Guaranteed Matrix Completion via Non-Convex Factorization

Matrix factorization is a popular approach for large-scale matrix completion. The optimization formulation based on matrix factorization, even with huge size, can be solved very efficiently through the standard optimization algorithms in practice. However, due to the non-convexity caused by the fact...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 62; no. 11; pp. 6535 - 6579
Main Authors: Sun, Ruoyu, Luo, Zhi-Quan
Format: Journal Article
Language:English
Published: New York IEEE 01.11.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Matrix factorization is a popular approach for large-scale matrix completion. The optimization formulation based on matrix factorization, even with huge size, can be solved very efficiently through the standard optimization algorithms in practice. However, due to the non-convexity caused by the factorization model, there is a limited theoretical understanding of whether these algorithms will generate a good solution. In this paper, we establish a theoretical guarantee for the factorization-based formulation to correctly recover the underlying low-rank matrix. In particular, we show that under similar conditions to those in previous works, many standard optimization algorithms converge to the global optima of a factorization-based formulation and recover the true low-rank matrix. We study the local geometry of a properly regularized objective and prove that any stationary point in a certain local region is globally optimal. A major difference of this paper from the existing results is that we do not need resampling (i.e., using independent samples at each iteration) in either the algorithm or its analysis.
AbstractList Matrix factorization is a popular approach for large-scale matrix completion. The optimization formulation based on matrix factorization, even with huge size, can be solved very efficiently through the standard optimization algorithms in practice. However, due to the non-convexity caused by the factorization model, there is a limited theoretical understanding of whether these algorithms will generate a good solution. In this paper, we establish a theoretical guarantee for the factorization-based formulation to correctly recover the underlying low-rank matrix. In particular, we show that under similar conditions to those in previous works, many standard optimization algorithms converge to the global optima of a factorization-based formulation and recover the true low-rank matrix. We study the local geometry of a properly regularized objective and prove that any stationary point in a certain local region is globally optimal. A major difference of this paper from the existing results is that we do not need resampling (i.e., using independent samples at each iteration) in either the algorithm or its analysis.
Author Zhi-Quan Luo
Ruoyu Sun
Author_xml – sequence: 1
  givenname: Ruoyu
  orcidid: 0000-0003-2487-5322
  surname: Sun
  fullname: Sun, Ruoyu
– sequence: 2
  givenname: Zhi-Quan
  surname: Luo
  fullname: Luo, Zhi-Quan
BookMark eNp9kL9LAzEYhoNUsK3ugsuBi8vV_L7LKIethapLnUPumoOUa1KTXKn-9aa2OHRw-vKR501enhEYWGc1ALcIThCC4nE5X04wRHyCmShZQS_AEDFW5IIzOgBDCFGZC0rLKzAKYZ1WyhAeAjHrlVc2ar3KXlX0Zp9VbrPtdDTOZjujsjdn88rZnd5nU9VE5823Olxeg8tWdUHfnOYYfEyfl9VLvnifzaunRd4QQWPOW9WKQtAG05rjVdnyFsN6VZeKakQJ5HWBSiVETaDivOFMpwNrOaxrRUuFyRg8HN_devfZ6xDlxoRGd52y2vVBopIxwmlBRELvz9C1671N7RJFsCig4DBR8Eg13oXgdSu33myU_5IIyoNLmVzKg0t5cpki_CzSmPhrIXpluv-Cd8eg0Vr__VOkwohz8gOyrYHf
CODEN IETTAW
CitedBy_id crossref_primary_10_1016_j_dsp_2021_103350
crossref_primary_10_1016_j_laa_2020_06_010
crossref_primary_10_1109_TSP_2019_2937282
crossref_primary_10_1137_17M1130113
crossref_primary_10_1214_20_AOS1986
crossref_primary_10_1287_opre_2023_2445
crossref_primary_10_1360_SSM_2022_0105
crossref_primary_10_1109_TPAMI_2017_2748590
crossref_primary_10_1109_TSP_2024_3443291
crossref_primary_10_1287_ijoc_2024_0691
crossref_primary_10_1146_annurev_control_053018_023843
crossref_primary_10_1109_TSP_2018_2870353
crossref_primary_10_1007_s10208_020_09490_9
crossref_primary_10_3390_sym16050547
crossref_primary_10_1007_s10898_025_01478_5
crossref_primary_10_1137_23M1570442
crossref_primary_10_1007_s10957_025_02682_9
crossref_primary_10_1080_01621459_2024_2375037
crossref_primary_10_1109_TSP_2021_3138242
crossref_primary_10_1007_s40815_021_01177_9
crossref_primary_10_1109_TSP_2024_3378378
crossref_primary_10_1117_1_JEI_34_3_033016
crossref_primary_10_1109_TGRS_2020_2979908
crossref_primary_10_1007_s10208_019_09429_9
crossref_primary_10_1109_TIT_2018_2840711
crossref_primary_10_1007_s10589_022_00443_2
crossref_primary_10_1109_TSP_2019_2959218
crossref_primary_10_1109_TSP_2021_3094911
crossref_primary_10_1137_19M1290000
crossref_primary_10_1016_j_sigpro_2019_07_002
crossref_primary_10_1214_21_AOS2066
crossref_primary_10_1007_s11063_019_10111_y
crossref_primary_10_1214_22_AOS2246
crossref_primary_10_1145_3360488
crossref_primary_10_1007_s10957_021_01820_3
crossref_primary_10_1007_s11222_020_09939_5
crossref_primary_10_1137_20M1330099
crossref_primary_10_1089_cmb_2021_0108
crossref_primary_10_1109_TCNS_2019_2920586
crossref_primary_10_1007_s10107_018_1285_1
crossref_primary_10_1109_TSP_2019_2952057
crossref_primary_10_1080_02331934_2022_2060828
crossref_primary_10_1080_01621459_2025_2550677
crossref_primary_10_1109_TIT_2024_3514795
crossref_primary_10_1016_j_egyai_2025_100563
crossref_primary_10_1007_s10618_018_0596_4
crossref_primary_10_1109_ACCESS_2019_2929189
crossref_primary_10_1109_TSP_2018_2883921
crossref_primary_10_1007_s10107_021_01665_8
crossref_primary_10_1186_s12864_018_4551_y
crossref_primary_10_1109_TIT_2024_3413534
crossref_primary_10_1145_3372407
crossref_primary_10_1016_j_neucom_2018_08_038
crossref_primary_10_1016_j_cam_2019_112679
crossref_primary_10_1007_s10107_021_01702_6
crossref_primary_10_1214_19_AOS1854
crossref_primary_10_1016_j_cam_2017_12_048
crossref_primary_10_1109_TIT_2019_2950717
crossref_primary_10_1109_TIT_2022_3144605
crossref_primary_10_1109_TSP_2022_3192142
crossref_primary_10_1109_TBDATA_2018_2871476
crossref_primary_10_1109_TSP_2017_2757914
crossref_primary_10_1109_TIT_2025_3563450
crossref_primary_10_1109_MSP_2018_2821706
crossref_primary_10_1007_s10107_020_01486_1
crossref_primary_10_1016_j_patcog_2019_106975
crossref_primary_10_1109_TIT_2020_2992234
crossref_primary_10_1002_cpa_21957
crossref_primary_10_1109_TSP_2024_3470071
crossref_primary_10_1109_TPAMI_2021_3122259
crossref_primary_10_1137_18M1224738
crossref_primary_10_1016_j_sigpro_2025_110191
crossref_primary_10_1109_TIT_2021_3065700
crossref_primary_10_1017_S0962492920000069
crossref_primary_10_1080_01621459_2024_2335591
crossref_primary_10_1287_opre_2021_2106
crossref_primary_10_1109_TCI_2020_3024078
crossref_primary_10_1137_20M136205X
crossref_primary_10_1137_18M1217644
crossref_primary_10_1214_23_AOS2293
crossref_primary_10_1109_TIT_2021_3049171
crossref_primary_10_1109_ACCESS_2019_2954859
crossref_primary_10_1109_TSP_2017_2679687
crossref_primary_10_3390_photonics10020116
crossref_primary_10_1109_ACCESS_2019_2933577
crossref_primary_10_1214_24_AOS2366
crossref_primary_10_1109_TSP_2022_3229644
crossref_primary_10_1109_TIT_2017_2756858
crossref_primary_10_1080_01621459_2021_1956501
crossref_primary_10_1109_TSP_2018_2885494
crossref_primary_10_1007_s10957_025_02648_x
crossref_primary_10_1111_jcmm_70071
crossref_primary_10_1007_s11081_019_09476_9
crossref_primary_10_1109_TNET_2019_2923815
crossref_primary_10_1109_TSP_2018_2816575
crossref_primary_10_1103_PhysRevX_13_021002
crossref_primary_10_1137_17M1151390
crossref_primary_10_1016_j_compbiolchem_2024_108071
crossref_primary_10_1109_JPROC_2018_2844126
crossref_primary_10_1088_1361_6420_add6d1
crossref_primary_10_1109_TNNLS_2021_3105276
crossref_primary_10_1109_TNNLS_2020_2990990
crossref_primary_10_1109_TSP_2020_2993153
crossref_primary_10_1007_s10589_025_00708_6
crossref_primary_10_1109_TSP_2019_2924595
crossref_primary_10_1109_TGRS_2020_3033842
crossref_primary_10_1007_s11042_023_17258_w
crossref_primary_10_1002_wics_1469
crossref_primary_10_1109_TSP_2018_2864660
crossref_primary_10_1109_ACCESS_2018_2880454
crossref_primary_10_1007_s10107_020_01590_2
crossref_primary_10_1109_TKDE_2020_2983708
crossref_primary_10_1016_j_acha_2023_101584
crossref_primary_10_1109_TPAMI_2023_3261185
crossref_primary_10_1007_s10107_019_01363_6
crossref_primary_10_1109_LSP_2020_3008876
crossref_primary_10_1007_s10107_023_02008_5
crossref_primary_10_1109_ACCESS_2024_3412109
crossref_primary_10_1073_pnas_1910053116
crossref_primary_10_1109_TSP_2022_3181333
crossref_primary_10_1109_TSIPN_2023_3343607
crossref_primary_10_1137_24M1697980
crossref_primary_10_1017_apr_2020_10
crossref_primary_10_1007_s10898_021_01077_0
crossref_primary_10_1109_TIT_2023_3237231
crossref_primary_10_1109_TIT_2020_2984478
crossref_primary_10_1109_TPEL_2021_3096164
crossref_primary_10_1109_TPAMI_2019_2937869
crossref_primary_10_1287_moor_2021_1228
crossref_primary_10_3390_math11122674
crossref_primary_10_1007_s00521_019_04562_6
crossref_primary_10_1007_s00034_019_01093_2
crossref_primary_10_1007_s10957_019_01606_8
crossref_primary_10_1109_TIT_2020_2992769
crossref_primary_10_3390_s19081912
crossref_primary_10_1109_MSP_2018_2832197
crossref_primary_10_1109_TIT_2018_2883623
Cites_doi 10.1109/MC.2009.263
10.1016/S0167-6377(99)00074-7
10.1109/TIT.2010.2046205
10.1080/10556789408805580
10.1137/080738970
10.1137/120891009
10.1214/12-AOS1032
10.1214/12-STS399
10.1214/13-AOS1198
10.1007/978-3-540-87481-2_24
10.1145/2488608.2488693
10.1007/978-3-540-68880-8_32
10.1023/A:1017501703105
10.1109/JPROC.2009.2035722
10.1007/s10208-009-9045-5
10.1137/090755436
10.1109/JSAC.2013.130211
10.1137/100802001
10.1145/2507157.2507164
10.1287/mnsc.13.5.344
10.1137/S1052623497331063
10.1007/BF01932678
10.1007/s12532-012-0044-1
10.1145/2020408.2020426
10.1109/TPAMI.2004.52
10.1007/s10107-009-0306-5
10.1007/s12532-013-0053-8
10.1109/FOCS.2014.75
10.1109/MSP.2014.2335237
10.1109/ICDM.2012.168
10.1145/1864708.1864726
10.1109/TIT.2010.2044061
10.1109/TIT.2011.2104999
10.1002/rsa.20089
10.1145/1345448.1345466
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TIT.2016.2598574
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 6579
ExternalDocumentID 4230131801
10_1109_TIT_2016_2598574
7536166
Genre orig-research
Feature
GrantInformation_xml – fundername: Doctoral Dissertation Fellowship from the Graduate School of the University of Minnesota
  funderid: 10.13039/100007249
– fundername: NSFC
  grantid: 61571384
  funderid: 10.13039/501100001809
– fundername: NSF
  grantid: CCF-1526434
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c394t-6faf9794c24b62d8f6f20bdb8a4e14306b718a99b30a66c65e30a5f60bba48a23
IEDL.DBID RIE
ISICitedReferencesCount 241
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386235300037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Wed Oct 01 13:37:36 EDT 2025
Sun Nov 09 07:53:05 EST 2025
Sat Nov 29 03:31:36 EST 2025
Tue Nov 18 21:28:59 EST 2025
Tue Aug 26 16:40:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-6faf9794c24b62d8f6f20bdb8a4e14306b718a99b30a66c65e30a5f60bba48a23
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2487-5322
PQID 1832970960
PQPubID 36024
PageCount 45
ParticipantIDs proquest_miscellaneous_1855364739
ieee_primary_7536166
proquest_journals_1832970960
crossref_citationtrail_10_1109_TIT_2016_2598574
crossref_primary_10_1109_TIT_2016_2598574
PublicationCentury 2000
PublicationDate 2016-Nov.
2016-11-00
20161101
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-Nov.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
hardt (ref20) 2014
ref56
ref59
ref15
ref55
ref11
jain (ref34) 2014
ref54
ref10
loh (ref38) 2013
wang (ref41) 2014
ref16
gross (ref33) 2009
ref19
ref18
balakrishnan (ref43) 2014
hastie (ref58) 2014
candès (ref32) 2014
ref51
yuan (ref40) 2013; 14
recht (ref7) 2011; 12
ref46
ref45
wang (ref44) 2014
sun (ref52) 2015
ref49
funk (ref23) 2006
ref8
bertsekas (ref50) 1999
ref4
ref3
chen (ref47) 2014
ref6
ref5
netrapalli (ref42) 2014
paterek (ref24) 2007; 2007
sun (ref60) 2015
ref37
ref31
ref2
ref1
ref39
keshavan (ref17) 2012
de sa (ref35) 2014
ref26
toh (ref12) 2010; 6
netrapalli (ref36) 2013
ref25
ref22
ref21
ref28
ref27
ref29
bhojanapalli (ref48) 2014
sun (ref53) 2016
negahban (ref9) 2012; 13
ref62
ref61
stewart (ref63) 1998
sun (ref30) 2015
hou (ref14) 2013
References_xml – year: 2006
  ident: ref23
  publication-title: Netflix update Try this at home
– start-page: 1107
  year: 2014
  ident: ref42
  article-title: Non-convex robust PCA
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2014
  ident: ref44
  article-title: High dimensional expectation-maximization algorithm: Statistical optimization and asymptotic normality
– year: 2014
  ident: ref48
  article-title: Universal matrix completion
– ident: ref1
  doi: 10.1109/MC.2009.263
– ident: ref59
  doi: 10.1016/S0167-6377(99)00074-7
– year: 2014
  ident: ref41
  article-title: Nonconvex statistical optimization: Minimax-optimal sparse PCA in polynomial time
– year: 2015
  ident: ref30
  article-title: Matrix completion via nonconvex factorization: Algorithms and theory
– ident: ref31
  doi: 10.1109/TIT.2010.2046205
– ident: ref61
  doi: 10.1080/10556789408805580
– year: 1999
  ident: ref50
  publication-title: Nonlinear Programming
– ident: ref10
  doi: 10.1137/080738970
– start-page: 638
  year: 2014
  ident: ref20
  article-title: Fast matrix completion without the condition number
  publication-title: Proc Conf Learning Theory (COLT)
– ident: ref55
  doi: 10.1137/120891009
– ident: ref13
  doi: 10.1214/12-AOS1032
– ident: ref37
  doi: 10.1214/12-STS399
– ident: ref39
  doi: 10.1214/13-AOS1198
– start-page: 1306
  year: 2015
  ident: ref52
  article-title: Improved iteration complexity bounds of cyclic block coordinate descent for convex problems
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref15
  doi: 10.1007/978-3-540-87481-2_24
– start-page: 674
  year: 2014
  ident: ref47
  article-title: Coherent matrix completion
  publication-title: Proc Int Conf Mach Learn (ICML)
– year: 2016
  ident: ref53
  article-title: Worst-case complexity of cyclic coordinate descent: O(n2) gap with randomized version
– ident: ref18
  doi: 10.1145/2488608.2488693
– year: 2009
  ident: ref33
  article-title: Quantum state tomography via compressed sensing
– start-page: 476
  year: 2013
  ident: ref38
  article-title: Regularized M-estimators with nonconvexity: Statistical and algorithmic theory for local optima
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2015
  ident: ref60
  article-title: On the expected convergence of randomly permuted ADMM
– volume: 14
  start-page: 899
  year: 2013
  ident: ref40
  article-title: Truncated power method for sparse eigenvalue problems
  publication-title: J Mach Learn Res
– start-page: 710
  year: 2013
  ident: ref14
  article-title: On the linear convergence of the proximal gradient method for trace norm regularization
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref21
  doi: 10.1007/978-3-540-68880-8_32
– volume: 12
  start-page: 3413
  year: 2011
  ident: ref7
  article-title: A simpler approach to matrix completion
  publication-title: J Mach Learn Res
– volume: 2007
  start-page: 5
  year: 2007
  ident: ref24
  article-title: Improving regularized singular value decomposition for collaborative filtering
  publication-title: Proc KDD Cup Workshop
– ident: ref51
  doi: 10.1023/A:1017501703105
– ident: ref8
  doi: 10.1109/JPROC.2009.2035722
– ident: ref4
  doi: 10.1007/s10208-009-9045-5
– ident: ref3
  doi: 10.1137/090755436
– ident: ref57
  doi: 10.1109/JSAC.2013.130211
– year: 1998
  ident: ref63
  publication-title: Perturbation theory for the singular value decomposition
– ident: ref54
  doi: 10.1137/100802001
– ident: ref27
  doi: 10.1145/2507157.2507164
– ident: ref49
  doi: 10.1287/mnsc.13.5.344
– year: 2014
  ident: ref34
  article-title: Fast exact matrix completion with finite samples
– ident: ref62
  doi: 10.1137/S1052623497331063
– year: 2014
  ident: ref58
  article-title: Matrix completion and low-rank SVD via fast alternating least squares
– ident: ref45
  doi: 10.1007/BF01932678
– ident: ref22
  doi: 10.1007/s12532-012-0044-1
– ident: ref25
  doi: 10.1145/2020408.2020426
– ident: ref2
  doi: 10.1109/TPAMI.2004.52
– year: 2012
  ident: ref17
  article-title: Efficient algorithms for collaborative filtering
– year: 2014
  ident: ref35
  article-title: Global convergence of stochastic gradient descent for some non-convex matrix problems
– ident: ref11
  doi: 10.1007/s10107-009-0306-5
– year: 2014
  ident: ref43
  article-title: Statistical guarantees for the EM algorithm: From population to sample-based analysis
– ident: ref26
  doi: 10.1007/s12532-013-0053-8
– ident: ref19
  doi: 10.1109/FOCS.2014.75
– ident: ref56
  doi: 10.1109/MSP.2014.2335237
– ident: ref29
  doi: 10.1109/ICDM.2012.168
– ident: ref28
  doi: 10.1145/1864708.1864726
– volume: 6
  start-page: 15
  year: 2010
  ident: ref12
  article-title: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems
  publication-title: Pacific J Optim
– start-page: 2796
  year: 2013
  ident: ref36
  article-title: Phase retrieval using alternating minimization
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref5
  doi: 10.1109/TIT.2010.2044061
– ident: ref6
  doi: 10.1109/TIT.2011.2104999
– volume: 13
  start-page: 1665
  year: 2012
  ident: ref9
  article-title: Restricted strong convexity and weighted matrix completion: Optimal bounds with noise
  publication-title: J Mach Learn Res
– ident: ref46
  doi: 10.1002/rsa.20089
– year: 2014
  ident: ref32
  article-title: Phase retrieval via Wirtinger flow: Theory and algorithms
– ident: ref16
  doi: 10.1145/1345448.1345466
SSID ssj0014512
Score 2.6550486
Snippet Matrix factorization is a popular approach for large-scale matrix completion. The optimization formulation based on matrix factorization, even with huge size,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6535
SubjectTerms Algorithm design and analysis
Algorithms
alternating minimization
Complexity theory
Economic conditions
Factorization
Geometry
Information theory
Iterative methods
Mathematical models
Matrix
Matrix completion
matrix factorization
Minimization
nonconvex optimization
Optimization
Partitioning algorithms
perturbation analysis
SGD
Title Guaranteed Matrix Completion via Non-Convex Factorization
URI https://ieeexplore.ieee.org/document/7536166
https://www.proquest.com/docview/1832970960
https://www.proquest.com/docview/1855364739
Volume 62
WOSCitedRecordID wos000386235300037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEPVlvF1SoreBHcdp95HKVYFLR4qNDbkmSzUJBd6Yv-fDP7QlEEbwub7OObTGaSyXwDcCOMzUtTz3d8EYUYZsSNJu07QUA49bjSXBWSfqbTKZvP-WsL7ppcGK11cfhMD_GyiOUnudrgVtnIuNbEI6QNbUpJmavVRAzCyCuZwT2jwGbNUYckXT6aPc3wDBcZGlefRTT8ZoKKmio_JuLCuky6__uuIzisvEj7vhT7MbR01oNuXaHBrhS2Bwdf6Ab7wHE8IJI6sV-Qmn9nYxek384ze7sQ9jTPnDGeQ9_Zk6IQT5WleQJvk4fZ-NGpSic4KuDh2iGpSLlRNeWHkvgJS0nquzKRTITaeEgukcYmGTnJwBWEKBJpcxGlxJVShEz4wSl0sjzTZ2AnWklPe5qG6G1ECeNUcZKYP2Yp44xZMKrRjFXFK47lLd7jYn3h8tjgHyP-cYW_BbdNj4-SU-OPtn3Eu2lXQW3BoBZYXCndKsbZiVNck1lw3dw26oIxEJHpfINtoggp8wN-_vuTL2Af31-mGw6gs15u9CXsqe16sVpeFWPuE36O0k0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7WB6gH1yfWZwUvgt3tI0mTo4jLLq7FwwreSpqmsCCt6O6yP99MXyiK4K3QpKTfZDKTTOYbgCtpbF6Web7jS0owzIgHTdp3goCJ0BNKC1VKehxGEX95EU8duGlzYbTW5eUz3cPHMpafFmqOR2V941ozj7EVWKOE-G6VrdXGDAj1Km5wz6iw2XU0QUlX9CejCd7iYj3j7HMakm9GqKyq8mMpLu3LoPu_ke3Adu1H2reV4Heho_M96DY1GuxaZfdg6wvh4D4InBGIpU7tRyTnX9rYBQm4i9xeTKUdFblzhzfRl_agLMVT52kewPPgfnI3dOriCY4KBJk5LJOZMMqmfJIwP-UZy3w3SRMuiTY-kssSY5WMpJLAlYwpRrV5oBlzk0QSLv3gEFbzItdHYKdaJZ72dEjQ36ApF6ESLDV_zDMuOLeg36AZq5pZHAtcvMblDsMVscE_RvzjGn8LrtsebxWrxh9t9xHvtl0NtQWnjcDiWu0-YlyfRIi7Mgsu29dGYTAKInNdzLENpUiaH4jj3798ARvDyeM4Ho-ihxPYxLFUyYensDp7n-szWFeL2fTj_bycf5-X8dWU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guaranteed+Matrix+Completion+via+Non-Convex+Factorization&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Sun%2C+Ruoyu&rft.au=Luo%2C+Zhi-Quan&rft.date=2016-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=62&rft.issue=11&rft.spage=6535&rft_id=info:doi/10.1109%2FTIT.2016.2598574&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4230131801
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon