Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems

•Chameleon Swarm Algorithm (CSA) is benchmarked on 67 benchmark functions.•The exploitation ability of CSA is affirmed by the results on unimodal functions.•The results of CSA on multimodal functions show the exploration ability of CSA.•The results of CSA on composite functions prove the reliability...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 174; p. 114685
Main Author: Braik, Malik Shehadeh
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 15.07.2021
Elsevier BV
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Chameleon Swarm Algorithm (CSA) is benchmarked on 67 benchmark functions.•The exploitation ability of CSA is affirmed by the results on unimodal functions.•The results of CSA on multimodal functions show the exploration ability of CSA.•The results of CSA on composite functions prove the reliability level of CSA.•The results on five engineering problems affirm the accuracy of CSA in practice. This paper presents a novel meta-heuristic algorithm named Chameleon Swarm Algorithm (CSA) for solving global numerical optimization problems. The base inspiration for CSA is the dynamic behavior of chameleons when navigating and hunting for food sources on trees, deserts and near swamps. This algorithm mathematically models and implements the behavioral steps of chameleons in their search for food, including their behavior in rotating their eyes to a nearly 360°scope of vision to locate prey and grab prey using their sticky tongues that launch at high speed. These foraging mechanisms practiced by chameleons eventually lead to feasible solutions when applied to address optimization problems. The stability of the proposed algorithm was assessed on sixty-seven benchmark test functions and the performance was examined using several evaluation measures. These test functions involve unimodal, multimodal, hybrid and composition functions with different levels of complexity. An extensive comparative study was conducted to demonstrate the efficacy of CSA over other meta-heuristic algorithms in terms of optimization accuracy. The applicability of the proposed algorithm in reliably addressing real-world problems was demonstrated in solving five constrained and computationally expensive engineering design problems. The overall results of CSA show that it offered a favorable global or near global solution and better performance compared to other meta-heuristics.
AbstractList This paper presents a novel meta-heuristic algorithm named Chameleon Swarm Algorithm (CSA) for solving global numerical optimization problems. The base inspiration for CSA is the dynamic behavior of chameleons when navigating and hunting for food sources on trees, deserts and near swamps. This algorithm mathematically models and implements the behavioral steps of chameleons in their search for food, including their behavior in rotating their eyes to a nearly 360°scope of vision to locate prey and grab prey using their sticky tongues that launch at high speed. These foraging mechanisms practiced by chameleons eventually lead to feasible solutions when applied to address optimization problems. The stability of the proposed algorithm was assessed on sixty-seven benchmark test functions and the performance was examined using several evaluation measures. These test functions involve unimodal, multimodal, hybrid and composition functions with different levels of complexity. An extensive comparative study was conducted to demonstrate the efficacy of CSA over other meta-heuristic algorithms in terms of optimization accuracy. The applicability of the proposed algorithm in reliably addressing real-world problems was demonstrated in solving five constrained and computationally expensive engineering design problems. The overall results of CSA show that it offered a favorable global or near global solution and better performance compared to other meta-heuristics.
•Chameleon Swarm Algorithm (CSA) is benchmarked on 67 benchmark functions.•The exploitation ability of CSA is affirmed by the results on unimodal functions.•The results of CSA on multimodal functions show the exploration ability of CSA.•The results of CSA on composite functions prove the reliability level of CSA.•The results on five engineering problems affirm the accuracy of CSA in practice. This paper presents a novel meta-heuristic algorithm named Chameleon Swarm Algorithm (CSA) for solving global numerical optimization problems. The base inspiration for CSA is the dynamic behavior of chameleons when navigating and hunting for food sources on trees, deserts and near swamps. This algorithm mathematically models and implements the behavioral steps of chameleons in their search for food, including their behavior in rotating their eyes to a nearly 360°scope of vision to locate prey and grab prey using their sticky tongues that launch at high speed. These foraging mechanisms practiced by chameleons eventually lead to feasible solutions when applied to address optimization problems. The stability of the proposed algorithm was assessed on sixty-seven benchmark test functions and the performance was examined using several evaluation measures. These test functions involve unimodal, multimodal, hybrid and composition functions with different levels of complexity. An extensive comparative study was conducted to demonstrate the efficacy of CSA over other meta-heuristic algorithms in terms of optimization accuracy. The applicability of the proposed algorithm in reliably addressing real-world problems was demonstrated in solving five constrained and computationally expensive engineering design problems. The overall results of CSA show that it offered a favorable global or near global solution and better performance compared to other meta-heuristics.
ArticleNumber 114685
Author Braik, Malik Shehadeh
Author_xml – sequence: 1
  givenname: Malik Shehadeh
  surname: Braik
  fullname: Braik, Malik Shehadeh
  email: mbraik@bau.edu.jo
  organization: Department of Computer Science, Al-Balqa Applied University, Al-salt, Jordan
BookMark eNp9kD1PwzAQhi1UJNrCH2CyxJzgj8ROEEtV8SVVYgAmBstxLq2rxC522gp-PanKxNDpTrr3udM9EzRy3gFC15SklFBxu04h7nXKCKMppZko8jM0poXkiZAlH6ExKXOZZFRmF2gS45oQKgmRY_Q5X-kOWvAOv-116PCsXfpg-1V3h2e4sj6xLm5sgBr7TW87-wMBNz7g6NuddUsMbmkdQDj0NUS7dHgTfNVCFy_ReaPbCFd_dYo-Hh_e58_J4vXpZT5bJIaXWZ8IbbgEQ_O8akwBIpN5WTBGBK-aRhY1IQTAZJw3xgjBwDBdk6omvCkyzobBFN0c9w6Hv7YQe7X22-CGk4rlvMwFLRgZUsUxZYKPMUCjjO11b73rg7atokQdVKq1OqhUB5XqqHJA2T90E2ynw_dp6P4IwfD6zkJQ0VhwBurBpulV7e0p_BetHZBA
CitedBy_id crossref_primary_10_1016_j_asoc_2022_109729
crossref_primary_10_1016_j_knosys_2022_108457
crossref_primary_10_3390_app14030982
crossref_primary_10_1016_j_compbiomed_2024_108780
crossref_primary_10_32604_cmc_2023_034025
crossref_primary_10_1007_s42235_024_00493_8
crossref_primary_10_1007_s10489_025_06342_3
crossref_primary_10_1007_s10586_022_03920_9
crossref_primary_10_1007_s11227_023_05540_5
crossref_primary_10_1007_s11831_022_09800_0
crossref_primary_10_1016_j_asoc_2025_112854
crossref_primary_10_31857_S0005231024030027
crossref_primary_10_1016_j_rineng_2025_105984
crossref_primary_10_1038_s41598_024_66450_x
crossref_primary_10_3390_en15093198
crossref_primary_10_1016_j_cma_2022_115676
crossref_primary_10_54392_irjmt2439
crossref_primary_10_1007_s10064_024_03819_2
crossref_primary_10_3390_biomimetics9010031
crossref_primary_10_3390_e27090938
crossref_primary_10_1016_j_eswa_2023_120186
crossref_primary_10_1016_j_asoc_2021_108126
crossref_primary_10_3390_math11163496
crossref_primary_10_1038_s41598_024_83589_9
crossref_primary_10_3390_math10234565
crossref_primary_10_1007_s11277_022_09765_0
crossref_primary_10_1016_j_bspc_2023_105073
crossref_primary_10_1038_s41598_024_76545_0
crossref_primary_10_1038_s41598_025_98816_0
crossref_primary_10_1038_s41598_025_97015_1
crossref_primary_10_1007_s10586_025_05121_6
crossref_primary_10_1155_2022_1502988
crossref_primary_10_1002_er_7192
crossref_primary_10_1016_j_icte_2021_08_019
crossref_primary_10_1002_dac_5609
crossref_primary_10_1038_s41598_025_12940_5
crossref_primary_10_3390_biomimetics10010003
crossref_primary_10_1016_j_eswa_2025_128113
crossref_primary_10_1007_s10462_024_10767_6
crossref_primary_10_1080_03610918_2025_2512378
crossref_primary_10_3390_sym15101873
crossref_primary_10_1007_s11831_025_10234_7
crossref_primary_10_3390_s23156939
crossref_primary_10_3390_math10193466
crossref_primary_10_1016_j_phycom_2025_102701
crossref_primary_10_1016_j_engappai_2022_105410
crossref_primary_10_1002_dac_5514
crossref_primary_10_1038_s41598_025_96263_5
crossref_primary_10_1007_s10489_024_05537_4
crossref_primary_10_54097_c9xjd223
crossref_primary_10_1016_j_eswa_2021_116026
crossref_primary_10_1016_j_ijbiomac_2024_137237
crossref_primary_10_3390_s25071997
crossref_primary_10_3390_math11041032
crossref_primary_10_1016_j_aei_2023_102210
crossref_primary_10_1007_s10489_024_05826_y
crossref_primary_10_1007_s13042_024_02222_3
crossref_primary_10_1016_j_eswa_2023_121015
crossref_primary_10_1007_s00521_024_09524_1
crossref_primary_10_1016_j_knosys_2024_111850
crossref_primary_10_1080_15325008_2023_2239226
crossref_primary_10_32604_cmes_2023_026097
crossref_primary_10_1016_j_jwpe_2023_104087
crossref_primary_10_1108_EC_10_2024_0904
crossref_primary_10_3390_math10010102
crossref_primary_10_1088_1402_4896_ad86f7
crossref_primary_10_1007_s10115_023_02007_0
crossref_primary_10_1109_ACCESS_2022_3190378
crossref_primary_10_29109_gujsc_1612191
crossref_primary_10_1007_s10115_023_01998_0
crossref_primary_10_1038_s41598_025_12816_8
crossref_primary_10_1109_ACCESS_2023_3329052
crossref_primary_10_3390_biomimetics9100602
crossref_primary_10_1007_s12065_024_00998_5
crossref_primary_10_1007_s11227_025_07509_y
crossref_primary_10_1080_03081079_2024_2339471
crossref_primary_10_1007_s11277_023_10647_2
crossref_primary_10_1038_s41598_025_99837_5
crossref_primary_10_1007_s10462_024_10729_y
crossref_primary_10_1016_j_bspc_2023_105847
crossref_primary_10_31857_S0005117924030037
crossref_primary_10_3390_jcs8060205
crossref_primary_10_1109_ACCESS_2024_3379296
crossref_primary_10_1115_1_4068718
crossref_primary_10_1007_s00500_025_10611_1
crossref_primary_10_3390_biomimetics9040205
crossref_primary_10_1177_1088467X251313530
crossref_primary_10_3390_math10193606
crossref_primary_10_1007_s11227_022_04996_1
crossref_primary_10_3390_math10132329
crossref_primary_10_47134_ppm_v2i2_1480
crossref_primary_10_1016_j_eswa_2023_120426
crossref_primary_10_33889_IJMEMS_2024_9_5_057
crossref_primary_10_1007_s11042_025_20608_5
crossref_primary_10_1016_j_cie_2022_108161
crossref_primary_10_3390_e25050782
crossref_primary_10_1007_s12597_024_00785_x
crossref_primary_10_3390_math11091989
crossref_primary_10_1109_ACCESS_2024_3453488
crossref_primary_10_1016_j_cma_2024_116964
crossref_primary_10_1016_j_apm_2025_116410
crossref_primary_10_1049_cit2_12316
crossref_primary_10_1038_s41598_025_13539_6
crossref_primary_10_1109_ACCESS_2025_3546986
crossref_primary_10_1007_s12065_024_00997_6
crossref_primary_10_1038_s41598_025_13215_9
crossref_primary_10_1007_s00521_022_07662_y
crossref_primary_10_1007_s11042_024_20301_z
crossref_primary_10_3390_s24020390
crossref_primary_10_1007_s00521_022_07854_6
crossref_primary_10_1007_s10462_024_10723_4
crossref_primary_10_1080_03772063_2024_2448588
crossref_primary_10_1016_j_advengsoft_2024_103857
crossref_primary_10_1007_s10462_024_10747_w
crossref_primary_10_3390_math9182313
crossref_primary_10_1002_cbf_4054
crossref_primary_10_3390_en15072566
crossref_primary_10_1049_rpg2_12744
crossref_primary_10_1016_j_cma_2023_116199
crossref_primary_10_1007_s10489_022_04363_w
crossref_primary_10_1007_s44174_025_00356_8
crossref_primary_10_1016_j_compbiolchem_2025_108550
crossref_primary_10_1016_j_eswa_2022_119015
crossref_primary_10_3389_fonc_2024_1408199
crossref_primary_10_1109_TAES_2024_3427088
crossref_primary_10_3390_su142315550
crossref_primary_10_1038_s41598_024_53064_6
crossref_primary_10_1080_01969722_2025_2468191
crossref_primary_10_1016_j_asoc_2025_113569
crossref_primary_10_1016_j_gsf_2024_101884
crossref_primary_10_1007_s11227_025_07258_y
crossref_primary_10_1016_j_knosys_2023_111257
crossref_primary_10_1007_s00703_024_01030_2
crossref_primary_10_1007_s10462_023_10680_4
crossref_primary_10_1002_aisy_202200097
crossref_primary_10_1007_s42235_022_00298_7
crossref_primary_10_1007_s10462_023_10581_6
crossref_primary_10_3390_app11146492
crossref_primary_10_1016_j_eswa_2022_119246
crossref_primary_10_3390_en17184742
crossref_primary_10_1109_ACCESS_2024_3350336
crossref_primary_10_1007_s11276_025_03907_5
crossref_primary_10_1016_j_heliyon_2024_e26187
crossref_primary_10_1002_mop_70276
crossref_primary_10_1007_s00521_024_10346_4
crossref_primary_10_1007_s00521_024_10577_5
crossref_primary_10_1007_s10115_025_02458_7
crossref_primary_10_36306_konjes_904335
crossref_primary_10_1038_s41598_024_77585_2
crossref_primary_10_1038_s41598_025_13616_w
crossref_primary_10_1080_13682199_2023_2190947
crossref_primary_10_1109_ACCESS_2022_3162853
crossref_primary_10_1007_s10462_025_11351_2
crossref_primary_10_1007_s11227_025_07139_4
crossref_primary_10_1007_s11235_024_01258_8
crossref_primary_10_1016_j_cma_2023_116097
crossref_primary_10_1080_0954898X_2023_2296568
crossref_primary_10_1038_s41598_025_91270_y
crossref_primary_10_1016_j_soildyn_2024_108950
crossref_primary_10_1007_s11227_023_05579_4
crossref_primary_10_1007_s00500_023_09276_5
crossref_primary_10_1007_s10462_025_11118_9
crossref_primary_10_3233_WEB_230063
crossref_primary_10_1109_ACCESS_2022_3172789
crossref_primary_10_1007_s12065_025_01052_8
crossref_primary_10_1016_j_matcom_2022_12_001
crossref_primary_10_1038_s41598_024_75123_8
crossref_primary_10_3390_math9212770
crossref_primary_10_1007_s00521_023_08812_6
crossref_primary_10_1016_j_cie_2024_110568
crossref_primary_10_3233_JIFS_242010
crossref_primary_10_1007_s10462_022_10164_x
crossref_primary_10_1109_ACCESS_2024_3397402
crossref_primary_10_1007_s11227_022_04644_8
crossref_primary_10_1016_j_suscom_2024_101023
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1016_j_energy_2022_124340
crossref_primary_10_1186_s13638_024_02379_z
crossref_primary_10_1007_s12065_024_00995_8
crossref_primary_10_3390_math10071100
crossref_primary_10_1186_s40537_023_00864_8
crossref_primary_10_1002_cpe_7295
crossref_primary_10_1016_j_eswa_2023_120904
crossref_primary_10_1038_s41598_024_53602_2
crossref_primary_10_1016_j_enconman_2022_115944
crossref_primary_10_1109_JSEN_2024_3435708
crossref_primary_10_1177_1088467X241301637
crossref_primary_10_3390_biomimetics9100583
crossref_primary_10_1080_0954898X_2024_2373127
crossref_primary_10_1007_s11227_024_06291_7
crossref_primary_10_1177_0958305X231217635
crossref_primary_10_1016_j_eswa_2023_122413
crossref_primary_10_1016_j_eswa_2025_127660
crossref_primary_10_1007_s10462_024_11104_7
crossref_primary_10_1016_j_compbiomed_2021_105152
crossref_primary_10_3390_electronics12132820
crossref_primary_10_1007_s11276_025_03947_x
crossref_primary_10_1080_01431161_2024_2313995
crossref_primary_10_32604_csse_2023_037066
crossref_primary_10_1016_j_measurement_2023_113032
crossref_primary_10_1142_S1469026824500305
crossref_primary_10_1016_j_knosys_2022_109484
crossref_primary_10_3390_en17164166
crossref_primary_10_1016_j_eswa_2023_122509
crossref_primary_10_3390_app132111637
crossref_primary_10_1016_j_eswa_2023_121898
crossref_primary_10_1007_s11227_024_06384_3
crossref_primary_10_1007_s00521_024_09581_6
crossref_primary_10_1007_s00521_025_11421_0
crossref_primary_10_3390_app14156562
crossref_primary_10_1016_j_matcom_2022_12_022
crossref_primary_10_1016_j_cma_2023_116200
crossref_primary_10_1088_1361_6501_ad1871
crossref_primary_10_1049_cmu2_70029
crossref_primary_10_1016_j_egyr_2025_01_040
crossref_primary_10_1007_s11227_024_06915_y
crossref_primary_10_1080_01431161_2025_2518507
crossref_primary_10_1016_j_bspc_2022_104343
crossref_primary_10_3390_s24020493
crossref_primary_10_1007_s12065_024_00945_4
crossref_primary_10_1016_j_compbiomed_2022_105675
crossref_primary_10_1016_j_compbiomed_2022_106404
crossref_primary_10_1007_s12530_025_09715_8
crossref_primary_10_1134_S000511792403007X
crossref_primary_10_1002_dac_70197
crossref_primary_10_1007_s00500_023_08274_x
crossref_primary_10_3390_biomimetics8030305
crossref_primary_10_3390_math9182335
crossref_primary_10_1016_j_eswa_2023_121540
crossref_primary_10_3390_electronics12092042
crossref_primary_10_3390_biomimetics9030137
crossref_primary_10_1016_j_cma_2024_117429
crossref_primary_10_1016_j_apm_2025_116029
crossref_primary_10_3390_rs15174205
crossref_primary_10_1016_j_fbio_2024_104346
crossref_primary_10_1088_1402_4896_ad8e0e
crossref_primary_10_1080_0305215X_2025_2464862
crossref_primary_10_1016_j_eswa_2022_118460
crossref_primary_10_32604_cmc_2022_030825
crossref_primary_10_1109_ACCESS_2024_3443157
crossref_primary_10_1007_s10489_023_04732_z
crossref_primary_10_1016_j_eswa_2022_117379
crossref_primary_10_1007_s11042_024_19492_2
crossref_primary_10_3390_biomimetics10010031
crossref_primary_10_3390_app14104302
crossref_primary_10_1007_s11227_025_07167_0
crossref_primary_10_1080_19942060_2022_2098826
crossref_primary_10_3390_biomimetics7040144
crossref_primary_10_3390_s22228839
crossref_primary_10_1016_j_knosys_2023_110462
crossref_primary_10_1007_s11220_023_00446_1
crossref_primary_10_1016_j_cma_2023_116582
crossref_primary_10_1007_s42235_023_00447_6
crossref_primary_10_1007_s42235_023_00386_2
crossref_primary_10_1007_s10462_025_11360_1
crossref_primary_10_1016_j_bspc_2023_104740
crossref_primary_10_3390_biomimetics10010047
crossref_primary_10_1002_ett_4708
crossref_primary_10_1080_13682199_2025_2476808
crossref_primary_10_1016_j_bspc_2022_104513
crossref_primary_10_1007_s10586_025_05358_1
crossref_primary_10_21122_2309_4923_2024_3_12_16
crossref_primary_10_3390_math10214063
crossref_primary_10_1007_s11042_023_16558_5
crossref_primary_10_1016_j_apm_2023_05_007
crossref_primary_10_1016_j_knosys_2023_110454
crossref_primary_10_1109_ACCESS_2024_3439344
crossref_primary_10_1109_ACCESS_2022_3229964
crossref_primary_10_1016_j_cma_2025_117825
crossref_primary_10_1109_ACCESS_2023_3267110
crossref_primary_10_1007_s42235_022_00223_y
crossref_primary_10_1109_ACCESS_2022_3164734
crossref_primary_10_1007_s00521_025_11266_7
crossref_primary_10_1109_JSEN_2022_3193943
crossref_primary_10_1007_s00521_024_09879_5
crossref_primary_10_1007_s10462_023_10498_0
crossref_primary_10_1016_j_ijhydene_2025_02_401
crossref_primary_10_1080_00051144_2024_2420296
crossref_primary_10_1109_ACCESS_2024_3403089
crossref_primary_10_1016_j_apenergy_2024_123499
crossref_primary_10_1016_j_cor_2023_106436
crossref_primary_10_1007_s00521_021_06392_x
crossref_primary_10_1109_ACCESS_2023_3312684
crossref_primary_10_1016_j_isatra_2025_07_023
crossref_primary_10_1016_j_psep_2025_107739
crossref_primary_10_3390_su141710673
crossref_primary_10_1371_journal_pone_0297284
crossref_primary_10_1007_s11571_023_10049_x
crossref_primary_10_1016_j_knosys_2022_108743
crossref_primary_10_1038_s41598_024_60821_0
crossref_primary_10_3233_IDT_230579
crossref_primary_10_1007_s44196_025_00821_8
crossref_primary_10_1016_j_advengsoft_2024_103793
crossref_primary_10_1186_s40537_025_01129_2
crossref_primary_10_1007_s41060_024_00551_8
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_1007_s11518_024_5622_z
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_1007_s10586_024_04950_1
crossref_primary_10_1007_s10586_024_04996_1
crossref_primary_10_1007_s11276_023_03621_0
crossref_primary_10_1007_s12083_024_01838_0
crossref_primary_10_1016_j_knosys_2022_110011
crossref_primary_10_3390_s24113344
crossref_primary_10_1007_s42235_024_00549_9
crossref_primary_10_3390_sym15101931
crossref_primary_10_3390_a18050243
crossref_primary_10_1007_s00521_024_10694_1
Cites_doi 10.1109/TSMCB.2009.2015956
10.1016/S0262-4079(08)60843-X
10.1109/MHS.1995.494215
10.1016/j.advengsoft.2013.12.007
10.1023/A:1022602019183
10.1109/2.781637
10.1242/jeb.203.21.3255
10.1016/j.knosys.2019.105190
10.1016/j.engappai.2020.103541
10.1126/science.220.4598.671
10.1093/oso/9780195131581.001.0001
10.1016/j.asoc.2013.05.010
10.1016/j.advengsoft.2017.05.014
10.1109/TEVC.2010.2059031
10.1109/4235.930318
10.1109/4235.585893
10.1016/j.knosys.2015.07.006
10.1016/j.advengsoft.2017.07.002
10.1504/IJBIC.2010.032124
10.1016/j.eswa.2017.04.033
10.1016/j.knosys.2018.11.024
10.17535/crorr.2019.0015
10.1016/j.scient.2012.04.009
10.1115/1.2912596
10.1016/j.ins.2009.03.004
10.1016/j.knosys.2015.12.022
10.1115/1.2919393
10.1177/003754970107600201
10.70594/brain/v10.i1/10
10.3897/vz.65.e31518
10.1155/2018/3967457
10.1080/03610918.2014.931971
10.1016/j.ins.2014.02.123
10.1007/s00521-013-1498-4
10.1016/j.swevo.2018.02.013
10.1080/00207160108805080
10.1109/CEC.2017.7969336
10.1016/j.asoc.2015.03.003
10.1007/s00521-015-1870-7
10.1007/s00170-019-03621-5
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jul 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.114685
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_114685
S0957417421001263
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c394t-6ac37ec155bfc8e64759822063bff78d000eec433fcc662ec2ad0bd03f8432c43
ISICitedReferencesCount 360
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663144700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 09 07:18:42 EST 2025
Sat Nov 29 07:07:45 EST 2025
Tue Nov 18 21:12:14 EST 2025
Fri Feb 23 02:46:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Swarm intelligence algorithms
Optimization techniques
Chameleon Swarm Algorithm
Evolutionary algorithms
Nature-inspired algorithms
Meta-heuristics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c394t-6ac37ec155bfc8e64759822063bff78d000eec433fcc662ec2ad0bd03f8432c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2539561820
PQPubID 2045477
ParticipantIDs proquest_journals_2539561820
crossref_citationtrail_10_1016_j_eswa_2021_114685
crossref_primary_10_1016_j_eswa_2021_114685
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_114685
PublicationCentury 2000
PublicationDate 2021-07-15
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Mirjalili (b0175) 2016; 96
Faramarzi, Heidarinejad, Stephens, Mirjalili (b0075) 2020; 191
Braik, Al-Zoubi, Al-Hiary (b0015) 2020
Rodríguez, N., Gupta, A., Zabala, P. L., & Cabrera-Guerrero, G. (2018). Optimization algorithms combining (meta) heuristics and mathematical programming and its application in engineering.
Kennedy, Eberhart (b0130) 1995
Demšar (b0045) 2006; 7
Faramarzi, Afshar (b0070) 2012; 19
Uymaz, Tezel, Yel (b0235) 2015; 31
Pereira, Afonso, Medeiros (b0200) 2015; 44
Glaw (b0090) 2015; 65
Rashedi, Nezamabadi-Pour, Saryazdi (b0210) 2009; 179
Braik, Sheta, Turabieh, Alhiary (b0025) 2020
Rechenberg (b0215) 1973; 104
Braik, Sheta, Al-Hiary (b0020) 2020
Holm (b0105) 1979
Mirjalili, Mirjalili, Lewis (b0190) 2014; 69
(2), 60–68.
Mirjalili, Mirjalili, Hatamlou (b0185) 2016; 27
Wang, Guo, Gandomi, Hao, Wang (b0240) 2014; 274
Mirjalili (b0170) 2015; 89
Zhan, Z. H., Zhang, J., Li, Y., & Chung, H. S. H. (2009). Adaptive particle swarm optimization.
Sree Ranjini, K. S., & Murugan, S. (2017). Memory based hybrid dragonfly algorithm for numerical optimization problems.
Kannan, Kramer (b0115) 1994; 116
(pp. 39–43).
.
Young, E. (2008). Chameleons fine-tune camouflage to predator’s vision.
Awad, N. H., Ali, M. Z. & Suganthan, P. N. (2017). Ensemble sinusoidal differential covariance matrix adaptation with euclidean neighborhood for solving cec2017 benchmark problems. In
Herrel, Meyers, Aerts, Nishikawa (b0100) 2000; 203
Karypis, Han, Kumar (b0120) 1999; 32
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0180) 2017; 114
Chumburidze, Basheleishvili, Khetsuriani (b0035) 2019; 10
63–78.
Meraihi, Gabis, Ramdane-Cherif, Acheli (b0160) 2020
Qi, Jin, Wang, Xiao, Zhang (b0205) 2019
Sheta, Braik, Al-Hiary (b0230) 2019; 103
Mlinarić, Perić, Matejaš (b0195) 2019
Yang, Deb, Loomes, Karamanoglu (b0260) 2013; 23
Wolpert, Macready (b0245) 1997; 1
Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983). Optimization by simulated annealing.
Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In
Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search.
Bonabeau, E., Dorigo, M., Marco, D. d. R.D.F., Theraulaz, G., & Théraulaz, G. (1999). Swarm intelligence: From natural to artificial systems (No 1). Oxford university press.
Liu, Mernik, HrnčIč, Črepinšek (b0150) 2013; 13
Luenberger, Ye (b0155) 1984
(4598), 671–680.
Sandgren, E. (1990). Nonlinear integer and discrete programming in mechanical design optimization.
(pp. 372–379).
Dhiman, Kumar (b0055) 2019; 165
Gandomi, Yang (b0080) 2011
Jain, Singh, Rani (b0110) 2019; 44
arXiv preprint arXiv:1003.1409.
Yang (b0255) 2010
Koppen, Wolpert, Macready (b0140) 2001; 53
Yang, X. S. (2010).
(6), 1362–1381.
Mezura-Montes, Coello (b0165) 2005
Chen, Q., Liu, B., Zhang, Q., Liang, J., Suganthan, P., & Qu, B. (2014). Problem definitions and evaluation criteria for cec 2015 special session on bound constrained single-objective computationally expensive numerical optimization. Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological University.
Kaur, Awasthi, Sangal, Dhiman (b0125) 2020; 90
Das, Suganthan (b0040) 2011; 15
Dhiman, Kumar (b0050) 2017; 114
Goldberg, Holland (b0095) 1988; 3
Digalakis, Margaritis (b0060) 2001; 77
Goldberg (10.1016/j.eswa.2021.114685_b0095) 1988; 3
Demšar (10.1016/j.eswa.2021.114685_b0045) 2006; 7
Mirjalili (10.1016/j.eswa.2021.114685_b0180) 2017; 114
Herrel (10.1016/j.eswa.2021.114685_b0100) 2000; 203
Koppen (10.1016/j.eswa.2021.114685_b0140) 2001; 53
Chumburidze (10.1016/j.eswa.2021.114685_b0035) 2019; 10
10.1016/j.eswa.2021.114685_b0085
Mirjalili (10.1016/j.eswa.2021.114685_b0170) 2015; 89
Kaur (10.1016/j.eswa.2021.114685_b0125) 2020; 90
Yang (10.1016/j.eswa.2021.114685_b0255) 2010
Faramarzi (10.1016/j.eswa.2021.114685_b0075) 2020; 191
Mirjalili (10.1016/j.eswa.2021.114685_b0185) 2016; 27
Faramarzi (10.1016/j.eswa.2021.114685_b0070) 2012; 19
Kennedy (10.1016/j.eswa.2021.114685_b0130) 1995
Karypis (10.1016/j.eswa.2021.114685_b0120) 1999; 32
Dhiman (10.1016/j.eswa.2021.114685_b0050) 2017; 114
Braik (10.1016/j.eswa.2021.114685_b0025) 2020
10.1016/j.eswa.2021.114685_b0225
Mezura-Montes (10.1016/j.eswa.2021.114685_b0165) 2005
Kannan (10.1016/j.eswa.2021.114685_b0115) 1994; 116
Luenberger (10.1016/j.eswa.2021.114685_b0155) 1984
Jain (10.1016/j.eswa.2021.114685_b0110) 2019; 44
10.1016/j.eswa.2021.114685_b0270
10.1016/j.eswa.2021.114685_b0030
Glaw (10.1016/j.eswa.2021.114685_b0090) 2015; 65
Liu (10.1016/j.eswa.2021.114685_b0150) 2013; 13
Das (10.1016/j.eswa.2021.114685_b0040) 2011; 15
Wang (10.1016/j.eswa.2021.114685_b0240) 2014; 274
Dhiman (10.1016/j.eswa.2021.114685_b0055) 2019; 165
Qi (10.1016/j.eswa.2021.114685_b0205) 2019
Pereira (10.1016/j.eswa.2021.114685_b0200) 2015; 44
Uymaz (10.1016/j.eswa.2021.114685_b0235) 2015; 31
10.1016/j.eswa.2021.114685_b0135
10.1016/j.eswa.2021.114685_b0065
Braik (10.1016/j.eswa.2021.114685_b0015) 2020
10.1016/j.eswa.2021.114685_b0220
10.1016/j.eswa.2021.114685_b0265
10.1016/j.eswa.2021.114685_b0145
Rechenberg (10.1016/j.eswa.2021.114685_b0215) 1973; 104
Yang (10.1016/j.eswa.2021.114685_b0260) 2013; 23
Gandomi (10.1016/j.eswa.2021.114685_b0080) 2011
Holm (10.1016/j.eswa.2021.114685_b0105) 1979
Digalakis (10.1016/j.eswa.2021.114685_b0060) 2001; 77
Sheta (10.1016/j.eswa.2021.114685_b0230) 2019; 103
Mlinarić (10.1016/j.eswa.2021.114685_b0195) 2019
Braik (10.1016/j.eswa.2021.114685_b0020) 2020
Rashedi (10.1016/j.eswa.2021.114685_b0210) 2009; 179
Mirjalili (10.1016/j.eswa.2021.114685_b0190) 2014; 69
10.1016/j.eswa.2021.114685_b0005
10.1016/j.eswa.2021.114685_b0010
Wolpert (10.1016/j.eswa.2021.114685_b0245) 1997; 1
10.1016/j.eswa.2021.114685_b0250
Meraihi (10.1016/j.eswa.2021.114685_b0160) 2020
Mirjalili (10.1016/j.eswa.2021.114685_b0175) 2016; 96
References_xml – year: 2019
  ident: b0205
  article-title: Complex-valued discrete-time neural dynamics for perturbed time-dependent complex quadratic programming with applications
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 31
  start-page: 153
  year: 2015
  end-page: 171
  ident: b0235
  article-title: Artificial algae algorithm (aaa) for nonlinear global optimization
  publication-title: Applied Soft Computing
– reference: Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search.
– start-page: 1
  year: 2020
  end-page: 25
  ident: b0015
  article-title: Artificial neural networks training via bio-inspired optimisation algorithms: Modelling industrial winding process, case study
  publication-title: Soft Computing
– volume: 44
  start-page: 2636
  year: 2015
  end-page: 2653
  ident: b0200
  article-title: Overview of friedman’s test and post-hoc analysis
  publication-title: Communications in Statistics-Simulation and Computation
– reference: Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983). Optimization by simulated annealing.
– volume: 53
  start-page: 295
  year: 2001
  end-page: 296
  ident: b0140
  article-title: Remarks on a recent paper on the no free lunch theorems
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Sandgren, E. (1990). Nonlinear integer and discrete programming in mechanical design optimization.
– volume: 19
  start-page: 373
  year: 2012
  end-page: 380
  ident: b0070
  article-title: Application of cellular automata to size and topology optimization of truss structures
  publication-title: Scientia Iranica
– reference: (6), 1362–1381.
– reference: Chen, Q., Liu, B., Zhang, Q., Liang, J., Suganthan, P., & Qu, B. (2014). Problem definitions and evaluation criteria for cec 2015 special session on bound constrained single-objective computationally expensive numerical optimization. Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological University.
– reference: , 63–78.
– volume: 65
  start-page: 167
  year: 2015
  end-page: 246
  ident: b0090
  article-title: Taxonomic checklist of chameleons (Squamata: Chamaeleonidae) Taxonomic checklist of chameleons (squamata: Chamaeleonidae)
  publication-title: Vertebrate Zoology
– volume: 23
  start-page: 2051
  year: 2013
  end-page: 2057
  ident: b0260
  article-title: A framework for self-tuning optimization algorithm
  publication-title: Neural Computing and Applications
– reference: Bonabeau, E., Dorigo, M., Marco, D. d. R.D.F., Theraulaz, G., & Théraulaz, G. (1999). Swarm intelligence: From natural to artificial systems (No 1). Oxford university press.
– reference: Young, E. (2008). Chameleons fine-tune camouflage to predator’s vision.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b0130
  article-title: Particle swarm optimization
  publication-title: Proceedings of icnn’95-international conference on neural networks, 4
– volume: 3
  start-page: 95
  year: 1988
  end-page: 99
  ident: b0095
  article-title: Genetic algorithms and machine learning
  publication-title: Machine Learning
– volume: 165
  start-page: 169
  year: 2019
  end-page: 196
  ident: b0055
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowledge-Based Systems
– year: 2010
  ident: b0255
  article-title: Nature-inspired metaheuristic algorithms
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b0045
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– reference: Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b0245
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: (4598), 671–680.
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b0210
  article-title: Gsa: A gravitational search algorithm
  publication-title: Information Sciences
– volume: 15
  start-page: 4
  year: 2011
  end-page: 31
  ident: b0040
  article-title: Differential evolution: A survey of the state-of-the-art
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 116
  start-page: 405
  year: 1994
  end-page: 411
  ident: b0115
  article-title: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: Journal of Mechanical Design
– reference: Yang, X. S. (2010).
– start-page: 652
  year: 2005
  end-page: 662
  ident: b0165
  article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms
  publication-title: Mexican international conference on artificial intelligence
– year: 1984
  ident: b0155
  article-title: Linear and nonlinear programming (2)
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: b0185
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Applications
– volume: 191
  year: 2020
  ident: b0075
  article-title: Equilibrium optimizer: A novel optimization algorithm
  publication-title: Knowledge-Based Systems
– reference: (pp. 39–43).
– reference: Awad, N. H., Ali, M. Z. & Suganthan, P. N. (2017). Ensemble sinusoidal differential covariance matrix adaptation with euclidean neighborhood for solving cec2017 benchmark problems. In
– start-page: 1
  year: 2020
  end-page: 26
  ident: b0025
  article-title: A novel lifetime scheme for enhancing the convergence performance of salp swarm algorithm
  publication-title: Soft Computing
– volume: 32
  start-page: 68
  year: 1999
  end-page: 75
  ident: b0120
  article-title: Chameleon: Hierarchical clustering using dynamic modeling
  publication-title: Computer
– start-page: 65
  year: 1979
  end-page: 70
  ident: b0105
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scandinavian Journal of Statistics
– volume: 10
  start-page: 101
  year: 2019
  end-page: 107
  ident: b0035
  article-title: Dynamic programming and greedy algorithm strategy for solving several classes of graph optimization problems
  publication-title: BRAIN. Broad Research in Artificial Intelligence and Neuroscience
– reference: Rodríguez, N., Gupta, A., Zabala, P. L., & Cabrera-Guerrero, G. (2018). Optimization algorithms combining (meta) heuristics and mathematical programming and its application in engineering.
– reference: Zhan, Z. H., Zhang, J., Li, Y., & Chung, H. S. H. (2009). Adaptive particle swarm optimization.
– reference: Sree Ranjini, K. S., & Murugan, S. (2017). Memory based hybrid dragonfly algorithm for numerical optimization problems.
– reference: (pp. 372–379).
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b0170
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowledge-Based Systems
– year: 2011
  ident: b0080
  article-title: Computational optimization, methods and algorithms (259–281)
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0190
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
– volume: 103
  start-page: 1359
  year: 2019
  end-page: 1380
  ident: b0230
  article-title: Modeling the tennessee eastman chemical process reactor using bio-inspired feedforward neural network (bi-ff-nn)
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b0175
  article-title: Sca: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
– volume: 274
  start-page: 17
  year: 2014
  end-page: 34
  ident: b0240
  article-title: Chaotic krill herd algorithm
  publication-title: Information Sciences
– start-page: 1
  year: 2020
  end-page: 48
  ident: b0160
  article-title: A comprehensive survey of Crow Search Algorithm and its applications
  publication-title: Artificial Intelligence Review
– reference: . arXiv preprint arXiv:1003.1409.
– volume: 90
  year: 2020
  ident: b0125
  article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 104
  start-page: 15
  year: 1973
  end-page: 16
  ident: b0215
  article-title: Evolution strategy: Optimization of technical systems by means of biological evolution
  publication-title: Fromman-Holzboog, Stuttgart
– reference: .
– reference: (2), 60–68.
– volume: 44
  start-page: 148
  year: 2019
  end-page: 175
  ident: b0110
  article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm
  publication-title: Swarm and Evolutionary Computation
– volume: 77
  start-page: 481
  year: 2001
  end-page: 506
  ident: b0060
  article-title: On benchmarking functions for genetic algorithms
  publication-title: International Journal of Computer Mathematics
– start-page: 1
  year: 2020
  end-page: 33
  ident: b0020
  article-title: A novel meta-heuristic search algorithm for solving optimization problems: Capuchin search algorithm
  publication-title: Neural Computing and Applications
– volume: 203
  start-page: 3255
  year: 2000
  end-page: 3263
  ident: b0100
  article-title: The mechanics of prey prehension in chameleons
  publication-title: Journal of Experimental Biology
– volume: 114
  start-page: 48
  year: 2017
  end-page: 70
  ident: b0050
  article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Advances in Engineering Software
– volume: 13
  start-page: 3792
  year: 2013
  end-page: 3805
  ident: b0150
  article-title: A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting sovova’s mass transfer model
  publication-title: Applied Soft Computing
– start-page: 165
  year: 2019
  end-page: 174
  ident: b0195
  article-title: Multi-objective programming methodology for solving economic diplomacy resource allocation problem
  publication-title: Croatian Operational Research Review
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b0180
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
– ident: 10.1016/j.eswa.2021.114685_b0270
  doi: 10.1109/TSMCB.2009.2015956
– ident: 10.1016/j.eswa.2021.114685_b0265
  doi: 10.1016/S0262-4079(08)60843-X
– ident: 10.1016/j.eswa.2021.114685_b0065
  doi: 10.1109/MHS.1995.494215
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.eswa.2021.114685_b0190
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– year: 2011
  ident: 10.1016/j.eswa.2021.114685_b0080
– volume: 3
  start-page: 95
  issue: 2
  year: 1988
  ident: 10.1016/j.eswa.2021.114685_b0095
  article-title: Genetic algorithms and machine learning
  publication-title: Machine Learning
  doi: 10.1023/A:1022602019183
– volume: 32
  start-page: 68
  issue: 8
  year: 1999
  ident: 10.1016/j.eswa.2021.114685_b0120
  article-title: Chameleon: Hierarchical clustering using dynamic modeling
  publication-title: Computer
  doi: 10.1109/2.781637
– volume: 203
  start-page: 3255
  issue: 21
  year: 2000
  ident: 10.1016/j.eswa.2021.114685_b0100
  article-title: The mechanics of prey prehension in chameleons
  publication-title: Journal of Experimental Biology
  doi: 10.1242/jeb.203.21.3255
– volume: 191
  year: 2020
  ident: 10.1016/j.eswa.2021.114685_b0075
  article-title: Equilibrium optimizer: A novel optimization algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105190
– volume: 90
  year: 2020
  ident: 10.1016/j.eswa.2021.114685_b0125
  article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103541
– ident: 10.1016/j.eswa.2021.114685_b0135
  doi: 10.1126/science.220.4598.671
– ident: 10.1016/j.eswa.2021.114685_b0010
  doi: 10.1093/oso/9780195131581.001.0001
– volume: 13
  start-page: 3792
  issue: 9
  year: 2013
  ident: 10.1016/j.eswa.2021.114685_b0150
  article-title: A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting sovova’s mass transfer model
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2013.05.010
– volume: 114
  start-page: 48
  year: 2017
  ident: 10.1016/j.eswa.2021.114685_b0050
  article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.05.014
– volume: 15
  start-page: 4
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2021.114685_b0040
  article-title: Differential evolution: A survey of the state-of-the-art
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2010.2059031
– year: 2019
  ident: 10.1016/j.eswa.2021.114685_b0205
  article-title: Complex-valued discrete-time neural dynamics for perturbed time-dependent complex quadratic programming with applications
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 53
  start-page: 295
  year: 2001
  ident: 10.1016/j.eswa.2021.114685_b0140
  article-title: Remarks on a recent paper on the no free lunch theorems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.930318
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.eswa.2021.114685_b0245
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.eswa.2021.114685_b0170
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.07.006
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.eswa.2021.114685_b0180
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.07.002
– ident: 10.1016/j.eswa.2021.114685_b0250
  doi: 10.1504/IJBIC.2010.032124
– start-page: 65
  year: 1979
  ident: 10.1016/j.eswa.2021.114685_b0105
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scandinavian Journal of Statistics
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.114685_b0160
  article-title: A comprehensive survey of Crow Search Algorithm and its applications
  publication-title: Artificial Intelligence Review
– ident: 10.1016/j.eswa.2021.114685_b0145
  doi: 10.1016/j.eswa.2017.04.033
– volume: 165
  start-page: 169
  year: 2019
  ident: 10.1016/j.eswa.2021.114685_b0055
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.11.024
– start-page: 165
  year: 2019
  ident: 10.1016/j.eswa.2021.114685_b0195
  article-title: Multi-objective programming methodology for solving economic diplomacy resource allocation problem
  publication-title: Croatian Operational Research Review
  doi: 10.17535/crorr.2019.0015
– volume: 19
  start-page: 373
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2021.114685_b0070
  article-title: Application of cellular automata to size and topology optimization of truss structures
  publication-title: Scientia Iranica
  doi: 10.1016/j.scient.2012.04.009
– ident: 10.1016/j.eswa.2021.114685_b0225
  doi: 10.1115/1.2912596
– ident: 10.1016/j.eswa.2021.114685_b0030
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.eswa.2021.114685_b0210
  article-title: Gsa: A gravitational search algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.03.004
– start-page: 652
  year: 2005
  ident: 10.1016/j.eswa.2021.114685_b0165
  article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.eswa.2021.114685_b0175
  article-title: Sca: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.12.022
– volume: 116
  start-page: 405
  issue: 2
  year: 1994
  ident: 10.1016/j.eswa.2021.114685_b0115
  article-title: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: Journal of Mechanical Design
  doi: 10.1115/1.2919393
– ident: 10.1016/j.eswa.2021.114685_b0085
  doi: 10.1177/003754970107600201
– volume: 10
  start-page: 101
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.114685_b0035
  article-title: Dynamic programming and greedy algorithm strategy for solving several classes of graph optimization problems
  publication-title: BRAIN. Broad Research in Artificial Intelligence and Neuroscience
  doi: 10.70594/brain/v10.i1/10
– volume: 65
  start-page: 167
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2021.114685_b0090
  article-title: Taxonomic checklist of chameleons (Squamata: Chamaeleonidae) Taxonomic checklist of chameleons (squamata: Chamaeleonidae)
  publication-title: Vertebrate Zoology
  doi: 10.3897/vz.65.e31518
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.eswa.2021.114685_b0045
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.114685_b0025
  article-title: A novel lifetime scheme for enhancing the convergence performance of salp swarm algorithm
  publication-title: Soft Computing
– year: 1984
  ident: 10.1016/j.eswa.2021.114685_b0155
– ident: 10.1016/j.eswa.2021.114685_b0220
  doi: 10.1155/2018/3967457
– volume: 44
  start-page: 2636
  issue: 10
  year: 2015
  ident: 10.1016/j.eswa.2021.114685_b0200
  article-title: Overview of friedman’s test and post-hoc analysis
  publication-title: Communications in Statistics-Simulation and Computation
  doi: 10.1080/03610918.2014.931971
– volume: 274
  start-page: 17
  year: 2014
  ident: 10.1016/j.eswa.2021.114685_b0240
  article-title: Chaotic krill herd algorithm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.02.123
– volume: 23
  start-page: 2051
  issue: 7–8
  year: 2013
  ident: 10.1016/j.eswa.2021.114685_b0260
  article-title: A framework for self-tuning optimization algorithm
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-013-1498-4
– volume: 44
  start-page: 148
  year: 2019
  ident: 10.1016/j.eswa.2021.114685_b0110
  article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.02.013
– volume: 77
  start-page: 481
  issue: 4
  year: 2001
  ident: 10.1016/j.eswa.2021.114685_b0060
  article-title: On benchmarking functions for genetic algorithms
  publication-title: International Journal of Computer Mathematics
  doi: 10.1080/00207160108805080
– volume: 104
  start-page: 15
  year: 1973
  ident: 10.1016/j.eswa.2021.114685_b0215
  article-title: Evolution strategy: Optimization of technical systems by means of biological evolution
  publication-title: Fromman-Holzboog, Stuttgart
– ident: 10.1016/j.eswa.2021.114685_b0005
  doi: 10.1109/CEC.2017.7969336
– volume: 31
  start-page: 153
  year: 2015
  ident: 10.1016/j.eswa.2021.114685_b0235
  article-title: Artificial algae algorithm (aaa) for nonlinear global optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.03.003
– start-page: 1942
  year: 1995
  ident: 10.1016/j.eswa.2021.114685_b0130
  article-title: Particle swarm optimization
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2021.114685_b0185
  article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1870-7
– volume: 103
  start-page: 1359
  issue: 1–4
  year: 2019
  ident: 10.1016/j.eswa.2021.114685_b0230
  article-title: Modeling the tennessee eastman chemical process reactor using bio-inspired feedforward neural network (bi-ff-nn)
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-019-03621-5
– year: 2010
  ident: 10.1016/j.eswa.2021.114685_b0255
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.114685_b0015
  article-title: Artificial neural networks training via bio-inspired optimisation algorithms: Modelling industrial winding process, case study
  publication-title: Soft Computing
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.114685_b0020
  article-title: A novel meta-heuristic search algorithm for solving optimization problems: Capuchin search algorithm
  publication-title: Neural Computing and Applications
SSID ssj0017007
Score 2.7071984
Snippet •Chameleon Swarm Algorithm (CSA) is benchmarked on 67 benchmark functions.•The exploitation ability of CSA is affirmed by the results on unimodal...
This paper presents a novel meta-heuristic algorithm named Chameleon Swarm Algorithm (CSA) for solving global numerical optimization problems. The base...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114685
SubjectTerms Algorithms
Biomimetics
Chameleon Swarm Algorithm
Comparative studies
Design engineering
Design optimization
Evolutionary algorithms
Eye (anatomy)
Food
Heuristic methods
Meta-heuristics
Nature-inspired algorithms
Optimization
Optimization techniques
Stability analysis
Swamps
Swarm intelligence algorithms
Title Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems
URI https://dx.doi.org/10.1016/j.eswa.2021.114685
https://www.proquest.com/docview/2539561820
Volume 174
WOSCitedRecordID wos000663144700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Lb9QwEIct2HLgAuWlthTkA7coVR7OY3tbVUWUQ4VEkVbiYMUvknY3WyWhrfrXM44db7qoFT1wiXaziWXtF49_GXtmEPrEdLRlKCKfJHqZMWHCZ0QJXwlQ66kkImVBX2wiOz3N5_PpN1tts-3LCWR1nd_cTC__K2o4B7B16OwjcLtG4QR8BuhwBOxw_CfwR2WxhLlE24Hroll6s8WvVVN1pfHIe6xa-VWt19dBaq7AYCyrW9n0uw2hX717Qa5zFHqi3-Hh2boz7R1Hvs6S3Nlc0EOU3Gg9fLRcX12YuKBFdeF9L2VZCFmO_Q1RqB2ZJuLSOQ4zn4Smto6zofarsYI60tkU4vnLQBtfwfmBbK911qcoPFhffDcb9sYs5fYODtvSzqlug-o2qGnjKdqKsmSaT9DW7OR4_tWtJmWBCZsfem6Dp8w-v82e3CdQNqbqXn-cbaMX9sUBzwzwV-iJrF-jl0NRDmxt9Bv00_HHPX_s-B_iGR7Tx44-BvrY0scj-tjQxwP9t-jH5-Ozoy--raDhcxiCnZ8WPM4kB83IFM9lqpM7giIEWcqUynIB86GUnMSx4jxNI8mjQgRMBLHKSRzBD-_QpF7VcgfhkKgQ1A4vYpISmRdFRljCFVcgaAKRBrsoHP42ym16eV3lZEHvB7aLPHfPpUmu8uDVyUCDWnloZB-Fh-vB-_YHdNSO05ZGYJrg1QH0796jOvEePV8Pin006Zrf8gN6xq-6qm0-2gfvDwPRkng
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chameleon+Swarm+Algorithm%3A+A+bio-inspired+optimizer+for+solving+engineering+design+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Braik%2C+Malik+Shehadeh&rft.date=2021-07-15&rft.issn=0957-4174&rft.volume=174&rft.spage=114685&rft_id=info:doi/10.1016%2Fj.eswa.2021.114685&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2021_114685
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon