Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems
•Chameleon Swarm Algorithm (CSA) is benchmarked on 67 benchmark functions.•The exploitation ability of CSA is affirmed by the results on unimodal functions.•The results of CSA on multimodal functions show the exploration ability of CSA.•The results of CSA on composite functions prove the reliability...
Saved in:
| Published in: | Expert systems with applications Vol. 174; p. 114685 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Elsevier Ltd
15.07.2021
Elsevier BV |
| Subjects: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Chameleon Swarm Algorithm (CSA) is benchmarked on 67 benchmark functions.•The exploitation ability of CSA is affirmed by the results on unimodal functions.•The results of CSA on multimodal functions show the exploration ability of CSA.•The results of CSA on composite functions prove the reliability level of CSA.•The results on five engineering problems affirm the accuracy of CSA in practice.
This paper presents a novel meta-heuristic algorithm named Chameleon Swarm Algorithm (CSA) for solving global numerical optimization problems. The base inspiration for CSA is the dynamic behavior of chameleons when navigating and hunting for food sources on trees, deserts and near swamps. This algorithm mathematically models and implements the behavioral steps of chameleons in their search for food, including their behavior in rotating their eyes to a nearly 360°scope of vision to locate prey and grab prey using their sticky tongues that launch at high speed. These foraging mechanisms practiced by chameleons eventually lead to feasible solutions when applied to address optimization problems. The stability of the proposed algorithm was assessed on sixty-seven benchmark test functions and the performance was examined using several evaluation measures. These test functions involve unimodal, multimodal, hybrid and composition functions with different levels of complexity. An extensive comparative study was conducted to demonstrate the efficacy of CSA over other meta-heuristic algorithms in terms of optimization accuracy. The applicability of the proposed algorithm in reliably addressing real-world problems was demonstrated in solving five constrained and computationally expensive engineering design problems. The overall results of CSA show that it offered a favorable global or near global solution and better performance compared to other meta-heuristics. |
|---|---|
| AbstractList | This paper presents a novel meta-heuristic algorithm named Chameleon Swarm Algorithm (CSA) for solving global numerical optimization problems. The base inspiration for CSA is the dynamic behavior of chameleons when navigating and hunting for food sources on trees, deserts and near swamps. This algorithm mathematically models and implements the behavioral steps of chameleons in their search for food, including their behavior in rotating their eyes to a nearly 360°scope of vision to locate prey and grab prey using their sticky tongues that launch at high speed. These foraging mechanisms practiced by chameleons eventually lead to feasible solutions when applied to address optimization problems. The stability of the proposed algorithm was assessed on sixty-seven benchmark test functions and the performance was examined using several evaluation measures. These test functions involve unimodal, multimodal, hybrid and composition functions with different levels of complexity. An extensive comparative study was conducted to demonstrate the efficacy of CSA over other meta-heuristic algorithms in terms of optimization accuracy. The applicability of the proposed algorithm in reliably addressing real-world problems was demonstrated in solving five constrained and computationally expensive engineering design problems. The overall results of CSA show that it offered a favorable global or near global solution and better performance compared to other meta-heuristics. •Chameleon Swarm Algorithm (CSA) is benchmarked on 67 benchmark functions.•The exploitation ability of CSA is affirmed by the results on unimodal functions.•The results of CSA on multimodal functions show the exploration ability of CSA.•The results of CSA on composite functions prove the reliability level of CSA.•The results on five engineering problems affirm the accuracy of CSA in practice. This paper presents a novel meta-heuristic algorithm named Chameleon Swarm Algorithm (CSA) for solving global numerical optimization problems. The base inspiration for CSA is the dynamic behavior of chameleons when navigating and hunting for food sources on trees, deserts and near swamps. This algorithm mathematically models and implements the behavioral steps of chameleons in their search for food, including their behavior in rotating their eyes to a nearly 360°scope of vision to locate prey and grab prey using their sticky tongues that launch at high speed. These foraging mechanisms practiced by chameleons eventually lead to feasible solutions when applied to address optimization problems. The stability of the proposed algorithm was assessed on sixty-seven benchmark test functions and the performance was examined using several evaluation measures. These test functions involve unimodal, multimodal, hybrid and composition functions with different levels of complexity. An extensive comparative study was conducted to demonstrate the efficacy of CSA over other meta-heuristic algorithms in terms of optimization accuracy. The applicability of the proposed algorithm in reliably addressing real-world problems was demonstrated in solving five constrained and computationally expensive engineering design problems. The overall results of CSA show that it offered a favorable global or near global solution and better performance compared to other meta-heuristics. |
| ArticleNumber | 114685 |
| Author | Braik, Malik Shehadeh |
| Author_xml | – sequence: 1 givenname: Malik Shehadeh surname: Braik fullname: Braik, Malik Shehadeh email: mbraik@bau.edu.jo organization: Department of Computer Science, Al-Balqa Applied University, Al-salt, Jordan |
| BookMark | eNp9kD1PwzAQhi1UJNrCH2CyxJzgj8ROEEtV8SVVYgAmBstxLq2rxC522gp-PanKxNDpTrr3udM9EzRy3gFC15SklFBxu04h7nXKCKMppZko8jM0poXkiZAlH6ExKXOZZFRmF2gS45oQKgmRY_Q5X-kOWvAOv-116PCsXfpg-1V3h2e4sj6xLm5sgBr7TW87-wMBNz7g6NuddUsMbmkdQDj0NUS7dHgTfNVCFy_ReaPbCFd_dYo-Hh_e58_J4vXpZT5bJIaXWZ8IbbgEQ_O8akwBIpN5WTBGBK-aRhY1IQTAZJw3xgjBwDBdk6omvCkyzobBFN0c9w6Hv7YQe7X22-CGk4rlvMwFLRgZUsUxZYKPMUCjjO11b73rg7atokQdVKq1OqhUB5XqqHJA2T90E2ynw_dp6P4IwfD6zkJQ0VhwBurBpulV7e0p_BetHZBA |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2022_109729 crossref_primary_10_1016_j_knosys_2022_108457 crossref_primary_10_3390_app14030982 crossref_primary_10_1016_j_compbiomed_2024_108780 crossref_primary_10_32604_cmc_2023_034025 crossref_primary_10_1007_s42235_024_00493_8 crossref_primary_10_1007_s10489_025_06342_3 crossref_primary_10_1007_s10586_022_03920_9 crossref_primary_10_1007_s11227_023_05540_5 crossref_primary_10_1007_s11831_022_09800_0 crossref_primary_10_1016_j_asoc_2025_112854 crossref_primary_10_31857_S0005231024030027 crossref_primary_10_1016_j_rineng_2025_105984 crossref_primary_10_1038_s41598_024_66450_x crossref_primary_10_3390_en15093198 crossref_primary_10_1016_j_cma_2022_115676 crossref_primary_10_54392_irjmt2439 crossref_primary_10_1007_s10064_024_03819_2 crossref_primary_10_3390_biomimetics9010031 crossref_primary_10_3390_e27090938 crossref_primary_10_1016_j_eswa_2023_120186 crossref_primary_10_1016_j_asoc_2021_108126 crossref_primary_10_3390_math11163496 crossref_primary_10_1038_s41598_024_83589_9 crossref_primary_10_3390_math10234565 crossref_primary_10_1007_s11277_022_09765_0 crossref_primary_10_1016_j_bspc_2023_105073 crossref_primary_10_1038_s41598_024_76545_0 crossref_primary_10_1038_s41598_025_98816_0 crossref_primary_10_1038_s41598_025_97015_1 crossref_primary_10_1007_s10586_025_05121_6 crossref_primary_10_1155_2022_1502988 crossref_primary_10_1002_er_7192 crossref_primary_10_1016_j_icte_2021_08_019 crossref_primary_10_1002_dac_5609 crossref_primary_10_1038_s41598_025_12940_5 crossref_primary_10_3390_biomimetics10010003 crossref_primary_10_1016_j_eswa_2025_128113 crossref_primary_10_1007_s10462_024_10767_6 crossref_primary_10_1080_03610918_2025_2512378 crossref_primary_10_3390_sym15101873 crossref_primary_10_1007_s11831_025_10234_7 crossref_primary_10_3390_s23156939 crossref_primary_10_3390_math10193466 crossref_primary_10_1016_j_phycom_2025_102701 crossref_primary_10_1016_j_engappai_2022_105410 crossref_primary_10_1002_dac_5514 crossref_primary_10_1038_s41598_025_96263_5 crossref_primary_10_1007_s10489_024_05537_4 crossref_primary_10_54097_c9xjd223 crossref_primary_10_1016_j_eswa_2021_116026 crossref_primary_10_1016_j_ijbiomac_2024_137237 crossref_primary_10_3390_s25071997 crossref_primary_10_3390_math11041032 crossref_primary_10_1016_j_aei_2023_102210 crossref_primary_10_1007_s10489_024_05826_y crossref_primary_10_1007_s13042_024_02222_3 crossref_primary_10_1016_j_eswa_2023_121015 crossref_primary_10_1007_s00521_024_09524_1 crossref_primary_10_1016_j_knosys_2024_111850 crossref_primary_10_1080_15325008_2023_2239226 crossref_primary_10_32604_cmes_2023_026097 crossref_primary_10_1016_j_jwpe_2023_104087 crossref_primary_10_1108_EC_10_2024_0904 crossref_primary_10_3390_math10010102 crossref_primary_10_1088_1402_4896_ad86f7 crossref_primary_10_1007_s10115_023_02007_0 crossref_primary_10_1109_ACCESS_2022_3190378 crossref_primary_10_29109_gujsc_1612191 crossref_primary_10_1007_s10115_023_01998_0 crossref_primary_10_1038_s41598_025_12816_8 crossref_primary_10_1109_ACCESS_2023_3329052 crossref_primary_10_3390_biomimetics9100602 crossref_primary_10_1007_s12065_024_00998_5 crossref_primary_10_1007_s11227_025_07509_y crossref_primary_10_1080_03081079_2024_2339471 crossref_primary_10_1007_s11277_023_10647_2 crossref_primary_10_1038_s41598_025_99837_5 crossref_primary_10_1007_s10462_024_10729_y crossref_primary_10_1016_j_bspc_2023_105847 crossref_primary_10_31857_S0005117924030037 crossref_primary_10_3390_jcs8060205 crossref_primary_10_1109_ACCESS_2024_3379296 crossref_primary_10_1115_1_4068718 crossref_primary_10_1007_s00500_025_10611_1 crossref_primary_10_3390_biomimetics9040205 crossref_primary_10_1177_1088467X251313530 crossref_primary_10_3390_math10193606 crossref_primary_10_1007_s11227_022_04996_1 crossref_primary_10_3390_math10132329 crossref_primary_10_47134_ppm_v2i2_1480 crossref_primary_10_1016_j_eswa_2023_120426 crossref_primary_10_33889_IJMEMS_2024_9_5_057 crossref_primary_10_1007_s11042_025_20608_5 crossref_primary_10_1016_j_cie_2022_108161 crossref_primary_10_3390_e25050782 crossref_primary_10_1007_s12597_024_00785_x crossref_primary_10_3390_math11091989 crossref_primary_10_1109_ACCESS_2024_3453488 crossref_primary_10_1016_j_cma_2024_116964 crossref_primary_10_1016_j_apm_2025_116410 crossref_primary_10_1049_cit2_12316 crossref_primary_10_1038_s41598_025_13539_6 crossref_primary_10_1109_ACCESS_2025_3546986 crossref_primary_10_1007_s12065_024_00997_6 crossref_primary_10_1038_s41598_025_13215_9 crossref_primary_10_1007_s00521_022_07662_y crossref_primary_10_1007_s11042_024_20301_z crossref_primary_10_3390_s24020390 crossref_primary_10_1007_s00521_022_07854_6 crossref_primary_10_1007_s10462_024_10723_4 crossref_primary_10_1080_03772063_2024_2448588 crossref_primary_10_1016_j_advengsoft_2024_103857 crossref_primary_10_1007_s10462_024_10747_w crossref_primary_10_3390_math9182313 crossref_primary_10_1002_cbf_4054 crossref_primary_10_3390_en15072566 crossref_primary_10_1049_rpg2_12744 crossref_primary_10_1016_j_cma_2023_116199 crossref_primary_10_1007_s10489_022_04363_w crossref_primary_10_1007_s44174_025_00356_8 crossref_primary_10_1016_j_compbiolchem_2025_108550 crossref_primary_10_1016_j_eswa_2022_119015 crossref_primary_10_3389_fonc_2024_1408199 crossref_primary_10_1109_TAES_2024_3427088 crossref_primary_10_3390_su142315550 crossref_primary_10_1038_s41598_024_53064_6 crossref_primary_10_1080_01969722_2025_2468191 crossref_primary_10_1016_j_asoc_2025_113569 crossref_primary_10_1016_j_gsf_2024_101884 crossref_primary_10_1007_s11227_025_07258_y crossref_primary_10_1016_j_knosys_2023_111257 crossref_primary_10_1007_s00703_024_01030_2 crossref_primary_10_1007_s10462_023_10680_4 crossref_primary_10_1002_aisy_202200097 crossref_primary_10_1007_s42235_022_00298_7 crossref_primary_10_1007_s10462_023_10581_6 crossref_primary_10_3390_app11146492 crossref_primary_10_1016_j_eswa_2022_119246 crossref_primary_10_3390_en17184742 crossref_primary_10_1109_ACCESS_2024_3350336 crossref_primary_10_1007_s11276_025_03907_5 crossref_primary_10_1016_j_heliyon_2024_e26187 crossref_primary_10_1002_mop_70276 crossref_primary_10_1007_s00521_024_10346_4 crossref_primary_10_1007_s00521_024_10577_5 crossref_primary_10_1007_s10115_025_02458_7 crossref_primary_10_36306_konjes_904335 crossref_primary_10_1038_s41598_024_77585_2 crossref_primary_10_1038_s41598_025_13616_w crossref_primary_10_1080_13682199_2023_2190947 crossref_primary_10_1109_ACCESS_2022_3162853 crossref_primary_10_1007_s10462_025_11351_2 crossref_primary_10_1007_s11227_025_07139_4 crossref_primary_10_1007_s11235_024_01258_8 crossref_primary_10_1016_j_cma_2023_116097 crossref_primary_10_1080_0954898X_2023_2296568 crossref_primary_10_1038_s41598_025_91270_y crossref_primary_10_1016_j_soildyn_2024_108950 crossref_primary_10_1007_s11227_023_05579_4 crossref_primary_10_1007_s00500_023_09276_5 crossref_primary_10_1007_s10462_025_11118_9 crossref_primary_10_3233_WEB_230063 crossref_primary_10_1109_ACCESS_2022_3172789 crossref_primary_10_1007_s12065_025_01052_8 crossref_primary_10_1016_j_matcom_2022_12_001 crossref_primary_10_1038_s41598_024_75123_8 crossref_primary_10_3390_math9212770 crossref_primary_10_1007_s00521_023_08812_6 crossref_primary_10_1016_j_cie_2024_110568 crossref_primary_10_3233_JIFS_242010 crossref_primary_10_1007_s10462_022_10164_x crossref_primary_10_1109_ACCESS_2024_3397402 crossref_primary_10_1007_s11227_022_04644_8 crossref_primary_10_1016_j_suscom_2024_101023 crossref_primary_10_1007_s12530_022_09425_5 crossref_primary_10_1016_j_energy_2022_124340 crossref_primary_10_1186_s13638_024_02379_z crossref_primary_10_1007_s12065_024_00995_8 crossref_primary_10_3390_math10071100 crossref_primary_10_1186_s40537_023_00864_8 crossref_primary_10_1002_cpe_7295 crossref_primary_10_1016_j_eswa_2023_120904 crossref_primary_10_1038_s41598_024_53602_2 crossref_primary_10_1016_j_enconman_2022_115944 crossref_primary_10_1109_JSEN_2024_3435708 crossref_primary_10_1177_1088467X241301637 crossref_primary_10_3390_biomimetics9100583 crossref_primary_10_1080_0954898X_2024_2373127 crossref_primary_10_1007_s11227_024_06291_7 crossref_primary_10_1177_0958305X231217635 crossref_primary_10_1016_j_eswa_2023_122413 crossref_primary_10_1016_j_eswa_2025_127660 crossref_primary_10_1007_s10462_024_11104_7 crossref_primary_10_1016_j_compbiomed_2021_105152 crossref_primary_10_3390_electronics12132820 crossref_primary_10_1007_s11276_025_03947_x crossref_primary_10_1080_01431161_2024_2313995 crossref_primary_10_32604_csse_2023_037066 crossref_primary_10_1016_j_measurement_2023_113032 crossref_primary_10_1142_S1469026824500305 crossref_primary_10_1016_j_knosys_2022_109484 crossref_primary_10_3390_en17164166 crossref_primary_10_1016_j_eswa_2023_122509 crossref_primary_10_3390_app132111637 crossref_primary_10_1016_j_eswa_2023_121898 crossref_primary_10_1007_s11227_024_06384_3 crossref_primary_10_1007_s00521_024_09581_6 crossref_primary_10_1007_s00521_025_11421_0 crossref_primary_10_3390_app14156562 crossref_primary_10_1016_j_matcom_2022_12_022 crossref_primary_10_1016_j_cma_2023_116200 crossref_primary_10_1088_1361_6501_ad1871 crossref_primary_10_1049_cmu2_70029 crossref_primary_10_1016_j_egyr_2025_01_040 crossref_primary_10_1007_s11227_024_06915_y crossref_primary_10_1080_01431161_2025_2518507 crossref_primary_10_1016_j_bspc_2022_104343 crossref_primary_10_3390_s24020493 crossref_primary_10_1007_s12065_024_00945_4 crossref_primary_10_1016_j_compbiomed_2022_105675 crossref_primary_10_1016_j_compbiomed_2022_106404 crossref_primary_10_1007_s12530_025_09715_8 crossref_primary_10_1134_S000511792403007X crossref_primary_10_1002_dac_70197 crossref_primary_10_1007_s00500_023_08274_x crossref_primary_10_3390_biomimetics8030305 crossref_primary_10_3390_math9182335 crossref_primary_10_1016_j_eswa_2023_121540 crossref_primary_10_3390_electronics12092042 crossref_primary_10_3390_biomimetics9030137 crossref_primary_10_1016_j_cma_2024_117429 crossref_primary_10_1016_j_apm_2025_116029 crossref_primary_10_3390_rs15174205 crossref_primary_10_1016_j_fbio_2024_104346 crossref_primary_10_1088_1402_4896_ad8e0e crossref_primary_10_1080_0305215X_2025_2464862 crossref_primary_10_1016_j_eswa_2022_118460 crossref_primary_10_32604_cmc_2022_030825 crossref_primary_10_1109_ACCESS_2024_3443157 crossref_primary_10_1007_s10489_023_04732_z crossref_primary_10_1016_j_eswa_2022_117379 crossref_primary_10_1007_s11042_024_19492_2 crossref_primary_10_3390_biomimetics10010031 crossref_primary_10_3390_app14104302 crossref_primary_10_1007_s11227_025_07167_0 crossref_primary_10_1080_19942060_2022_2098826 crossref_primary_10_3390_biomimetics7040144 crossref_primary_10_3390_s22228839 crossref_primary_10_1016_j_knosys_2023_110462 crossref_primary_10_1007_s11220_023_00446_1 crossref_primary_10_1016_j_cma_2023_116582 crossref_primary_10_1007_s42235_023_00447_6 crossref_primary_10_1007_s42235_023_00386_2 crossref_primary_10_1007_s10462_025_11360_1 crossref_primary_10_1016_j_bspc_2023_104740 crossref_primary_10_3390_biomimetics10010047 crossref_primary_10_1002_ett_4708 crossref_primary_10_1080_13682199_2025_2476808 crossref_primary_10_1016_j_bspc_2022_104513 crossref_primary_10_1007_s10586_025_05358_1 crossref_primary_10_21122_2309_4923_2024_3_12_16 crossref_primary_10_3390_math10214063 crossref_primary_10_1007_s11042_023_16558_5 crossref_primary_10_1016_j_apm_2023_05_007 crossref_primary_10_1016_j_knosys_2023_110454 crossref_primary_10_1109_ACCESS_2024_3439344 crossref_primary_10_1109_ACCESS_2022_3229964 crossref_primary_10_1016_j_cma_2025_117825 crossref_primary_10_1109_ACCESS_2023_3267110 crossref_primary_10_1007_s42235_022_00223_y crossref_primary_10_1109_ACCESS_2022_3164734 crossref_primary_10_1007_s00521_025_11266_7 crossref_primary_10_1109_JSEN_2022_3193943 crossref_primary_10_1007_s00521_024_09879_5 crossref_primary_10_1007_s10462_023_10498_0 crossref_primary_10_1016_j_ijhydene_2025_02_401 crossref_primary_10_1080_00051144_2024_2420296 crossref_primary_10_1109_ACCESS_2024_3403089 crossref_primary_10_1016_j_apenergy_2024_123499 crossref_primary_10_1016_j_cor_2023_106436 crossref_primary_10_1007_s00521_021_06392_x crossref_primary_10_1109_ACCESS_2023_3312684 crossref_primary_10_1016_j_isatra_2025_07_023 crossref_primary_10_1016_j_psep_2025_107739 crossref_primary_10_3390_su141710673 crossref_primary_10_1371_journal_pone_0297284 crossref_primary_10_1007_s11571_023_10049_x crossref_primary_10_1016_j_knosys_2022_108743 crossref_primary_10_1038_s41598_024_60821_0 crossref_primary_10_3233_IDT_230579 crossref_primary_10_1007_s44196_025_00821_8 crossref_primary_10_1016_j_advengsoft_2024_103793 crossref_primary_10_1186_s40537_025_01129_2 crossref_primary_10_1007_s41060_024_00551_8 crossref_primary_10_1016_j_engappai_2023_106959 crossref_primary_10_1007_s11518_024_5622_z crossref_primary_10_1007_s11831_023_10030_1 crossref_primary_10_1007_s10586_024_04950_1 crossref_primary_10_1007_s10586_024_04996_1 crossref_primary_10_1007_s11276_023_03621_0 crossref_primary_10_1007_s12083_024_01838_0 crossref_primary_10_1016_j_knosys_2022_110011 crossref_primary_10_3390_s24113344 crossref_primary_10_1007_s42235_024_00549_9 crossref_primary_10_3390_sym15101931 crossref_primary_10_3390_a18050243 crossref_primary_10_1007_s00521_024_10694_1 |
| Cites_doi | 10.1109/TSMCB.2009.2015956 10.1016/S0262-4079(08)60843-X 10.1109/MHS.1995.494215 10.1016/j.advengsoft.2013.12.007 10.1023/A:1022602019183 10.1109/2.781637 10.1242/jeb.203.21.3255 10.1016/j.knosys.2019.105190 10.1016/j.engappai.2020.103541 10.1126/science.220.4598.671 10.1093/oso/9780195131581.001.0001 10.1016/j.asoc.2013.05.010 10.1016/j.advengsoft.2017.05.014 10.1109/TEVC.2010.2059031 10.1109/4235.930318 10.1109/4235.585893 10.1016/j.knosys.2015.07.006 10.1016/j.advengsoft.2017.07.002 10.1504/IJBIC.2010.032124 10.1016/j.eswa.2017.04.033 10.1016/j.knosys.2018.11.024 10.17535/crorr.2019.0015 10.1016/j.scient.2012.04.009 10.1115/1.2912596 10.1016/j.ins.2009.03.004 10.1016/j.knosys.2015.12.022 10.1115/1.2919393 10.1177/003754970107600201 10.70594/brain/v10.i1/10 10.3897/vz.65.e31518 10.1155/2018/3967457 10.1080/03610918.2014.931971 10.1016/j.ins.2014.02.123 10.1007/s00521-013-1498-4 10.1016/j.swevo.2018.02.013 10.1080/00207160108805080 10.1109/CEC.2017.7969336 10.1016/j.asoc.2015.03.003 10.1007/s00521-015-1870-7 10.1007/s00170-019-03621-5 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jul 15, 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jul 15, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2021.114685 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2021_114685 S0957417421001263 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c394t-6ac37ec155bfc8e64759822063bff78d000eec433fcc662ec2ad0bd03f8432c43 |
| ISICitedReferencesCount | 360 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663144700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Nov 09 07:18:42 EST 2025 Sat Nov 29 07:07:45 EST 2025 Tue Nov 18 21:12:14 EST 2025 Fri Feb 23 02:46:14 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Swarm intelligence algorithms Optimization techniques Chameleon Swarm Algorithm Evolutionary algorithms Nature-inspired algorithms Meta-heuristics |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c394t-6ac37ec155bfc8e64759822063bff78d000eec433fcc662ec2ad0bd03f8432c43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2539561820 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2539561820 crossref_citationtrail_10_1016_j_eswa_2021_114685 crossref_primary_10_1016_j_eswa_2021_114685 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_114685 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-15 |
| PublicationDateYYYYMMDD | 2021-07-15 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Mirjalili (b0175) 2016; 96 Faramarzi, Heidarinejad, Stephens, Mirjalili (b0075) 2020; 191 Braik, Al-Zoubi, Al-Hiary (b0015) 2020 Rodríguez, N., Gupta, A., Zabala, P. L., & Cabrera-Guerrero, G. (2018). Optimization algorithms combining (meta) heuristics and mathematical programming and its application in engineering. Kennedy, Eberhart (b0130) 1995 Demšar (b0045) 2006; 7 Faramarzi, Afshar (b0070) 2012; 19 Uymaz, Tezel, Yel (b0235) 2015; 31 Pereira, Afonso, Medeiros (b0200) 2015; 44 Glaw (b0090) 2015; 65 Rashedi, Nezamabadi-Pour, Saryazdi (b0210) 2009; 179 Braik, Sheta, Turabieh, Alhiary (b0025) 2020 Rechenberg (b0215) 1973; 104 Braik, Sheta, Al-Hiary (b0020) 2020 Holm (b0105) 1979 Mirjalili, Mirjalili, Lewis (b0190) 2014; 69 (2), 60–68. Mirjalili, Mirjalili, Hatamlou (b0185) 2016; 27 Wang, Guo, Gandomi, Hao, Wang (b0240) 2014; 274 Mirjalili (b0170) 2015; 89 Zhan, Z. H., Zhang, J., Li, Y., & Chung, H. S. H. (2009). Adaptive particle swarm optimization. Sree Ranjini, K. S., & Murugan, S. (2017). Memory based hybrid dragonfly algorithm for numerical optimization problems. Kannan, Kramer (b0115) 1994; 116 (pp. 39–43). . Young, E. (2008). Chameleons fine-tune camouflage to predator’s vision. Awad, N. H., Ali, M. Z. & Suganthan, P. N. (2017). Ensemble sinusoidal differential covariance matrix adaptation with euclidean neighborhood for solving cec2017 benchmark problems. In Herrel, Meyers, Aerts, Nishikawa (b0100) 2000; 203 Karypis, Han, Kumar (b0120) 1999; 32 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0180) 2017; 114 Chumburidze, Basheleishvili, Khetsuriani (b0035) 2019; 10 63–78. Meraihi, Gabis, Ramdane-Cherif, Acheli (b0160) 2020 Qi, Jin, Wang, Xiao, Zhang (b0205) 2019 Sheta, Braik, Al-Hiary (b0230) 2019; 103 Mlinarić, Perić, Matejaš (b0195) 2019 Yang, Deb, Loomes, Karamanoglu (b0260) 2013; 23 Wolpert, Macready (b0245) 1997; 1 Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983). Optimization by simulated annealing. Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search. Bonabeau, E., Dorigo, M., Marco, D. d. R.D.F., Theraulaz, G., & Théraulaz, G. (1999). Swarm intelligence: From natural to artificial systems (No 1). Oxford university press. Liu, Mernik, HrnčIč, Črepinšek (b0150) 2013; 13 Luenberger, Ye (b0155) 1984 (4598), 671–680. Sandgren, E. (1990). Nonlinear integer and discrete programming in mechanical design optimization. (pp. 372–379). Dhiman, Kumar (b0055) 2019; 165 Gandomi, Yang (b0080) 2011 Jain, Singh, Rani (b0110) 2019; 44 arXiv preprint arXiv:1003.1409. Yang (b0255) 2010 Koppen, Wolpert, Macready (b0140) 2001; 53 Yang, X. S. (2010). (6), 1362–1381. Mezura-Montes, Coello (b0165) 2005 Chen, Q., Liu, B., Zhang, Q., Liang, J., Suganthan, P., & Qu, B. (2014). Problem definitions and evaluation criteria for cec 2015 special session on bound constrained single-objective computationally expensive numerical optimization. Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological University. Kaur, Awasthi, Sangal, Dhiman (b0125) 2020; 90 Das, Suganthan (b0040) 2011; 15 Dhiman, Kumar (b0050) 2017; 114 Goldberg, Holland (b0095) 1988; 3 Digalakis, Margaritis (b0060) 2001; 77 Goldberg (10.1016/j.eswa.2021.114685_b0095) 1988; 3 Demšar (10.1016/j.eswa.2021.114685_b0045) 2006; 7 Mirjalili (10.1016/j.eswa.2021.114685_b0180) 2017; 114 Herrel (10.1016/j.eswa.2021.114685_b0100) 2000; 203 Koppen (10.1016/j.eswa.2021.114685_b0140) 2001; 53 Chumburidze (10.1016/j.eswa.2021.114685_b0035) 2019; 10 10.1016/j.eswa.2021.114685_b0085 Mirjalili (10.1016/j.eswa.2021.114685_b0170) 2015; 89 Kaur (10.1016/j.eswa.2021.114685_b0125) 2020; 90 Yang (10.1016/j.eswa.2021.114685_b0255) 2010 Faramarzi (10.1016/j.eswa.2021.114685_b0075) 2020; 191 Mirjalili (10.1016/j.eswa.2021.114685_b0185) 2016; 27 Faramarzi (10.1016/j.eswa.2021.114685_b0070) 2012; 19 Kennedy (10.1016/j.eswa.2021.114685_b0130) 1995 Karypis (10.1016/j.eswa.2021.114685_b0120) 1999; 32 Dhiman (10.1016/j.eswa.2021.114685_b0050) 2017; 114 Braik (10.1016/j.eswa.2021.114685_b0025) 2020 10.1016/j.eswa.2021.114685_b0225 Mezura-Montes (10.1016/j.eswa.2021.114685_b0165) 2005 Kannan (10.1016/j.eswa.2021.114685_b0115) 1994; 116 Luenberger (10.1016/j.eswa.2021.114685_b0155) 1984 Jain (10.1016/j.eswa.2021.114685_b0110) 2019; 44 10.1016/j.eswa.2021.114685_b0270 10.1016/j.eswa.2021.114685_b0030 Glaw (10.1016/j.eswa.2021.114685_b0090) 2015; 65 Liu (10.1016/j.eswa.2021.114685_b0150) 2013; 13 Das (10.1016/j.eswa.2021.114685_b0040) 2011; 15 Wang (10.1016/j.eswa.2021.114685_b0240) 2014; 274 Dhiman (10.1016/j.eswa.2021.114685_b0055) 2019; 165 Qi (10.1016/j.eswa.2021.114685_b0205) 2019 Pereira (10.1016/j.eswa.2021.114685_b0200) 2015; 44 Uymaz (10.1016/j.eswa.2021.114685_b0235) 2015; 31 10.1016/j.eswa.2021.114685_b0135 10.1016/j.eswa.2021.114685_b0065 Braik (10.1016/j.eswa.2021.114685_b0015) 2020 10.1016/j.eswa.2021.114685_b0220 10.1016/j.eswa.2021.114685_b0265 10.1016/j.eswa.2021.114685_b0145 Rechenberg (10.1016/j.eswa.2021.114685_b0215) 1973; 104 Yang (10.1016/j.eswa.2021.114685_b0260) 2013; 23 Gandomi (10.1016/j.eswa.2021.114685_b0080) 2011 Holm (10.1016/j.eswa.2021.114685_b0105) 1979 Digalakis (10.1016/j.eswa.2021.114685_b0060) 2001; 77 Sheta (10.1016/j.eswa.2021.114685_b0230) 2019; 103 Mlinarić (10.1016/j.eswa.2021.114685_b0195) 2019 Braik (10.1016/j.eswa.2021.114685_b0020) 2020 Rashedi (10.1016/j.eswa.2021.114685_b0210) 2009; 179 Mirjalili (10.1016/j.eswa.2021.114685_b0190) 2014; 69 10.1016/j.eswa.2021.114685_b0005 10.1016/j.eswa.2021.114685_b0010 Wolpert (10.1016/j.eswa.2021.114685_b0245) 1997; 1 10.1016/j.eswa.2021.114685_b0250 Meraihi (10.1016/j.eswa.2021.114685_b0160) 2020 Mirjalili (10.1016/j.eswa.2021.114685_b0175) 2016; 96 |
| References_xml | – year: 2019 ident: b0205 article-title: Complex-valued discrete-time neural dynamics for perturbed time-dependent complex quadratic programming with applications publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 31 start-page: 153 year: 2015 end-page: 171 ident: b0235 article-title: Artificial algae algorithm (aaa) for nonlinear global optimization publication-title: Applied Soft Computing – reference: Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search. – start-page: 1 year: 2020 end-page: 25 ident: b0015 article-title: Artificial neural networks training via bio-inspired optimisation algorithms: Modelling industrial winding process, case study publication-title: Soft Computing – volume: 44 start-page: 2636 year: 2015 end-page: 2653 ident: b0200 article-title: Overview of friedman’s test and post-hoc analysis publication-title: Communications in Statistics-Simulation and Computation – reference: Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983). Optimization by simulated annealing. – volume: 53 start-page: 295 year: 2001 end-page: 296 ident: b0140 article-title: Remarks on a recent paper on the no free lunch theorems publication-title: IEEE Transactions on Evolutionary Computation – reference: Sandgren, E. (1990). Nonlinear integer and discrete programming in mechanical design optimization. – volume: 19 start-page: 373 year: 2012 end-page: 380 ident: b0070 article-title: Application of cellular automata to size and topology optimization of truss structures publication-title: Scientia Iranica – reference: (6), 1362–1381. – reference: Chen, Q., Liu, B., Zhang, Q., Liang, J., Suganthan, P., & Qu, B. (2014). Problem definitions and evaluation criteria for cec 2015 special session on bound constrained single-objective computationally expensive numerical optimization. Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological University. – reference: , 63–78. – volume: 65 start-page: 167 year: 2015 end-page: 246 ident: b0090 article-title: Taxonomic checklist of chameleons (Squamata: Chamaeleonidae) Taxonomic checklist of chameleons (squamata: Chamaeleonidae) publication-title: Vertebrate Zoology – volume: 23 start-page: 2051 year: 2013 end-page: 2057 ident: b0260 article-title: A framework for self-tuning optimization algorithm publication-title: Neural Computing and Applications – reference: Bonabeau, E., Dorigo, M., Marco, D. d. R.D.F., Theraulaz, G., & Théraulaz, G. (1999). Swarm intelligence: From natural to artificial systems (No 1). Oxford university press. – reference: Young, E. (2008). Chameleons fine-tune camouflage to predator’s vision. – start-page: 1942 year: 1995 end-page: 1948 ident: b0130 article-title: Particle swarm optimization publication-title: Proceedings of icnn’95-international conference on neural networks, 4 – volume: 3 start-page: 95 year: 1988 end-page: 99 ident: b0095 article-title: Genetic algorithms and machine learning publication-title: Machine Learning – volume: 165 start-page: 169 year: 2019 end-page: 196 ident: b0055 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowledge-Based Systems – year: 2010 ident: b0255 article-title: Nature-inspired metaheuristic algorithms – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b0045 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – reference: Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b0245 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – reference: (4598), 671–680. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b0210 article-title: Gsa: A gravitational search algorithm publication-title: Information Sciences – volume: 15 start-page: 4 year: 2011 end-page: 31 ident: b0040 article-title: Differential evolution: A survey of the state-of-the-art publication-title: IEEE Transactions on Evolutionary Computation – volume: 116 start-page: 405 year: 1994 end-page: 411 ident: b0115 article-title: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: Journal of Mechanical Design – reference: Yang, X. S. (2010). – start-page: 652 year: 2005 end-page: 662 ident: b0165 article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms publication-title: Mexican international conference on artificial intelligence – year: 1984 ident: b0155 article-title: Linear and nonlinear programming (2) – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: b0185 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Computing and Applications – volume: 191 year: 2020 ident: b0075 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowledge-Based Systems – reference: (pp. 39–43). – reference: Awad, N. H., Ali, M. Z. & Suganthan, P. N. (2017). Ensemble sinusoidal differential covariance matrix adaptation with euclidean neighborhood for solving cec2017 benchmark problems. In – start-page: 1 year: 2020 end-page: 26 ident: b0025 article-title: A novel lifetime scheme for enhancing the convergence performance of salp swarm algorithm publication-title: Soft Computing – volume: 32 start-page: 68 year: 1999 end-page: 75 ident: b0120 article-title: Chameleon: Hierarchical clustering using dynamic modeling publication-title: Computer – start-page: 65 year: 1979 end-page: 70 ident: b0105 article-title: A simple sequentially rejective multiple test procedure publication-title: Scandinavian Journal of Statistics – volume: 10 start-page: 101 year: 2019 end-page: 107 ident: b0035 article-title: Dynamic programming and greedy algorithm strategy for solving several classes of graph optimization problems publication-title: BRAIN. Broad Research in Artificial Intelligence and Neuroscience – reference: Rodríguez, N., Gupta, A., Zabala, P. L., & Cabrera-Guerrero, G. (2018). Optimization algorithms combining (meta) heuristics and mathematical programming and its application in engineering. – reference: Zhan, Z. H., Zhang, J., Li, Y., & Chung, H. S. H. (2009). Adaptive particle swarm optimization. – reference: Sree Ranjini, K. S., & Murugan, S. (2017). Memory based hybrid dragonfly algorithm for numerical optimization problems. – reference: (pp. 372–379). – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b0170 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowledge-Based Systems – year: 2011 ident: b0080 article-title: Computational optimization, methods and algorithms (259–281) – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0190 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software – volume: 103 start-page: 1359 year: 2019 end-page: 1380 ident: b0230 article-title: Modeling the tennessee eastman chemical process reactor using bio-inspired feedforward neural network (bi-ff-nn) publication-title: The International Journal of Advanced Manufacturing Technology – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b0175 article-title: Sca: A sine cosine algorithm for solving optimization problems publication-title: Knowledge-Based Systems – volume: 274 start-page: 17 year: 2014 end-page: 34 ident: b0240 article-title: Chaotic krill herd algorithm publication-title: Information Sciences – start-page: 1 year: 2020 end-page: 48 ident: b0160 article-title: A comprehensive survey of Crow Search Algorithm and its applications publication-title: Artificial Intelligence Review – reference: . arXiv preprint arXiv:1003.1409. – volume: 90 year: 2020 ident: b0125 article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Engineering Applications of Artificial Intelligence – volume: 104 start-page: 15 year: 1973 end-page: 16 ident: b0215 article-title: Evolution strategy: Optimization of technical systems by means of biological evolution publication-title: Fromman-Holzboog, Stuttgart – reference: . – reference: (2), 60–68. – volume: 44 start-page: 148 year: 2019 end-page: 175 ident: b0110 article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm publication-title: Swarm and Evolutionary Computation – volume: 77 start-page: 481 year: 2001 end-page: 506 ident: b0060 article-title: On benchmarking functions for genetic algorithms publication-title: International Journal of Computer Mathematics – start-page: 1 year: 2020 end-page: 33 ident: b0020 article-title: A novel meta-heuristic search algorithm for solving optimization problems: Capuchin search algorithm publication-title: Neural Computing and Applications – volume: 203 start-page: 3255 year: 2000 end-page: 3263 ident: b0100 article-title: The mechanics of prey prehension in chameleons publication-title: Journal of Experimental Biology – volume: 114 start-page: 48 year: 2017 end-page: 70 ident: b0050 article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications publication-title: Advances in Engineering Software – volume: 13 start-page: 3792 year: 2013 end-page: 3805 ident: b0150 article-title: A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting sovova’s mass transfer model publication-title: Applied Soft Computing – start-page: 165 year: 2019 end-page: 174 ident: b0195 article-title: Multi-objective programming methodology for solving economic diplomacy resource allocation problem publication-title: Croatian Operational Research Review – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b0180 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software – ident: 10.1016/j.eswa.2021.114685_b0270 doi: 10.1109/TSMCB.2009.2015956 – ident: 10.1016/j.eswa.2021.114685_b0265 doi: 10.1016/S0262-4079(08)60843-X – ident: 10.1016/j.eswa.2021.114685_b0065 doi: 10.1109/MHS.1995.494215 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.eswa.2021.114685_b0190 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – year: 2011 ident: 10.1016/j.eswa.2021.114685_b0080 – volume: 3 start-page: 95 issue: 2 year: 1988 ident: 10.1016/j.eswa.2021.114685_b0095 article-title: Genetic algorithms and machine learning publication-title: Machine Learning doi: 10.1023/A:1022602019183 – volume: 32 start-page: 68 issue: 8 year: 1999 ident: 10.1016/j.eswa.2021.114685_b0120 article-title: Chameleon: Hierarchical clustering using dynamic modeling publication-title: Computer doi: 10.1109/2.781637 – volume: 203 start-page: 3255 issue: 21 year: 2000 ident: 10.1016/j.eswa.2021.114685_b0100 article-title: The mechanics of prey prehension in chameleons publication-title: Journal of Experimental Biology doi: 10.1242/jeb.203.21.3255 – volume: 191 year: 2020 ident: 10.1016/j.eswa.2021.114685_b0075 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.105190 – volume: 90 year: 2020 ident: 10.1016/j.eswa.2021.114685_b0125 article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103541 – ident: 10.1016/j.eswa.2021.114685_b0135 doi: 10.1126/science.220.4598.671 – ident: 10.1016/j.eswa.2021.114685_b0010 doi: 10.1093/oso/9780195131581.001.0001 – volume: 13 start-page: 3792 issue: 9 year: 2013 ident: 10.1016/j.eswa.2021.114685_b0150 article-title: A parameter control method of evolutionary algorithms using exploration and exploitation measures with a practical application for fitting sovova’s mass transfer model publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2013.05.010 – volume: 114 start-page: 48 year: 2017 ident: 10.1016/j.eswa.2021.114685_b0050 article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.05.014 – volume: 15 start-page: 4 issue: 1 year: 2011 ident: 10.1016/j.eswa.2021.114685_b0040 article-title: Differential evolution: A survey of the state-of-the-art publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2010.2059031 – year: 2019 ident: 10.1016/j.eswa.2021.114685_b0205 article-title: Complex-valued discrete-time neural dynamics for perturbed time-dependent complex quadratic programming with applications publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 53 start-page: 295 year: 2001 ident: 10.1016/j.eswa.2021.114685_b0140 article-title: Remarks on a recent paper on the no free lunch theorems publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.930318 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.eswa.2021.114685_b0245 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.eswa.2021.114685_b0170 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.07.006 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.eswa.2021.114685_b0180 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.07.002 – ident: 10.1016/j.eswa.2021.114685_b0250 doi: 10.1504/IJBIC.2010.032124 – start-page: 65 year: 1979 ident: 10.1016/j.eswa.2021.114685_b0105 article-title: A simple sequentially rejective multiple test procedure publication-title: Scandinavian Journal of Statistics – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2021.114685_b0160 article-title: A comprehensive survey of Crow Search Algorithm and its applications publication-title: Artificial Intelligence Review – ident: 10.1016/j.eswa.2021.114685_b0145 doi: 10.1016/j.eswa.2017.04.033 – volume: 165 start-page: 169 year: 2019 ident: 10.1016/j.eswa.2021.114685_b0055 article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.11.024 – start-page: 165 year: 2019 ident: 10.1016/j.eswa.2021.114685_b0195 article-title: Multi-objective programming methodology for solving economic diplomacy resource allocation problem publication-title: Croatian Operational Research Review doi: 10.17535/crorr.2019.0015 – volume: 19 start-page: 373 issue: 3 year: 2012 ident: 10.1016/j.eswa.2021.114685_b0070 article-title: Application of cellular automata to size and topology optimization of truss structures publication-title: Scientia Iranica doi: 10.1016/j.scient.2012.04.009 – ident: 10.1016/j.eswa.2021.114685_b0225 doi: 10.1115/1.2912596 – ident: 10.1016/j.eswa.2021.114685_b0030 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.eswa.2021.114685_b0210 article-title: Gsa: A gravitational search algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2009.03.004 – start-page: 652 year: 2005 ident: 10.1016/j.eswa.2021.114685_b0165 article-title: Useful infeasible solutions in engineering optimization with evolutionary algorithms – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.eswa.2021.114685_b0175 article-title: Sca: A sine cosine algorithm for solving optimization problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.12.022 – volume: 116 start-page: 405 issue: 2 year: 1994 ident: 10.1016/j.eswa.2021.114685_b0115 article-title: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: Journal of Mechanical Design doi: 10.1115/1.2919393 – ident: 10.1016/j.eswa.2021.114685_b0085 doi: 10.1177/003754970107600201 – volume: 10 start-page: 101 issue: 1 year: 2019 ident: 10.1016/j.eswa.2021.114685_b0035 article-title: Dynamic programming and greedy algorithm strategy for solving several classes of graph optimization problems publication-title: BRAIN. Broad Research in Artificial Intelligence and Neuroscience doi: 10.70594/brain/v10.i1/10 – volume: 65 start-page: 167 issue: 2 year: 2015 ident: 10.1016/j.eswa.2021.114685_b0090 article-title: Taxonomic checklist of chameleons (Squamata: Chamaeleonidae) Taxonomic checklist of chameleons (squamata: Chamaeleonidae) publication-title: Vertebrate Zoology doi: 10.3897/vz.65.e31518 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.eswa.2021.114685_b0045 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2021.114685_b0025 article-title: A novel lifetime scheme for enhancing the convergence performance of salp swarm algorithm publication-title: Soft Computing – year: 1984 ident: 10.1016/j.eswa.2021.114685_b0155 – ident: 10.1016/j.eswa.2021.114685_b0220 doi: 10.1155/2018/3967457 – volume: 44 start-page: 2636 issue: 10 year: 2015 ident: 10.1016/j.eswa.2021.114685_b0200 article-title: Overview of friedman’s test and post-hoc analysis publication-title: Communications in Statistics-Simulation and Computation doi: 10.1080/03610918.2014.931971 – volume: 274 start-page: 17 year: 2014 ident: 10.1016/j.eswa.2021.114685_b0240 article-title: Chaotic krill herd algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2014.02.123 – volume: 23 start-page: 2051 issue: 7–8 year: 2013 ident: 10.1016/j.eswa.2021.114685_b0260 article-title: A framework for self-tuning optimization algorithm publication-title: Neural Computing and Applications doi: 10.1007/s00521-013-1498-4 – volume: 44 start-page: 148 year: 2019 ident: 10.1016/j.eswa.2021.114685_b0110 article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2018.02.013 – volume: 77 start-page: 481 issue: 4 year: 2001 ident: 10.1016/j.eswa.2021.114685_b0060 article-title: On benchmarking functions for genetic algorithms publication-title: International Journal of Computer Mathematics doi: 10.1080/00207160108805080 – volume: 104 start-page: 15 year: 1973 ident: 10.1016/j.eswa.2021.114685_b0215 article-title: Evolution strategy: Optimization of technical systems by means of biological evolution publication-title: Fromman-Holzboog, Stuttgart – ident: 10.1016/j.eswa.2021.114685_b0005 doi: 10.1109/CEC.2017.7969336 – volume: 31 start-page: 153 year: 2015 ident: 10.1016/j.eswa.2021.114685_b0235 article-title: Artificial algae algorithm (aaa) for nonlinear global optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.03.003 – start-page: 1942 year: 1995 ident: 10.1016/j.eswa.2021.114685_b0130 article-title: Particle swarm optimization – volume: 27 start-page: 495 issue: 2 year: 2016 ident: 10.1016/j.eswa.2021.114685_b0185 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1870-7 – volume: 103 start-page: 1359 issue: 1–4 year: 2019 ident: 10.1016/j.eswa.2021.114685_b0230 article-title: Modeling the tennessee eastman chemical process reactor using bio-inspired feedforward neural network (bi-ff-nn) publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-019-03621-5 – year: 2010 ident: 10.1016/j.eswa.2021.114685_b0255 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2021.114685_b0015 article-title: Artificial neural networks training via bio-inspired optimisation algorithms: Modelling industrial winding process, case study publication-title: Soft Computing – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2021.114685_b0020 article-title: A novel meta-heuristic search algorithm for solving optimization problems: Capuchin search algorithm publication-title: Neural Computing and Applications |
| SSID | ssj0017007 |
| Score | 2.7071984 |
| Snippet | •Chameleon Swarm Algorithm (CSA) is benchmarked on 67 benchmark functions.•The exploitation ability of CSA is affirmed by the results on unimodal... This paper presents a novel meta-heuristic algorithm named Chameleon Swarm Algorithm (CSA) for solving global numerical optimization problems. The base... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114685 |
| SubjectTerms | Algorithms Biomimetics Chameleon Swarm Algorithm Comparative studies Design engineering Design optimization Evolutionary algorithms Eye (anatomy) Food Heuristic methods Meta-heuristics Nature-inspired algorithms Optimization Optimization techniques Stability analysis Swamps Swarm intelligence algorithms |
| Title | Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems |
| URI | https://dx.doi.org/10.1016/j.eswa.2021.114685 https://www.proquest.com/docview/2539561820 |
| Volume | 174 |
| WOSCitedRecordID | wos000663144700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Lb9QwEIct2HLgAuWlthTkA7coVR7OY3tbVUWUQ4VEkVbiYMUvknY3WyWhrfrXM44db7qoFT1wiXaziWXtF49_GXtmEPrEdLRlKCKfJHqZMWHCZ0QJXwlQ66kkImVBX2wiOz3N5_PpN1tts-3LCWR1nd_cTC__K2o4B7B16OwjcLtG4QR8BuhwBOxw_CfwR2WxhLlE24Hroll6s8WvVVN1pfHIe6xa-VWt19dBaq7AYCyrW9n0uw2hX717Qa5zFHqi3-Hh2boz7R1Hvs6S3Nlc0EOU3Gg9fLRcX12YuKBFdeF9L2VZCFmO_Q1RqB2ZJuLSOQ4zn4Smto6zofarsYI60tkU4vnLQBtfwfmBbK911qcoPFhffDcb9sYs5fYODtvSzqlug-o2qGnjKdqKsmSaT9DW7OR4_tWtJmWBCZsfem6Dp8w-v82e3CdQNqbqXn-cbaMX9sUBzwzwV-iJrF-jl0NRDmxt9Bv00_HHPX_s-B_iGR7Tx44-BvrY0scj-tjQxwP9t-jH5-Ozoy--raDhcxiCnZ8WPM4kB83IFM9lqpM7giIEWcqUynIB86GUnMSx4jxNI8mjQgRMBLHKSRzBD-_QpF7VcgfhkKgQ1A4vYpISmRdFRljCFVcgaAKRBrsoHP42ym16eV3lZEHvB7aLPHfPpUmu8uDVyUCDWnloZB-Fh-vB-_YHdNSO05ZGYJrg1QH0796jOvEePV8Pin006Zrf8gN6xq-6qm0-2gfvDwPRkng |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chameleon+Swarm+Algorithm%3A+A+bio-inspired+optimizer+for+solving+engineering+design+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Braik%2C+Malik+Shehadeh&rft.date=2021-07-15&rft.issn=0957-4174&rft.volume=174&rft.spage=114685&rft_id=info:doi/10.1016%2Fj.eswa.2021.114685&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2021_114685 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |