scripta Metall. Mater. – volume: 17 start-page: 145 year: 1983 end-page: 149 ident: bib36 article-title: Strengthening mechanisms in Inconel 718 superalloy publication-title: Met. Sci. – volume: 22 start-page: 207 year: 2018 end-page: 215 ident: bib9 article-title: Effect of laser focus shift on surface quality and density of Inconel 718 parts produced via selective laser melting publication-title: Addit. Manufact. – year: 2015 ident: bib34 article-title: Standard Practice for Microetching Metals and Alloys – volume: 24 start-page: 486 year: 2018 end-page: 497 ident: bib39 article-title: Effect of post processing on the creep performance of laser powder bed fused Inconel 718 publication-title: Addit. Manufact. – volume: 135 start-page: 183 year: 2018 end-page: 191 ident: bib5 article-title: Selective laser melting of Co-29Cr-6Mo alloy with laser power 180–360 W: Cellular growth, intercellular spacing and the related thermal condition publication-title: Mater. Char. – start-page: 33 year: 1988 end-page: 42 ident: bib3 article-title: Metallurgical Stability of Inconel Alloy 718 – year: 2001 ident: bib31 article-title: Heat treatment wrought nickel alloy and cobalt alloy parts publication-title: SAE Int. – volume: 639 start-page: 647 year: 2015 end-page: 655 ident: bib30 article-title: Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting publication-title: Mater. Sci. Eng., A – volume: 116 start-page: 411 year: 2017 end-page: 418 ident: bib16 article-title: The effect of interdendritic δ phase on the mechanical properties of Alloy 718 built up by additive manufacturing publication-title: Mater. Des. – volume: 615 start-page: 338 year: 2014 end-page: 347 ident: bib7 article-title: The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy publication-title: J. Alloys Compd. – volume: 7 year: 2017 ident: bib23 article-title: Influence of powder surface contamination in the Ni-based superalloy Alloy718 fabricated by selective laser melting and hot isostatic pressing publication-title: Metals – volume: 89 start-page: L7 year: 1987 end-page: L10 ident: bib51 article-title: Effect of particle size on the creep rate of superalloy Inconel 718 publication-title: Mater. Sci. Eng. – volume: 2 start-page: 557 year: 2016 end-page: 564 ident: bib61 article-title: On the mechanism of dynamic embrittlement and its effect on fatigue crack propagation in IN718 at 650°C publication-title: Procedia Struct. Integr. – volume: 49 start-page: 3369 year: 2001 end-page: 3377 ident: bib62 article-title: Oxygen-induced intergranular cracking of a Ni-base alloy at elevated temperatures—an example of dynamic embrittlement publication-title: Acta Mater. – volume: 625 start-page: 679 year: 1997 end-page: 688 ident: bib64 article-title: SAGBO Mechanism on high temperature cracking behavior of Ni-base superalloys publication-title: Superalloys 718 – year: 2018 ident: bib33 article-title: Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials – volume: 21 start-page: 1009 issue: 5 year: 2011 ident: 10.1016/j.msea.2020.139184_bib21 article-title: Quantitative analysis of homogenization treatment of INCONEL718 superalloy publication-title: Trans. Nonferrous Metals Soc. China doi: 10.1016/S1003-6326(11)60814-5 – volume: 639 start-page: 647 year: 2015 ident: 10.1016/j.msea.2020.139184_bib30 article-title: Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2015.05.035 – volume: 755 start-page: 170 year: 2019 ident: 10.1016/j.msea.2020.139184_bib46 article-title: Varied heat treatments and properties of laser powder bed printed Inconel 718 publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2019.03.103 – volume: 154 start-page: 235 year: 2018 ident: 10.1016/j.msea.2020.139184_bib20 article-title: Solidification behavior and Laves phase dissolution during homogenization heat treatment of Inconel 718 superalloy publication-title: Vacuum doi: 10.1016/j.vacuum.2018.05.019 – volume: 256 start-page: 13 year: 2018 ident: 10.1016/j.msea.2020.139184_bib25 article-title: Creep Behaviour of Inconel 718 Processed by laser powder bed fusion publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2018.01.040 – volume: 49 start-page: 5107 issue: 10 year: 2018 ident: 10.1016/j.msea.2020.139184_bib12 article-title: Correlation of microstructure to creep response of hot isostatically pressed and aged electron beam melted Inconel 718 publication-title: Metall. Mater. Trans. doi: 10.1007/s11661-018-4812-z – volume: 11 start-page: 996 issue: 6 year: 2018 ident: 10.1016/j.msea.2020.139184_bib45 article-title: The effect of post-processes on the microstructure and creep properties of Alloy718 built up by selective laser melting publication-title: Materials doi: 10.3390/ma11060996 – volume: 24 start-page: 486 year: 2018 ident: 10.1016/j.msea.2020.139184_bib39 article-title: Effect of post processing on the creep performance of laser powder bed fused Inconel 718 publication-title: Addit. Manufact. doi: 10.1016/j.addma.2018.10.027 – start-page: 489 year: 1989 ident: 10.1016/j.msea.2020.139184_bib53 – volume: 486 start-page: 117 issue: 1 year: 2008 ident: 10.1016/j.msea.2020.139184_bib50 article-title: Gamma double prime precipitation kinetic in Alloy 718 publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2007.08.046 – volume: 131 start-page: 12 year: 2017 ident: 10.1016/j.msea.2020.139184_bib13 article-title: Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.05.065 – volume: 177 start-page: 43 issue: 1 year: 1994 ident: 10.1016/j.msea.2020.139184_bib56 article-title: Effect of environment on the rupture behavior of alloys 909 and 718 publication-title: Mater. Sci. Eng., A doi: 10.1016/0921-5093(94)90476-6 – volume: 129 start-page: 74 year: 2017 ident: 10.1016/j.msea.2020.139184_bib22 article-title: Effects of build direction and heat treatment on creep properties of Ni-base superalloy built up by additive manufacturing publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2016.10.035 – volume: 625 start-page: 581 issue: 706 year: 1994 ident: 10.1016/j.msea.2020.139184_bib58 article-title: Chemical and microstructural aspects of creep crack growth in Inconel 718 alloy publication-title: Superalloys 718 doi: 10.7449/1994/Superalloys_1994_581_592 – volume: 753 start-page: 42 year: 2019 ident: 10.1016/j.msea.2020.139184_bib17 article-title: Effect of scanning strategy on mechanical properties of selective laser melted Inconel 718 publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2019.03.007 – volume: 30 issue: 10 year: 1994 ident: 10.1016/j.msea.2020.139184_bib66 article-title: Environmental enhancement of creep crack growth in Inconel 718 by oxygen and water vapor publication-title: Scripta Metall. Mater. doi: 10.1016/0956-716X(94)90257-7 – year: 2015 ident: 10.1016/j.msea.2020.139184_bib34 – volume: 135 start-page: 183 year: 2018 ident: 10.1016/j.msea.2020.139184_bib5 article-title: Selective laser melting of Co-29Cr-6Mo alloy with laser power 180–360 W: Cellular growth, intercellular spacing and the related thermal condition publication-title: Mater. Char. doi: 10.1016/j.matchar.2017.11.042 – volume: 689 start-page: 220 year: 2017 ident: 10.1016/j.msea.2020.139184_bib40 article-title: Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2017.02.062 – volume: 149 start-page: 205 year: 2018 ident: 10.1016/j.msea.2020.139184_bib10 article-title: The effect of laser focus shift on microstructural variation of Inconel 718 produced by selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.04.019 – volume: 615 start-page: 338 year: 2014 ident: 10.1016/j.msea.2020.139184_bib7 article-title: The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.06.172 – volume: 36 start-page: 847 issue: 4 year: 1988 ident: 10.1016/j.msea.2020.139184_bib49 article-title: Deformation behaviour of γ″ strengthened inconel 718 publication-title: Acta Metall. doi: 10.1016/0001-6160(88)90139-3 – volume: 28 start-page: 1942 year: 2019 ident: 10.1016/j.msea.2020.139184_bib8 article-title: Build orientation effects on texture and mechanical properties of selective laser melting inconel 718 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-019-03980-w – volume: 27 start-page: 876 issue: 5 year: 2011 ident: 10.1016/j.msea.2020.139184_bib15 article-title: Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM) publication-title: Mater. Sci. Technol. doi: 10.1179/026708309X12468927349451 – volume: 116 start-page: 411 year: 2017 ident: 10.1016/j.msea.2020.139184_bib16 article-title: The effect of interdendritic δ phase on the mechanical properties of Alloy 718 built up by additive manufacturing publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.12.026 – year: 2018 ident: 10.1016/j.msea.2020.139184_bib33 – volume: 32 start-page: 1169 issue: 8 year: 1995 ident: 10.1016/j.msea.2020.139184_bib57 article-title: Niobium enrichment and environmental enhancement of creep crack growth in nickel-base superalloys publication-title: Scripta Metall. Mater. doi: 10.1016/0956-716X(95)00120-K – volume: 2 start-page: 557 year: 2016 ident: 10.1016/j.msea.2020.139184_bib61 article-title: On the mechanism of dynamic embrittlement and its effect on fatigue crack propagation in IN718 at 650°C publication-title: Procedia Struct. Integr. doi: 10.1016/j.prostr.2016.06.072 – volume: 60 start-page: 2229 issue: 5 year: 2012 ident: 10.1016/j.msea.2020.139184_bib18 article-title: Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.12.032 – volume: 25 issue: 6 year: 2017 ident: 10.1016/j.msea.2020.139184_bib6 article-title: On the primary spacing and microsegregation of cellular dendrites in laser deposited Ni–Nb alloys publication-title: Model. Simulat. Mater. Sci. Eng. doi: 10.1088/1361-651X/aa7369 – volume: 625 start-page: 679 issue: 706 year: 1997 ident: 10.1016/j.msea.2020.139184_bib64 article-title: SAGBO Mechanism on high temperature cracking behavior of Ni-base superalloys publication-title: Superalloys 718 – volume: 131 start-page: 639 issue: 2 year: 1992 ident: 10.1016/j.msea.2020.139184_bib68 article-title: A kinetic model for dynamic embrittlement publication-title: Phys. Status Solidi doi: 10.1002/pssa.2211310234 – ident: 10.1016/j.msea.2020.139184_bib32 – year: 1994 ident: 10.1016/j.msea.2020.139184_bib48 – volume: 31 start-page: 993 issue: 7 year: 1983 ident: 10.1016/j.msea.2020.139184_bib60 article-title: Studies of nucleation mechanisms and the role of residual stresses in the grain boundary cavitation of a superalloy publication-title: Acta Metall. doi: 10.1016/0001-6160(83)90194-3 – volume: 76 start-page: 715 issue: 5 year: 2009 ident: 10.1016/j.msea.2020.139184_bib65 article-title: Oxygen enhanced crack growth in nickel-based superalloys and materials damage prognosis publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2008.09.003 – year: 2002 ident: 10.1016/j.msea.2020.139184_bib2 – volume: 7 issue: 9 year: 2017 ident: 10.1016/j.msea.2020.139184_bib23 article-title: Influence of powder surface contamination in the Ni-based superalloy Alloy718 fabricated by selective laser melting and hot isostatic pressing publication-title: Metals doi: 10.3390/met7090367 – volume: 61 start-page: 1809 issue: 5 year: 2013 ident: 10.1016/j.msea.2020.139184_bib41 article-title: Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.11.052 – volume: 1 start-page: 141 issue: 3 year: 2016 ident: 10.1016/j.msea.2020.139184_bib26 article-title: Microstructural design of Ni-base alloys for high-temperature applications: impact of heat treatment on microstructure and mechanical properties after selective laser melting publication-title: Prog. Addit. Manufact. doi: 10.1007/s40964-016-0013-8 – volume: 5 start-page: 143 issue: 1 year: 1974 ident: 10.1016/j.msea.2020.139184_bib35 article-title: Coherency strengthening in Ni base alloys hardened by DO22 γ′ precipitates publication-title: Metall. Trans. doi: 10.1007/BF02642938 – year: 2017 ident: 10.1016/j.msea.2020.139184_bib27 – volume: 50 start-page: 3458 issue: 8 year: 2019 ident: 10.1016/j.msea.2020.139184_bib28 article-title: Anomalous notch rupture behavior of nickel-based superalloy inconel 718 due to fabrication by additive manufacturing publication-title: Metall. Mater. Trans. doi: 10.1007/s11661-019-05298-7 – volume: 17 start-page: 145 issue: 3 year: 1983 ident: 10.1016/j.msea.2020.139184_bib36 article-title: Strengthening mechanisms in Inconel 718 superalloy publication-title: Met. Sci. doi: 10.1179/030634583790421032 – volume: 12 issue: 8 year: 2019 ident: 10.1016/j.msea.2020.139184_bib38 article-title: Texture and microstructural features at different length scales in inconel 718 produced by selective laser melting publication-title: Materials doi: 10.3390/ma12081293 – volume: 178 start-page: 537 issue: 625 year: 1991 ident: 10.1016/j.msea.2020.139184_bib59 article-title: Creep crack growth behaviour of Alloy 718 publication-title: Superalloys doi: 10.7449/1991/Superalloys_1991_537_548 – year: 2018 ident: 10.1016/j.msea.2020.139184_bib47 article-title: The effect of location and post-treatment on the microstructure of EBM-built alloy 718 – volume: 37 start-page: 1067 issue: 4 year: 1989 ident: 10.1016/j.msea.2020.139184_bib55 article-title: The principal facet stress as a parameter for predicting creep rupture under multiaxial stresses publication-title: Acta Metall. doi: 10.1016/0001-6160(89)90103-X – volume: 387–389 start-page: 409 year: 2004 ident: 10.1016/j.msea.2020.139184_bib63 article-title: Brittle intergranular fracture of a Ni-base superalloy at high temperatures by dynamic embrittlement publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2004.05.053 – volume: 674 start-page: 299 year: 2016 ident: 10.1016/j.msea.2020.139184_bib24 article-title: Superior creep strength of a nickel-based superalloy produced by selective laser melting publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2016.07.061 – volume: 31 issue: 3 year: 1994 ident: 10.1016/j.msea.2020.139184_bib67 article-title: Surface enrichment and grain boundary segregation of niobium in inconel 718 single-and poly-crystals publication-title: Scripta Metall. Mater. doi: 10.1016/0956-716X(94)90294-1 – volume: 134 start-page: 139 year: 2017 ident: 10.1016/j.msea.2020.139184_bib11 article-title: Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718 publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.08.049 – volume: 680 start-page: 338 year: 2017 ident: 10.1016/j.msea.2020.139184_bib14 article-title: Mechanical behavior of post-processed Inconel 718 manufactured through the electron beam melting process publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2016.10.069 – volume: 89 start-page: L7 year: 1987 ident: 10.1016/j.msea.2020.139184_bib51 article-title: Effect of particle size on the creep rate of superalloy Inconel 718 publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(87)90264-3 – volume: 49 start-page: 3369 issue: 16 year: 2001 ident: 10.1016/j.msea.2020.139184_bib62 article-title: Oxygen-induced intergranular cracking of a Ni-base alloy at elevated temperatures—an example of dynamic embrittlement publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00005-2 – volume: 718 start-page: 549 issue: 625 year: 1991 ident: 10.1016/j.msea.2020.139184_bib52 article-title: Creep deformation of inconel alloy 718 publication-title: Superalloys doi: 10.7449/1991/Superalloys_1991_549_562 – year: 1965 ident: 10.1016/j.msea.2020.139184_bib29 article-title: Corrosion and heat resistant, bars, forgings, and rings 52.5Ni 19Cr 3.0Mo 5.1Cb 0.90Ti 0.50Al 19Fe, consumable electrode or vacuum induction melted 1775°F (968°C) solution and precipitation heat treated publication-title: SAE Int. – volume: 509 start-page: 4505 issue: 13 year: 2011 ident: 10.1016/j.msea.2020.139184_bib42 article-title: The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.11.176 – start-page: 33 year: 1988 ident: 10.1016/j.msea.2020.139184_bib3 – volume: 13 start-page: 93 year: 2017 ident: 10.1016/j.msea.2020.139184_bib19 article-title: Hot isostatic pressing of IN718 components manufactured by selective laser melting publication-title: Addit. Manufact. doi: 10.1016/j.addma.2016.11.006 – volume: 718 start-page: 625 year: 1997 ident: 10.1016/j.msea.2020.139184_bib1 article-title: Carbide precipitation in nickel base superalloys 718 and 625 and their effect on mechanical properties publication-title: Superalloys – year: 2001 ident: 10.1016/j.msea.2020.139184_bib31 article-title: Heat treatment wrought nickel alloy and cobalt alloy parts publication-title: SAE Int. – volume: 140 start-page: 307 year: 2018 ident: 10.1016/j.msea.2020.139184_bib43 article-title: Effect of scanning strategy on texture formation in Ni-25at.%Mo alloys fabricated by selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.11.060 – volume: 718 start-page: 337 issue: 625 year: 1991 ident: 10.1016/j.msea.2020.139184_bib4 article-title: Precipitation in alloy 718: a combined Al3M and apfim investigation publication-title: Superalloys doi: 10.7449/1991/Superalloys_1991_337_350 – volume: 22 start-page: 207 year: 2018 ident: 10.1016/j.msea.2020.139184_bib9 article-title: Effect of laser focus shift on surface quality and density of Inconel 718 parts produced via selective laser melting publication-title: Addit. Manufact. doi: 10.1016/j.addma.2018.04.024 – volume: 2 start-page: 30 issue: 2 year: 2018 ident: 10.1016/j.msea.2020.139184_bib37 article-title: Microstructural and microhardness evolution from homogenization and hot isostatic pressing on selective laser melted Inconel 718: structure, texture, and phases publication-title: J. Manuf. Mater. Sci. Proc. – volume: 10 issue: 11 year: 2017 ident: 10.1016/j.msea.2020.139184_bib44 article-title: Grain structure control of additively manufactured metallic materials publication-title: Materials doi: 10.3390/ma10111260 – volume: 25 start-page: 2307 issue: 6 year: 2016 ident: 10.1016/j.msea.2020.139184_bib54 article-title: Effect of double aging heat treatment on the short-term creep behavior of the inconel 718 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-016-2051-2 |
| SSID | ssj0001405 |
| Score | 2.567934 |
| Snippet | The present study considers the effects of process parameters on the microstructural development and mechanical properties of SLM Inconel 718. A continuous... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 139184 |
| SubjectTerms | Additive manufacturing Creep (materials) Creep rupture Crystallography Damage accumulation Ductility tests EBSD Elongation Grain boundaries High temperature Inconel 718 Laser beam melting Laser focal shift Lasers Material properties Mechanical properties Microstructure Nickel base alloys Niobium carbide Process parameters Room temperature Rupture Scanning Scanning strategy Solidification Superalloys Texture Yield strength |
| Title | Variations in ambient and elevated temperature mechanical behavior of IN718 manufactured by selective laser melting via process parameter control |
| URI | https://dx.doi.org/10.1016/j.msea.2020.139184 https://www.proquest.com/docview/2444683013 |
| Volume | 780 |
| WOSCitedRecordID | wos000524357800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4936 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001405 issn: 0921-5093 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF61KQdAQjxFoaA9cLMc-Zm1jymEl0qERIRys3btteQqdqPEjQr_gn_MzD5sE9SKHrhEkbM7Wnk-ex75ZoaQNyziMi8EhCWpSN0o5LkLdj52Ux6jteVJLFSf2TM2nyfLZfr14PC-rYXZrVjTJFdX6fq_qhqugbKxdPYW6u6EwgX4DkqHT1A7fP6T4r9D9NszxHktKksjx1Jyjh4m9qMyzZSdWmLtr1KVLdlX5SVzMCfIbb3E0ofLjXZUt2pqDpKNwOmWG9i8UrTpXcWdtS45cLCZeI0kG0uDH_q_X3ir74Fj64kQerJvijh2ppp8hm1tVUuQutuC2Ys1_nmwwS6wuKxGOuHWrJWm6YE6hrXIKuV4hnMCFTJ51Trvxn2yqTXTyBS13zntfjmVOjH8AYxy48y669-q9qfNGauuFkaYyZsEnqLbsGECNPBdcJfCoS1geqyUeZuDd-zrAXZ_GRqd8zgf14DSMYof94v_7Oq9Z207DqSl151nKCNDGZmWcUiOAhanyYgcTT_Nlp87zwKCYUXJtSc3RWCar7h_kuscrT2XQ_lRi4fkgQmA6FQD9xE5kM1jcm_QFvMJ-dVDmFYNNRCmoF1qIUwHEKY9hKmFML0oqYIwHUKYih-0gzBVEKYGwhQgTA12aAdhaiD8lCzezxZvP7pmdIibh2nUQswooriI_Bzcbyk8mXsFBBqJSHgQ5pEoWVFMykkcSBmKOGAp84vYF2DAYBvEHOEzMmouGvmc0FLmZcgSeHN5UZR7ceIlJQrkYsJ8OUmPiW9vc5abtvo43WWVXa_gY-J0e9a6qcyNq2Orvcw8m9rdzQCMN-47sarOzPtpm4E3H00SsOrhi1sd4iW52z9EJ2QET7Z8Re7ku7babl4boP4GV6_olA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variations+in+ambient+and+elevated+temperature+mechanical+behavior+of+IN718+manufactured+by+selective+laser+melting+via+process+parameter+control&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=McLouth%2C+Tait+D.&rft.au=Witkin%2C+David+B.&rft.au=Bean%2C+Glenn+E.&rft.au=Sitzman%2C+Scott+D.&rft.date=2020-04-07&rft.issn=0921-5093&rft.volume=780&rft.spage=139184&rft_id=info:doi/10.1016%2Fj.msea.2020.139184&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_msea_2020_139184 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon |