Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms

Google Earth Engine (GEE) is a versatile cloud platform in which pixel-based (PB) and object-oriented (OO) Land Use–Land Cover (LULC) classification approaches can be implemented, thanks to the availability of the many state-of-art functions comprising various Machine Learning (ML) algorithms. OO ap...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 12; no. 22; p. 3776
Main Authors: Tassi, Andrea, Vizzari, Marco
Format: Journal Article
Language:English
Published: Basel MDPI AG 17.11.2020
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Google Earth Engine (GEE) is a versatile cloud platform in which pixel-based (PB) and object-oriented (OO) Land Use–Land Cover (LULC) classification approaches can be implemented, thanks to the availability of the many state-of-art functions comprising various Machine Learning (ML) algorithms. OO approaches, including both object segmentation and object textural analysis, are still not common in the GEE environment, probably due to the difficulties existing in concatenating the proper functions, and in tuning the various parameters to overcome the GEE computational limits. In this context, this work is aimed at developing and testing an OO classification approach combining the Simple Non-Iterative Clustering (SNIC) algorithm to identify spatial clusters, the Gray-Level Co-occurrence Matrix (GLCM) to calculate cluster textural indices, and two ML algorithms (Random Forest (RF) or Support Vector Machine (SVM)) to perform the final classification. A Principal Components Analysis (PCA) is applied to the main seven GLCM indices to synthesize in one band the textural information used for the OO classification. The proposed approach is implemented in a user-friendly, freely available GEE code useful to perform the OO classification, tuning various parameters (e.g., choose the input bands, select the classification algorithm, test various segmentation scales) and compare it with a PB approach. The accuracy of OO and PB classifications can be assessed both visually and through two confusion matrices that can be used to calculate the relevant statistics (producer’s, user’s, overall accuracy (OA)). The proposed methodology was broadly tested in a 154 km2 study area, located in the Lake Trasimeno area (central Italy), using Landsat 8 (L8), Sentinel 2 (S2), and PlanetScope (PS) data. The area was selected considering its complex LULC mosaic mainly composed of artificial surfaces, annual and permanent crops, small lakes, and wooded areas. In the study area, the various tests produced interesting results on the different datasets (OA: PB RF (L8 = 72.7%, S2 = 82%, PS = 74.2), PB SVM (L8 = 79.1%, S2 = 80.2%, PS = 74.8%), OO RF (L8 = 64%, S2 = 89.3%, PS = 77.9), OO SVM (L8 = 70.4, S2 = 86.9%, PS = 73.9)). The broad code application demonstrated very good reliability of the whole process, even though the OO classification process resulted, sometimes, too demanding on higher resolution data, considering the available computational GEE resources.
AbstractList Google Earth Engine (GEE) is a versatile cloud platform in which pixel-based (PB) and object-oriented (OO) Land Use–Land Cover (LULC) classification approaches can be implemented, thanks to the availability of the many state-of-art functions comprising various Machine Learning (ML) algorithms. OO approaches, including both object segmentation and object textural analysis, are still not common in the GEE environment, probably due to the difficulties existing in concatenating the proper functions, and in tuning the various parameters to overcome the GEE computational limits. In this context, this work is aimed at developing and testing an OO classification approach combining the Simple Non-Iterative Clustering (SNIC) algorithm to identify spatial clusters, the Gray-Level Co-occurrence Matrix (GLCM) to calculate cluster textural indices, and two ML algorithms (Random Forest (RF) or Support Vector Machine (SVM)) to perform the final classification. A Principal Components Analysis (PCA) is applied to the main seven GLCM indices to synthesize in one band the textural information used for the OO classification. The proposed approach is implemented in a user-friendly, freely available GEE code useful to perform the OO classification, tuning various parameters (e.g., choose the input bands, select the classification algorithm, test various segmentation scales) and compare it with a PB approach. The accuracy of OO and PB classifications can be assessed both visually and through two confusion matrices that can be used to calculate the relevant statistics (producer’s, user’s, overall accuracy (OA)). The proposed methodology was broadly tested in a 154 km2 study area, located in the Lake Trasimeno area (central Italy), using Landsat 8 (L8), Sentinel 2 (S2), and PlanetScope (PS) data. The area was selected considering its complex LULC mosaic mainly composed of artificial surfaces, annual and permanent crops, small lakes, and wooded areas. In the study area, the various tests produced interesting results on the different datasets (OA: PB RF (L8 = 72.7%, S2 = 82%, PS = 74.2), PB SVM (L8 = 79.1%, S2 = 80.2%, PS = 74.8%), OO RF (L8 = 64%, S2 = 89.3%, PS = 77.9), OO SVM (L8 = 70.4, S2 = 86.9%, PS = 73.9)). The broad code application demonstrated very good reliability of the whole process, even though the OO classification process resulted, sometimes, too demanding on higher resolution data, considering the available computational GEE resources.
Google Earth Engine (GEE) is a versatile cloud platform in which pixel-based (PB) and object-oriented (OO) Land Use–Land Cover (LULC) classification approaches can be implemented, thanks to the availability of the many state-of-art functions comprising various Machine Learning (ML) algorithms. OO approaches, including both object segmentation and object textural analysis, are still not common in the GEE environment, probably due to the difficulties existing in concatenating the proper functions, and in tuning the various parameters to overcome the GEE computational limits. In this context, this work is aimed at developing and testing an OO classification approach combining the Simple Non-Iterative Clustering (SNIC) algorithm to identify spatial clusters, the Gray-Level Co-occurrence Matrix (GLCM) to calculate cluster textural indices, and two ML algorithms (Random Forest (RF) or Support Vector Machine (SVM)) to perform the final classification. A Principal Components Analysis (PCA) is applied to the main seven GLCM indices to synthesize in one band the textural information used for the OO classification. The proposed approach is implemented in a user-friendly, freely available GEE code useful to perform the OO classification, tuning various parameters (e.g., choose the input bands, select the classification algorithm, test various segmentation scales) and compare it with a PB approach. The accuracy of OO and PB classifications can be assessed both visually and through two confusion matrices that can be used to calculate the relevant statistics (producer’s, user’s, overall accuracy (OA)). The proposed methodology was broadly tested in a 154 km² study area, located in the Lake Trasimeno area (central Italy), using Landsat 8 (L8), Sentinel 2 (S2), and PlanetScope (PS) data. The area was selected considering its complex LULC mosaic mainly composed of artificial surfaces, annual and permanent crops, small lakes, and wooded areas. In the study area, the various tests produced interesting results on the different datasets (OA: PB RF (L8 = 72.7%, S2 = 82%, PS = 74.2), PB SVM (L8 = 79.1%, S2 = 80.2%, PS = 74.8%), OO RF (L8 = 64%, S2 = 89.3%, PS = 77.9), OO SVM (L8 = 70.4, S2 = 86.9%, PS = 73.9)). The broad code application demonstrated very good reliability of the whole process, even though the OO classification process resulted, sometimes, too demanding on higher resolution data, considering the available computational GEE resources.
Author Vizzari, Marco
Tassi, Andrea
Author_xml – sequence: 1
  givenname: Andrea
  surname: Tassi
  fullname: Tassi, Andrea
– sequence: 2
  givenname: Marco
  orcidid: 0000-0002-4238-8897
  surname: Vizzari
  fullname: Vizzari, Marco
BookMark eNptkU2P0zAQhiO0SCzLXvgFlrggtAF_xUmOq6iUSll6gD1bE3uSukrtYrsH_j3ZFgRaMZcZjZ55R-_M6-LKB49F8ZbRj0K09FNMjHMu6lq9KK45rXkpecuv_qlfFbcp7ekSQrCWyuviuB32aHK5jQ59Rkv6x74j3QwpudEZyC544jxZhzDNSFYQ846s_OQ8ki4cBuedn8i3r5vujqz77uGOgLfkAczuiegR4hm4n6cQXd4d0pvi5Qhzwtvf-aZ4_Lz63n0p--160933pRGtzKWy44hgwfAlc6AVVEpZaFqjQBhZD8waZqShklusmDKGIYixaZTgkkorborNRdcG2OtjdAeIP3UAp8-NECe9eHFmRj22TNYI1OBgJQ51O1oxqKqRatkDI1u03l-0jjH8OGHK-uCSwXkGj-GUNK8YY01DW7mg756h-3CKfnGquVS8Zm1Ti4WiF8rEkFLEURuXz7fOEdysGdVPH9V_P7qMfHg28sfTf-Bf_yCh5w
CitedBy_id crossref_primary_10_1007_s10661_025_13659_6
crossref_primary_10_3390_su17146291
crossref_primary_10_1016_j_ecolind_2024_112653
crossref_primary_10_1016_j_rse_2022_113347
crossref_primary_10_1016_j_ecolind_2022_109365
crossref_primary_10_3390_s25144314
crossref_primary_10_3390_rs14133041
crossref_primary_10_1007_s11442_025_2371_y
crossref_primary_10_1002_ldr_5113
crossref_primary_10_7780_kjrs_2024_40_5_1_3
crossref_primary_10_1016_j_rsase_2024_101391
crossref_primary_10_3390_land12030581
crossref_primary_10_3390_rs13061148
crossref_primary_10_3390_agriculture15080829
crossref_primary_10_3390_rs13040561
crossref_primary_10_1016_j_sciaf_2024_e02262
crossref_primary_10_1080_10095020_2023_2250378
crossref_primary_10_1016_j_rsase_2024_101158
crossref_primary_10_1007_s10661_022_10437_6
crossref_primary_10_1109_TGRS_2024_3472080
crossref_primary_10_1016_j_jag_2022_103010
crossref_primary_10_3390_rs13071299
crossref_primary_10_1016_j_ocecoaman_2024_107518
crossref_primary_10_1007_s10661_024_13038_7
crossref_primary_10_1088_1755_1315_932_1_012011
crossref_primary_10_1109_JSTARS_2022_3204223
crossref_primary_10_1016_j_isprsjprs_2022_01_014
crossref_primary_10_3390_su151813786
crossref_primary_10_1109_JSTARS_2025_3564008
crossref_primary_10_1007_s12517_025_12266_6
crossref_primary_10_1080_15481603_2024_2302221
crossref_primary_10_3390_rs14225727
crossref_primary_10_1186_s12302_024_00901_0
crossref_primary_10_3390_rs16081366
crossref_primary_10_1016_j_ufug_2025_128697
crossref_primary_10_3390_rs13122299
crossref_primary_10_1016_j_scitotenv_2024_174377
crossref_primary_10_1017_jog_2023_18
crossref_primary_10_3390_agriengineering6010030
crossref_primary_10_3390_rs17010172
crossref_primary_10_1007_s11676_025_01870_7
crossref_primary_10_3390_rs17030534
crossref_primary_10_3390_rs16152773
crossref_primary_10_1016_j_ecolind_2024_112639
crossref_primary_10_3390_rs14225734
crossref_primary_10_1016_j_rineng_2024_101788
crossref_primary_10_3390_rs15123101
crossref_primary_10_3390_su14138046
crossref_primary_10_1016_j_jag_2025_104828
crossref_primary_10_1186_s40068_024_00348_5
crossref_primary_10_1016_j_rse_2025_114802
crossref_primary_10_3390_jmse10091322
crossref_primary_10_1109_TGRS_2025_3539182
crossref_primary_10_3390_rs14020273
crossref_primary_10_3390_rs13132510
crossref_primary_10_1016_j_jenvman_2025_124165
crossref_primary_10_3390_geosciences14060152
crossref_primary_10_3390_rs16193738
crossref_primary_10_1080_10106049_2025_2491640
crossref_primary_10_3390_rs16244622
crossref_primary_10_3390_rs15041112
crossref_primary_10_3390_rs15174288
crossref_primary_10_1016_j_compag_2022_106861
crossref_primary_10_14358_PERS_23_00070R2
crossref_primary_10_1007_s11356_021_15782_6
crossref_primary_10_3389_ffgc_2024_1406473
crossref_primary_10_3390_rs17060978
crossref_primary_10_3390_su142113730
crossref_primary_10_1007_s12524_023_01783_0
crossref_primary_10_11922_11_6035_csd_2022_0050_zh
crossref_primary_10_3390_app15062903
crossref_primary_10_3390_rs13142792
crossref_primary_10_1016_j_indic_2024_100489
crossref_primary_10_1371_journal_pone_0290829
crossref_primary_10_1016_j_agwat_2025_109416
crossref_primary_10_1080_10106049_2022_2071475
crossref_primary_10_1080_10106049_2024_2392848
crossref_primary_10_1007_s10661_023_12131_7
crossref_primary_10_3390_land14030550
crossref_primary_10_1016_j_envc_2025_101168
crossref_primary_10_1016_j_rsase_2023_101113
crossref_primary_10_3390_land13020151
crossref_primary_10_3390_su17062606
crossref_primary_10_3390_rs13193909
crossref_primary_10_3390_f15111866
crossref_primary_10_1080_10106049_2022_2076923
crossref_primary_10_1016_j_uclim_2022_101116
crossref_primary_10_1007_s10661_024_12719_7
crossref_primary_10_3390_w15193364
crossref_primary_10_3390_su132413758
crossref_primary_10_3390_app142210504
crossref_primary_10_3390_rs17152553
crossref_primary_10_1007_s12145_024_01497_y
crossref_primary_10_3390_world5040052
crossref_primary_10_1080_13658816_2025_2557969
crossref_primary_10_3389_fmars_2022_892946
crossref_primary_10_1016_j_cageo_2021_104982
crossref_primary_10_3390_rs15174140
crossref_primary_10_1007_s00704_025_05694_7
crossref_primary_10_3390_rs17050741
crossref_primary_10_3390_rs15133287
crossref_primary_10_3390_f14091864
crossref_primary_10_1080_01431161_2024_2357843
crossref_primary_10_3390_rs14091977
crossref_primary_10_1016_j_envc_2025_101265
crossref_primary_10_1109_TGRS_2025_3589562
crossref_primary_10_3390_rs13071232
crossref_primary_10_1007_s12665_024_12045_8
crossref_primary_10_3390_w14213363
crossref_primary_10_1016_j_scitotenv_2024_173099
crossref_primary_10_1038_s41598_023_36388_7
crossref_primary_10_3390_rs14194896
crossref_primary_10_1016_j_landusepol_2025_107545
crossref_primary_10_4236_jgis_2025_173008
crossref_primary_10_1016_j_rsase_2024_101205
crossref_primary_10_1016_j_rse_2024_114387
crossref_primary_10_1109_ACCESS_2025_3537818
crossref_primary_10_3390_rs15205026
crossref_primary_10_1016_j_rse_2023_113793
crossref_primary_10_1007_s11356_025_36405_4
crossref_primary_10_3390_rs15092466
crossref_primary_10_1016_j_rsase_2021_100616
crossref_primary_10_1016_j_ecoinf_2024_102498
crossref_primary_10_3390_rs15102596
crossref_primary_10_5194_essd_17_1781_2025
crossref_primary_10_1016_j_srs_2025_100237
crossref_primary_10_3390_su151813497
crossref_primary_10_3390_rs14246376
crossref_primary_10_3390_rs13173379
crossref_primary_10_1007_s12524_023_01759_0
crossref_primary_10_1080_17538947_2025_2558920
crossref_primary_10_1007_s12040_023_02099_w
crossref_primary_10_3390_rs14143253
crossref_primary_10_1186_s40068_024_00366_3
crossref_primary_10_3390_rs14205130
crossref_primary_10_1016_j_ophoto_2021_100005
crossref_primary_10_1007_s12145_024_01586_y
crossref_primary_10_3390_land13030396
crossref_primary_10_3390_rs17050797
crossref_primary_10_3390_rs15112835
crossref_primary_10_1016_j_jag_2022_103092
crossref_primary_10_1109_JSTARS_2024_3519425
crossref_primary_10_1007_s11356_023_25424_8
crossref_primary_10_1007_s43621_025_01365_9
crossref_primary_10_1016_j_ecoinf_2024_102590
crossref_primary_10_1016_j_ecolind_2024_112356
crossref_primary_10_1080_24749508_2024_2359776
crossref_primary_10_1117_1_JRS_18_034512
crossref_primary_10_1109_JSTARS_2021_3133703
crossref_primary_10_1007_s11356_021_17257_0
crossref_primary_10_3390_rs14194978
crossref_primary_10_1109_ACCESS_2024_3389935
crossref_primary_10_3390_agronomy14040755
crossref_primary_10_3390_land13091527
crossref_primary_10_1007_s00704_024_05000_x
crossref_primary_10_1080_15481603_2023_2177448
crossref_primary_10_3390_rs15194823
crossref_primary_10_1007_s10661_023_11903_5
crossref_primary_10_1080_22797254_2025_2545341
crossref_primary_10_1007_s11356_024_33094_3
crossref_primary_10_1080_10106049_2022_2086622
crossref_primary_10_3389_fmars_2023_1058460
crossref_primary_10_1080_10095020_2024_2341748
crossref_primary_10_1186_s40068_023_00324_5
crossref_primary_10_1016_j_pce_2024_103745
crossref_primary_10_3390_rs15010106
crossref_primary_10_1080_14498596_2024_2378362
crossref_primary_10_1109_ACCESS_2023_3293828
crossref_primary_10_1007_s40808_024_02185_y
crossref_primary_10_3390_urbansci8040183
crossref_primary_10_5814_j_issn_1674_764x_2023_05_009
crossref_primary_10_3390_rs14112628
crossref_primary_10_3390_rs16234406
crossref_primary_10_1109_ACCESS_2024_3519612
crossref_primary_10_1016_j_isprsjprs_2025_04_021
crossref_primary_10_1016_j_rsase_2021_100658
crossref_primary_10_1007_s12145_024_01372_w
crossref_primary_10_3390_rs14020284
crossref_primary_10_3390_land12010099
crossref_primary_10_1016_j_rsase_2025_101472
crossref_primary_10_1007_s41651_025_00218_3
crossref_primary_10_1007_s12040_025_02589_z
crossref_primary_10_1038_s41597_025_04759_6
crossref_primary_10_1038_s41598_025_88989_z
crossref_primary_10_1109_JSTARS_2024_3491804
crossref_primary_10_51489_tuzal_1593068
crossref_primary_10_3390_rs16071124
crossref_primary_10_1109_JSTARS_2025_3602036
crossref_primary_10_1007_s40899_023_00831_4
crossref_primary_10_2478_jlecol_2023_0001
crossref_primary_10_3389_fenvs_2022_924221
crossref_primary_10_1016_j_scs_2025_106721
crossref_primary_10_1038_s41597_023_02584_3
crossref_primary_10_1080_00207233_2021_1997220
crossref_primary_10_1117_1_JRS_17_014506
crossref_primary_10_3390_land14020217
crossref_primary_10_1016_j_ecolind_2023_110374
crossref_primary_10_3390_f15091564
crossref_primary_10_1016_j_heliyon_2024_e26913
crossref_primary_10_1007_s40808_025_02471_3
crossref_primary_10_1088_1755_1315_950_1_012083
crossref_primary_10_3390_app14093940
crossref_primary_10_3390_rs13040586
crossref_primary_10_3390_land12051063
crossref_primary_10_1016_j_engappai_2025_112187
crossref_primary_10_1007_s41748_025_00798_6
crossref_primary_10_1016_j_ufug_2024_128322
crossref_primary_10_3390_rs14215361
crossref_primary_10_3390_land11112039
crossref_primary_10_3390_rs16091537
crossref_primary_10_1038_s41598_024_73085_5
crossref_primary_10_3390_rs15102501
crossref_primary_10_1007_s10489_024_05469_z
crossref_primary_10_1016_j_ecoinf_2025_103152
crossref_primary_10_3390_land13122184
crossref_primary_10_3390_rs13081535
crossref_primary_10_3390_rs15143495
crossref_primary_10_1016_j_oregeorev_2024_106068
crossref_primary_10_1016_j_ecoinf_2025_103279
crossref_primary_10_3390_rs15082177
crossref_primary_10_3389_fenvs_2024_1333762
crossref_primary_10_3390_agronomy11061156
crossref_primary_10_1007_s10980_024_01846_8
crossref_primary_10_3390_rs15030655
crossref_primary_10_1371_journal_pone_0294462
crossref_primary_10_1080_10095020_2023_2275622
crossref_primary_10_2166_h2oj_2025_028
crossref_primary_10_3390_rs16224271
Cites_doi 10.1016/j.isprsjprs.2009.06.004
10.1080/17538947.2012.748848
10.1016/j.rse.2017.06.031
10.1016/j.isprsjprs.2010.11.001
10.3390/rs12071220
10.1007/3-540-29711-1
10.1016/j.patrec.2005.08.011
10.1109/IGARSS.2007.4423498
10.1080/014311699212560
10.3390/rs11101238
10.1109/JSTARS.2020.2971783
10.3390/rs12203424
10.5589/m03-006
10.1016/j.rse.2006.10.010
10.1016/j.apgeog.2006.09.004
10.3390/rs11243023
10.1016/j.rse.2007.11.012
10.1109/IGARSS.2016.7730346
10.2747/1548-1603.49.5.623
10.1007/s11269-010-9639-3
10.3390/rs12010076
10.1080/01431161.2017.1399480
10.1016/j.isprsjprs.2020.07.013
10.1016/0034-4257(91)90048-B
10.1111/j.1466-8238.2011.00712.x
10.1016/j.rse.2009.08.004
10.1109/ICCV.2003.1238308
10.1007/s10661-011-2004-z
10.1016/j.rse.2019.111630
10.1088/1742-6596/1249/1/012008
10.1016/j.rse.2006.06.018
10.23953/cloud.ijarsg.74
10.4324/9780203303566
10.1109/CVPR.2017.520
10.1080/17538947.2020.1772893
10.3390/rs12081279
10.1080/07038992.2018.1437719
10.1080/01431161.2018.1490976
10.1016/j.landurbplan.2017.11.005
10.3390/rs12020319
10.1080/07038992.2019.1711366
10.1109/JSTARS.2012.2228167
10.1080/01431161.2016.1278314
10.3390/rs11010043
10.1109/JPROC.2017.2675998
10.3390/rs10081226
10.3390/rs11040433
10.1088/1755-1315/37/1/012061
10.1109/M2GARSS47143.2020.9105181
10.1016/S0034-4257(01)00295-4
10.14445/22315381/IJETT-V38P202
10.3390/rs9101065
10.1016/j.landurbplan.2015.04.001
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs12223776
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Statistics
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_f9147ea0cebd4eb79fd3b6584647baf1
10_3390_rs12223776
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-6dffeadac2ffe2a05a566da89c6a3c47b1dc1c4c042de516cc1ea3f88632404d3
IEDL.DBID DOA
ISICitedReferencesCount 267
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594593900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Tue Oct 14 19:03:11 EDT 2025
Thu Oct 02 12:01:31 EDT 2025
Mon Oct 20 01:50:57 EDT 2025
Tue Nov 18 22:17:25 EST 2025
Sat Nov 29 07:10:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-6dffeadac2ffe2a05a566da89c6a3c47b1dc1c4c042de516cc1ea3f88632404d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4238-8897
OpenAccessLink https://doaj.org/article/f9147ea0cebd4eb79fd3b6584647baf1
PQID 2462719873
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_f9147ea0cebd4eb79fd3b6584647baf1
proquest_miscellaneous_2511188094
proquest_journals_2462719873
crossref_citationtrail_10_3390_rs12223776
crossref_primary_10_3390_rs12223776
PublicationCentury 2000
PublicationDate 20201117
PublicationDateYYYYMMDD 2020-11-17
PublicationDate_xml – month: 11
  year: 2020
  text: 20201117
  day: 17
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
ref_58
ref_13
ref_12
Foody (ref_16) 2002; 80
ref_56
ref_11
ref_55
ref_10
ref_54
ref_53
ref_52
ref_51
ref_18
ref_17
ref_15
Mahdianpari (ref_28) 2020; 46
ref_60
(ref_14) 2017; 38
ref_22
ref_21
ref_20
ref_29
ref_27
ref_26
Vizzari (ref_3) 2015; 140
Chen (ref_57) 2002; 68
Ghorbanian (ref_30) 2020; 167
Mountrakis (ref_23) 2011; 66
ref_36
Gislason (ref_19) 2006; 27
ref_35
ref_34
ref_33
ref_32
ref_31
ref_39
ref_38
ref_37
Blaschke (ref_8) 2010; 65
ref_47
Costanzini (ref_62) 2019; 1249
ref_46
ref_45
Wang (ref_24) 2020; 13
ref_44
ref_43
Solano (ref_9) 2019; 83
ref_41
Cheng (ref_25) 2017; 105
ref_40
Ryherd (ref_61) 1996; 62
ref_1
ref_2
ref_49
ref_48
Merkel (ref_59) 2015; 43
ref_5
Foody (ref_42) 2020; 239
ref_4
ref_7
ref_6
References_xml – volume: 65
  start-page: 2
  year: 2010
  ident: ref_8
  article-title: Object based image analysis for remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.06.004
– ident: ref_21
  doi: 10.1080/17538947.2012.748848
– ident: ref_1
  doi: 10.1016/j.rse.2017.06.031
– volume: 66
  start-page: 247
  year: 2011
  ident: ref_23
  article-title: Support vector machines in remote sensing: A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.11.001
– ident: ref_37
  doi: 10.3390/rs12071220
– ident: ref_32
– ident: ref_40
  doi: 10.1007/3-540-29711-1
– ident: ref_26
– ident: ref_51
– volume: 27
  start-page: 294
  year: 2006
  ident: ref_19
  article-title: Random forests for land cover classification
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.08.011
– ident: ref_60
  doi: 10.1109/IGARSS.2007.4423498
– ident: ref_38
  doi: 10.1080/014311699212560
– ident: ref_22
  doi: 10.3390/rs11101238
– volume: 13
  start-page: 769
  year: 2020
  ident: ref_24
  article-title: An Urban Water Extraction Method Combining Deep Learning and Google Earth Engine
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.2971783
– ident: ref_58
– ident: ref_11
  doi: 10.3390/rs12203424
– ident: ref_13
  doi: 10.5589/m03-006
– ident: ref_41
  doi: 10.1016/j.rse.2006.10.010
– volume: 68
  start-page: 1155
  year: 2002
  ident: ref_57
  article-title: The effect of training strategies on supervised classification at different spatial resolutions
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref_2
  doi: 10.1016/j.apgeog.2006.09.004
– ident: ref_56
  doi: 10.3390/rs11243023
– ident: ref_48
  doi: 10.1016/j.rse.2007.11.012
– ident: ref_17
  doi: 10.1109/IGARSS.2016.7730346
– ident: ref_15
  doi: 10.2747/1548-1603.49.5.623
– ident: ref_47
  doi: 10.1007/s11269-010-9639-3
– ident: ref_33
  doi: 10.3390/rs12010076
– volume: 83
  start-page: 101912
  year: 2019
  ident: ref_9
  article-title: A methodology based on GEOBIA and WorldView-3 imagery to derive vegetation indices at tree crown detail in olive orchards
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_35
  doi: 10.1080/01431161.2017.1399480
– volume: 167
  start-page: 276
  year: 2020
  ident: ref_30
  article-title: Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.07.013
– ident: ref_39
  doi: 10.1016/0034-4257(91)90048-B
– ident: ref_7
  doi: 10.1111/j.1466-8238.2011.00712.x
– ident: ref_45
– volume: 62
  start-page: 181
  year: 1996
  ident: ref_61
  article-title: Combining Spectral and Texture Data in the Segmentation of Remotely Sensed Images
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref_49
  doi: 10.1016/j.rse.2009.08.004
– ident: ref_10
  doi: 10.1109/ICCV.2003.1238308
– volume: 43
  start-page: 1
  year: 2015
  ident: ref_59
  article-title: Land use and land cover (LULC) mapping and change detection in the Little Zab River Basin (LZRB), Kurdistan Region, NE Iraq and NW Iran
  publication-title: FOG—Freib. Online Geosci.
– ident: ref_46
  doi: 10.1007/s10661-011-2004-z
– volume: 239
  start-page: 111630
  year: 2020
  ident: ref_42
  article-title: Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111630
– volume: 1249
  start-page: 12008
  year: 2019
  ident: ref_62
  article-title: Photogrammetry and Remote Sensing for the identification and characterization of trees in urban areas
  publication-title: J. Phys. Conf. Ser. Inst. Phys. Publ.
  doi: 10.1088/1742-6596/1249/1/012008
– ident: ref_50
  doi: 10.1016/j.rse.2006.06.018
– ident: ref_52
  doi: 10.23953/cloud.ijarsg.74
– ident: ref_18
  doi: 10.4324/9780203303566
– ident: ref_12
  doi: 10.1109/CVPR.2017.520
– ident: ref_29
  doi: 10.1080/17538947.2020.1772893
– ident: ref_36
  doi: 10.3390/rs12081279
– ident: ref_6
  doi: 10.1080/07038992.2018.1437719
– ident: ref_20
  doi: 10.1080/01431161.2018.1490976
– ident: ref_4
  doi: 10.1016/j.landurbplan.2017.11.005
– ident: ref_53
  doi: 10.3390/rs12020319
– volume: 46
  start-page: 15
  year: 2020
  ident: ref_28
  article-title: Big Data for a Big Country: The First Generation of Canadian Wetland Inventory Map at a Spatial Resolution of 10-m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2019.1711366
– ident: ref_5
  doi: 10.1109/JSTARS.2012.2228167
– volume: 38
  start-page: 1312
  year: 2017
  ident: ref_14
  article-title: Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1278314
– ident: ref_27
  doi: 10.3390/rs11010043
– volume: 105
  start-page: 1865
  year: 2017
  ident: ref_25
  article-title: Remote Sensing Image Scene Classification: Benchmark and State of the Art
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2017.2675998
– ident: ref_55
  doi: 10.3390/rs10081226
– ident: ref_54
  doi: 10.3390/rs11040433
– ident: ref_43
  doi: 10.1088/1755-1315/37/1/012061
– ident: ref_31
  doi: 10.1109/M2GARSS47143.2020.9105181
– volume: 80
  start-page: 185
  year: 2002
  ident: ref_16
  article-title: Status of land cover classification accuracy assessment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00295-4
– ident: ref_44
  doi: 10.14445/22315381/IJETT-V38P202
– ident: ref_34
  doi: 10.3390/rs9101065
– volume: 140
  start-page: 42
  year: 2015
  ident: ref_3
  article-title: Landscape sequences along the urban–rural–natural gradient: A novel geospatial approach for identification and analysis
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2015.04.001
SSID ssj0000331904
Score 2.6586273
Snippet Google Earth Engine (GEE) is a versatile cloud platform in which pixel-based (PB) and object-oriented (OO) Land Use–Land Cover (LULC) classification approaches...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3776
SubjectTerms Accuracy
Algorithms
area
Classification
Cloud computing
Clustering
Computer applications
crops
data collection
decision support systems
environment
Google Earth Engine (GEE)
information
Internet
Italy
Iterative methods
Lakes
Land cover
Land use
land use and land cover maps
land use land cover
Landsat
Landsat 8
Landsat satellites
Learning algorithms
Machine learning
Mathematical analysis
Object oriented programming
Parameters
PlanetScope
principal component analysis
Principal components analysis
reliability
Remote sensing
Satellites
Segmentation
Sentinel 2
SNIC
Software
Statistical analysis
Statistics
Support vector machines
surfaces
testing
Tuning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BikQvPAoVgRYtggtSrXq969cJtVFakNK0Air1Zu3LCVKwQ5Ii8e-ZWW9SpFa9cLJkj_zQPHZmdvx9AB9UkdXayCKymcojKYWJMIkVUZYok7o0ddzFnmwiH4-Lq6vyIjTclmGsch0TfaC2raEe-WEisySnCll8mv-KiDWKdlcDhcZD2CKkMtmDrePh-OLrpssSCzSxWHa4pALr-8PFktOSmBPIyD8rkQfsvxWP_SJz8vR_X-8ZPAnpJTvq7OE5PHDNDjwOTOfTPzuwTdllB878Aubnmtow0TmBHWPqyUaXowHzPJk0QeSVxn407LRtJzPHhmhmU9YhGDIMJNqTS7Bv4y-DA3Y6GpwdMNVYdubnMx0L0K0TdjSb4Kuupj-XL-HyZPh98DkKFAyREaVcRZmta7Q1ZRI8JipOFaZ_VhWlyZQwMtfcGm6kQde3LuWZMdwpURcFocDH0opd6DVt414BS3mhZE5_5sYac7RYpYU2GsvLuuRamLQPH9fqqEzAJyeajFmFdQqprrpRXR_eb2TnHSrHnVLHpNWNBCFp-xPtYlIFx6zw6TJ3KjZOW-l0XtZWaJ-W4depmvdhb63wKrj3srrRdh_ebS6jY9Jui2pce40ymMoS2F0pX99_izewnVART7OF-R70Votrtw-PzG-0hsXbYNF_AQqkAIQ
  priority: 102
  providerName: ProQuest
Title Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms
URI https://www.proquest.com/docview/2462719873
https://www.proquest.com/docview/2511188094
https://doaj.org/article/f9147ea0cebd4eb79fd3b6584647baf1
Volume 12
WOSCitedRecordID wos000594593900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBajG2wvY-02lq0NKu1Loaa2JVn2YxvSrpCkZm2h3YvRLyeB1C5JOtjL_vbeyW4a6GAve7HBugf5dKe7k8_fR8i-SpNSG54GNlEy4JyZAJJYFiSxMsIJ4SIXerIJORqlNzdZvkb1hT1hDTxwo7ijMou4dCo0TlvutMxKy7QPm1xqVfrCB7KetWLK78EMTCvkDR4pg7r-aL6IMBRKBBdZi0AeqP_FPuyDy-kH8r7NCulxM5tN8spVW-RtS1A--f2R3F9oPDAJLhCWGJJEOrge9KhntMReH69eOq3oWV2PZ4724b0mtMEapODy2tNA0MvRee-Qng16w0OqKkuHvpPS0RZkdUyPZ-N6Pl1O7hafyPVp_6r3PWjJEgLDMr4MEluWYBXKxHCPVSgUJGpWpZlJFDOgq8iayHADTmqdiBJjIqdYmaaI1x5yyz6Tjaqu3BdCRZQqLvEf2lBDNhUqkWqjoRCEtdDMiA45eFJgYVokcSS0mBVQUaCyi2dld8jeSva-wc_4q9QJrsNKAjGv_QOwhKK1hOJfltAh20-rWLSOuChinsQSD1ZYh-yuhsGF8LuIqlz9ADKQdCIsXca__o95fCPvYizKsVdQbpON5fzB7ZA35tdyuph3yeuT_ij_0fX22sVW00u8_unDNRc_YTw_H-a3j4rL9G8
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKm98CggAgUWAQekWrW969cBoRL6iOqkkWil9mT25QQp2CFJQf1T_EZm_EiRQNx64GTJHq21u9_Ozuzj-wBeyzjMlRaxY0IZOUJw7WAQy53QlzqwQWA961ZiE9FwGJ-fJ6M1-NnehaFjla1PrBy1KTWtke_6IvQjypD5-9k3h1SjaHe1ldCoYXFsr35gyrZ41_-I_fvG9w_2T3tHTqMq4GieiKUTmjzH5pPax6cv3UBiRGNknOhQci0i5RntaaERzcYGXqi1ZyXP45iIzV1hOJZ7C9YFgj3uwPqoPxhdrFZ1XI6QdkXNg8p54u7OFx5NwRGRmvw281UCAX_4_2pSO7j7vzXHPbjThM9sr8b7fVizxRZsNEruk6st2KTouSaffgCzE0XLTM4JkTljaM3Ss7THKh1QOiFVgZJ9KdhhWY6nlu3jMJqwmqGRoaNUlXgG-zTs93bYYdob7DBZGDaozp9a1lDTjtnedIxNs5x8XTyEsxup_SPoFGVhHwMLvFiKiG4euwpjUFcGsdIK0-c88RTXQRfett2f6YZ_nWRAphnmYQSV7BoqXXi1sp3VrCN_tfpAKFpZEFN49aKcj7PG8WT4dxFZ6WqrjLAqSnLDVRV2Yu1k7nVhuwVY1rivRXaNri68XH1Gx0O7SbKw5SXaYKhOZH6JePLvIl7AxtHpIM3S_vD4KWz6tGBB5yijbegs55f2GdzW3xEZ8-fNaGLw-aYR-wsn1GEN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHYK9cBkgCgOMgAekRXVi5_aAUNeto1rXVbBJewu247RIJSltB9pf49dxTi4dEoi3PfAUKbEcxfl8Lvbx9wG8VlGQaSMjJw1U6EgpjINBrHACTxnf-r51LS_FJsLRKDo_j8cb8LM5C0NllY1NLA11WhhaI-94MvBCypBFJ6vLIsb7_ffzbw4pSNFOayOnUUHkyF7-wPRt-W6wj__6jef1D057H5xaYcAxIpYrJ0izDIdSGQ-vnuK-wugmVVFsAiWMDLWbGtdIg8hOre8GxrhWiSyKiOScy1RgvzdgMwpC7rVgc9zb635cr_BwgfDmsuJEFSLmncXSJXccEsHJb16wFAv4wxeUDq5_938emntwpw6rWbeaB_dhw-bbcLtWeJ9ebsMWRdUVKfUDmJ9oWn5yTojkGUNuNjwb9lipD0qVUyVY2ZecHRbFZGbZAU6vKauYGxkaUF2KarBPo0Fvlx0Oe8e7TOUpOy7rUi2rKWsnrDub4NCspl-XD-HsWr7-EbTyIrePgflupGRIJ5K5xtiUKz_SRmNancWuFsZvw9sGCompedlJHmSWYH5GsEmuYNOGV-u284qN5K-t9ghR6xbEIF7eKBaTpDZICb5dhlZxY3UqrQ7jLBW6DEfx61TmtmGnAVtSm7VlcoW0NrxcP0aDRLtMKrfFBbbBEJ5I_mL55N9dvIBbCNNkOBgdPYUtj9YxqLwy3IHWanFhn8FN8x2BsXheTywGn68bsL8AsT1pfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object-Oriented+LULC+Classification+in+Google+Earth+Engine+Combining+SNIC%2C+GLCM%2C+and+Machine+Learning+Algorithms&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Andrea+Tassi&rft.au=Marco+Vizzari&rft.date=2020-11-17&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=12&rft.issue=22&rft.spage=3776&rft_id=info:doi/10.3390%2Frs12223776&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f9147ea0cebd4eb79fd3b6584647baf1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon