Identifying Streetscape Features Using VHR Imagery and Deep Learning Applications

Deep Learning (DL) based identification and detection of elements in urban spaces through Earth Observation (EO) datasets have been widely researched and discussed. Such studies have developed state-of-the-art methods to map urban features like building footprint or roads in detail. This study delve...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Remote sensing (Basel, Switzerland) Ročník 13; číslo 17; s. 3363
Hlavní autoři: Verma, Deepank, Mumm, Olaf, Carlow, Vanessa Miriam
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2021
Témata:
ISSN:2072-4292, 2072-4292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Deep Learning (DL) based identification and detection of elements in urban spaces through Earth Observation (EO) datasets have been widely researched and discussed. Such studies have developed state-of-the-art methods to map urban features like building footprint or roads in detail. This study delves deeper into combining multiple such studies to identify fine-grained urban features which define streetscapes. Specifically, the research focuses on employing object detection and semantic segmentation models and other computer vision methods to identify ten streetscape features such as movement corridors, roadways, sidewalks, bike paths, on-street parking, vehicles, trees, vegetation, road markings, and buildings. The training data for identifying and classifying all the elements except road markings are collected from open sources and finetuned to fit the study’s context. The training dataset is manually created and employed to delineate road markings. Apart from the model-specific evaluation on the test-set of the data, the study creates its own test dataset from the study area to analyze these models’ performance. The outputs from these models are further integrated to develop a geospatial dataset, which is additionally utilized to generate 3D views and street cross-sections for the city. The trained models and data sources are discussed in the research and are made available for urban researchers to exploit.
AbstractList Deep Learning (DL) based identification and detection of elements in urban spaces through Earth Observation (EO) datasets have been widely researched and discussed. Such studies have developed state-of-the-art methods to map urban features like building footprint or roads in detail. This study delves deeper into combining multiple such studies to identify fine-grained urban features which define streetscapes. Specifically, the research focuses on employing object detection and semantic segmentation models and other computer vision methods to identify ten streetscape features such as movement corridors, roadways, sidewalks, bike paths, on-street parking, vehicles, trees, vegetation, road markings, and buildings. The training data for identifying and classifying all the elements except road markings are collected from open sources and finetuned to fit the study’s context. The training dataset is manually created and employed to delineate road markings. Apart from the model-specific evaluation on the test-set of the data, the study creates its own test dataset from the study area to analyze these models’ performance. The outputs from these models are further integrated to develop a geospatial dataset, which is additionally utilized to generate 3D views and street cross-sections for the city. The trained models and data sources are discussed in the research and are made available for urban researchers to exploit.
Author Carlow, Vanessa Miriam
Mumm, Olaf
Verma, Deepank
Author_xml – sequence: 1
  givenname: Deepank
  surname: Verma
  fullname: Verma, Deepank
– sequence: 2
  givenname: Olaf
  orcidid: 0000-0001-6628-7874
  surname: Mumm
  fullname: Mumm, Olaf
– sequence: 3
  givenname: Vanessa Miriam
  orcidid: 0000-0003-0513-9717
  surname: Carlow
  fullname: Carlow, Vanessa Miriam
BookMark eNptkU9r3DAQxUVJoWmaSz-BoZdS2FbS2JJ8DGnSLCyU_kmvYiyPFy1eyZW0h_32tbOlCaG6SMz89Hjz5jU7CzEQY28F_wjQ8k8pCxAaQMELdi65lqtatvLsyfsVu8x5x-cDIFpen7Nv655C8cPRh231oySikh1OVN0SlkOiXN3npfXr7nu13uOW0rHC0FefiaZqQ5jC0r2aptE7LD6G_Ia9HHDMdPn3vmD3tzc_r-9Wm69f1tdXm5WDti4rZVANAsHM3lBo0XMHQ9cY6IypleYKQHeDkqoTqjMIvQA16Bak61vTKw0XbH3S7SPu7JT8HtPRRvT2oRDT1mIq3o1kO9kYLqWjWpkahDK8U67Vg-oUSG7crPX-pDWl-PtAudi9z47GEQPFQ7ZSgWpgsTWj756hu3hIYZ7UykaLZs62Wcx9OFEuxZwTDf8MCm6XZdnHZc0wfwY7Xx7CLAn9-L8vfwC4sZT9
CitedBy_id crossref_primary_10_1111_mice_13277
crossref_primary_10_1080_10106049_2024_2364679
crossref_primary_10_3389_fbuil_2023_1216888
crossref_primary_10_1016_j_compenvurbsys_2024_102087
crossref_primary_10_1016_j_scs_2023_104673
crossref_primary_10_1016_j_scs_2023_105047
crossref_primary_10_1177_23998083241261100
crossref_primary_10_3390_su15065547
Cites_doi 10.1109/TPAMI.2018.2858826
10.1080/00330124.2015.1065546
10.1109/CVPR.2012.6248074
10.1109/DICTA.2011.90
10.1109/CVPRW.2018.00031
10.1068/b060047
10.1016/0169-2046(87)90017-X
10.1016/j.healthplace.2018.07.001
10.1016/j.polgeo.2014.06.004
10.1016/j.amepre.2010.09.034
10.1109/ICCV.2019.00749
10.1007/978-3-319-46448-0_12
10.1109/VCIP.2017.8305148
10.1007/s11524-015-9982-z
10.1559/152304081784447318
10.1109/WACV.2017.90
10.1109/ICCV.2017.372
10.1068/b34144t
10.1101/532952
10.1109/CVPR.2018.00496
10.1109/IGARSS.2018.8518701
10.4324/9781315554464
10.1109/CVPR.2016.350
10.1080/01431161.2015.1054049
10.1016/j.jvcir.2015.11.002
10.1007/978-3-319-24574-4_28
10.1177/0361198119837194
10.1177/0022002184015001005
10.1016/0034-4257(87)90053-8
10.1016/j.geog.2018.11.008
10.1080/14036096.2020.1724193
10.1016/S0272-4944(05)80063-5
10.1109/TGRS.2018.2878510
10.1007/s10940-021-09506-9
10.1109/IVS.2015.7225753
10.1007/s10844-019-00587-4
10.1016/j.landurbplan.2016.07.003
10.1109/CVPRW.2018.00034
10.2352/ISSN.2470-1173.2016.10.ROBVIS-392
10.1080/713683961
10.1186/1471-2458-14-1094
10.1016/j.jenvp.2012.09.003
10.1016/j.socscimed.2014.06.042
10.3390/rs10091419
10.1007/978-3-030-01234-2_49
10.1109/IGARSS.2019.8900453
10.1016/j.landurbplan.2018.09.020
10.1109/CVPR.2016.352
10.3390/rs12142225
10.1109/BigDataCongress.2018.00014
10.1371/journal.pone.0247535
10.1016/j.buildenv.2020.107340
10.1109/CVPRW.2014.121
10.3390/rs12071128
10.1007/s11263-014-0733-5
10.1016/j.socscimed.2013.06.030
10.1177/0265813516686971
10.1007/s11524-010-9505-x
10.1186/s12889-020-8300-1
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs13173363
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_b258022ce468431680b6c97f6b63208c
10_3390_rs13173363
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c394t-68a6f1a38072a171d0c3fb583b8846706337bf626b16b8a3d136f7932cd98d673
IEDL.DBID DOA
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000694504700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:39:59 EDT 2025
Sun Nov 09 13:32:38 EST 2025
Fri Jul 25 09:31:00 EDT 2025
Sat Nov 29 07:14:59 EST 2025
Tue Nov 18 22:29:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-68a6f1a38072a171d0c3fb583b8846706337bf626b16b8a3d136f7932cd98d673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6628-7874
0000-0003-0513-9717
OpenAccessLink https://doaj.org/article/b258022ce468431680b6c97f6b63208c
PQID 2571500057
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_b258022ce468431680b6c97f6b63208c
proquest_miscellaneous_2636534670
proquest_journals_2571500057
crossref_primary_10_3390_rs13173363
crossref_citationtrail_10_3390_rs13173363
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Kondo (ref_39) 2017; 157
ref_58
ref_12
ref_55
ref_54
ref_53
ref_52
Rundle (ref_11) 2011; 40
Badland (ref_13) 2010; 87
Wang (ref_33) 2015; 36
ref_51
ref_18
ref_17
Groenewegen (ref_6) 2013; 94
ref_15
ref_59
ref_61
ref_60
Haack (ref_29) 1987; 21
ref_69
Golombek (ref_37) 2019; 2673
ref_68
Abass (ref_5) 2021; 38
Isaacs (ref_8) 2000; 5
ref_66
Rzotkiewicz (ref_16) 2018; 52
ref_65
ref_20
ref_63
Hull (ref_25) 1992; 12
Altman (ref_9) 1976; Volume 1
ref_28
ref_27
ref_26
Azimi (ref_67) 2019; 57
Lindal (ref_2) 2013; 33
Jensen (ref_30) 1981; 8
Neuheuser (ref_72) 2018; 45
Harvey (ref_1) 2016; 68
Badland (ref_14) 2015; 92
Rossetti (ref_21) 2019; 181
Morello (ref_70) 2009; 36
Everingham (ref_57) 2015; 111
Heris (ref_36) 2020; 7
ref_35
ref_34
Nasar (ref_24) 1987; 14
Benedikt (ref_71) 1979; 6
ref_31
Liu (ref_42) 2019; 10
ref_38
Saito (ref_62) 2016; 60
Cain (ref_10) 2014; 116
Razakarivony (ref_32) 2016; 34
Verma (ref_22) 2020; 186
Leibe (ref_46) 2016; Volume 9907
ref_47
ref_45
ref_44
ref_43
ref_41
Zhang (ref_19) 2020; 55
ref_40
ref_3
Drozdzewski (ref_4) 2014; 42
ref_49
He (ref_56) 2015; 77
ref_48
Nasar (ref_23) 1984; 15
Lin (ref_64) 2020; 42
ref_7
References_xml – volume: 42
  start-page: 318
  year: 2020
  ident: ref_64
  article-title: Focal Loss for Dense Object Detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2858826
– volume: 68
  start-page: 149
  year: 2016
  ident: ref_1
  article-title: Measuring Urban Streetscapes for Livability: A Review of Approaches
  publication-title: Prof. Geogr.
  doi: 10.1080/00330124.2015.1065546
– ident: ref_28
  doi: 10.1109/CVPR.2012.6248074
– volume: Volume 9907
  start-page: 1
  year: 2016
  ident: ref_46
  article-title: A Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning
  publication-title: Computer Vision—ECCV 2016
– ident: ref_43
  doi: 10.1109/DICTA.2011.90
– ident: ref_59
  doi: 10.1109/CVPRW.2018.00031
– volume: 6
  start-page: 47
  year: 1979
  ident: ref_71
  article-title: To take hold of space: Isovists and isovist fields
  publication-title: Environ. Plan. B Plan. Des.
  doi: 10.1068/b060047
– volume: 14
  start-page: 117
  year: 1987
  ident: ref_24
  article-title: Environmental correlates of evaluative appraisals of central business district scenes
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/0169-2046(87)90017-X
– volume: 52
  start-page: 240
  year: 2018
  ident: ref_16
  article-title: Systematic review of the use of Google Street View in health research: Major themes, strengths, weaknesses and possibilities for future research
  publication-title: Health Place
  doi: 10.1016/j.healthplace.2018.07.001
– volume: 42
  start-page: 66
  year: 2014
  ident: ref_4
  article-title: Using history in the streetscape to affirm geopolitics of memory
  publication-title: Polit. Geogr.
  doi: 10.1016/j.polgeo.2014.06.004
– volume: 40
  start-page: 94
  year: 2011
  ident: ref_11
  article-title: Using google street view to audit neighborhood environments
  publication-title: Am. J. Prev. Med.
  doi: 10.1016/j.amepre.2010.09.034
– ident: ref_68
  doi: 10.1109/ICCV.2019.00749
– ident: ref_20
  doi: 10.1007/978-3-319-46448-0_12
– ident: ref_58
  doi: 10.1109/VCIP.2017.8305148
– ident: ref_31
– volume: 92
  start-page: 923
  year: 2015
  ident: ref_14
  article-title: Assessing Walking and Cycling Environments in the Streets of Madrid: Comparing On-Field and Virtual Audits
  publication-title: J. Urban Health
  doi: 10.1007/s11524-015-9982-z
– ident: ref_48
– ident: ref_69
– volume: 8
  start-page: 127
  year: 1981
  ident: ref_30
  article-title: Urban change detection mapping using landsat digital data
  publication-title: Am. Cartogr.
  doi: 10.1559/152304081784447318
– ident: ref_66
  doi: 10.1109/WACV.2017.90
– ident: ref_50
  doi: 10.1109/ICCV.2017.372
– volume: 36
  start-page: 837
  year: 2009
  ident: ref_70
  article-title: A digital image of the city: 3D isovists in Lynch’s urban analysis
  publication-title: Environ. Plan. B Plan. Des.
  doi: 10.1068/b34144t
– ident: ref_38
– ident: ref_45
– ident: ref_41
  doi: 10.1101/532952
– ident: ref_49
  doi: 10.1109/CVPR.2018.00496
– ident: ref_61
  doi: 10.1109/IGARSS.2018.8518701
– ident: ref_3
  doi: 10.4324/9781315554464
– ident: ref_26
  doi: 10.1109/CVPR.2016.350
– volume: 36
  start-page: 3144
  year: 2015
  ident: ref_33
  article-title: Road network extraction: A neural-dynamic framework based on deep learning and a finite state machine
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2015.1054049
– volume: 34
  start-page: 187
  year: 2016
  ident: ref_32
  article-title: Vehicle detection in aerial imagery: A small target detection benchmark
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2015.11.002
– ident: ref_51
  doi: 10.1007/978-3-319-24574-4_28
– volume: 2673
  start-page: 125
  year: 2019
  ident: ref_37
  article-title: Use of Aerial LiDAR in Measuring Streetscape and Street Trees
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198119837194
– volume: Volume 1
  start-page: 37
  year: 1976
  ident: ref_9
  article-title: Environmental Aesthetics: The Environment as a Source of Affect
  publication-title: Human Behavior and Environment: Advances in Theory and Research
– ident: ref_47
– volume: 15
  start-page: 79
  year: 1984
  ident: ref_23
  article-title: Visual Preferences in Urban Street Scenes
  publication-title: J. Cross. Cult. Psychol.
  doi: 10.1177/0022002184015001005
– volume: 21
  start-page: 201
  year: 1987
  ident: ref_29
  article-title: An assessment of landsat MSS and TM data for urban and near-urban land-cover digital classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(87)90053-8
– volume: 10
  start-page: 10
  year: 2019
  ident: ref_42
  article-title: An automatic method for road centerline extraction from post-earthquake aerial images
  publication-title: Geod. Geodyn.
  doi: 10.1016/j.geog.2018.11.008
– volume: 38
  start-page: 204
  year: 2021
  ident: ref_5
  article-title: Talk on the Street: The Impact of Good Streetscape Design on Neighbourhood Experience in Low-density Suburbs
  publication-title: Hous. Theory Soc.
  doi: 10.1080/14036096.2020.1724193
– volume: 12
  start-page: 101
  year: 1992
  ident: ref_25
  article-title: Validity of Photo-Based Scenic Beauty Judgements
  publication-title: J. Environ. Psychol.
  doi: 10.1016/S0272-4944(05)80063-5
– volume: 57
  start-page: 2920
  year: 2019
  ident: ref_67
  article-title: Aerial LaneNet: Lane-Marking Semantic Segmentation in Aerial Imagery Using Wavelet-Enhanced Cost-Sensitive Symmetric Fully Convolutional Neural Networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2878510
– ident: ref_18
  doi: 10.1007/s10940-021-09506-9
– ident: ref_65
  doi: 10.1109/IVS.2015.7225753
– volume: 55
  start-page: 535
  year: 2020
  ident: ref_19
  article-title: Analysis of street crime predictors in web open data
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1007/s10844-019-00587-4
– volume: 157
  start-page: 193
  year: 2017
  ident: ref_39
  article-title: Landscape and Urban Planning The association between urban trees and crime: Evidence from the spread of the emerald ash borer in Cincinnati
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2016.07.003
– ident: ref_44
– ident: ref_53
  doi: 10.1109/CVPRW.2018.00034
– volume: 60
  start-page: 1
  year: 2016
  ident: ref_62
  article-title: Multiple object extraction from aerial imagery with convolutional neural networks
  publication-title: Electron. Imaging
  doi: 10.2352/ISSN.2470-1173.2016.10.ROBVIS-392
– volume: 5
  start-page: 145
  year: 2000
  ident: ref_8
  article-title: The Urban Picturesque: An Aesthetic Experience of Urban Pedestrian Places
  publication-title: J. Urban Des.
  doi: 10.1080/713683961
– volume: 77
  start-page: 10437
  year: 2015
  ident: ref_56
  article-title: Deep Residual Learning for Image Recognition
  publication-title: Multimed. Tools Appl.
– ident: ref_7
  doi: 10.1186/1471-2458-14-1094
– volume: 33
  start-page: 26
  year: 2013
  ident: ref_2
  article-title: Architectural variation, building height, and the restorative quality of urban residential streetscapes
  publication-title: J. Environ. Psychol.
  doi: 10.1016/j.jenvp.2012.09.003
– volume: 116
  start-page: 82
  year: 2014
  ident: ref_10
  article-title: Contribution of streetscape audits to explanation of physical activity in four age groups based on the Microscale Audit of Pedestrian Streetscapes (MAPS)
  publication-title: Soc. Sci. Med.
  doi: 10.1016/j.socscimed.2014.06.042
– ident: ref_40
  doi: 10.3390/rs10091419
– ident: ref_52
  doi: 10.1007/978-3-030-01234-2_49
– ident: ref_54
  doi: 10.1109/IGARSS.2019.8900453
– ident: ref_12
– volume: 181
  start-page: 169
  year: 2019
  ident: ref_21
  article-title: Explaining subjective perceptions of public spaces as a function of the built environment: A massive data approach
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2018.09.020
– ident: ref_27
  doi: 10.1109/CVPR.2016.352
– ident: ref_34
  doi: 10.3390/rs12142225
– ident: ref_63
  doi: 10.1109/BigDataCongress.2018.00014
– volume: 7
  start-page: 1
  year: 2020
  ident: ref_36
  article-title: A rasterized building footprint dataset for the United States
  publication-title: Sci. Data
– ident: ref_35
  doi: 10.1371/journal.pone.0247535
– volume: 186
  start-page: 107340
  year: 2020
  ident: ref_22
  article-title: Predicting human perception of the urban environment in a spatiotemporal urban setting using locally acquired street view images and audio clips
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2020.107340
– ident: ref_15
  doi: 10.1109/CVPRW.2014.121
– ident: ref_55
  doi: 10.3390/rs12071128
– volume: 111
  start-page: 98
  year: 2015
  ident: ref_57
  article-title: The Pascal Visual Object Classes Challenge: A Retrospective
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0733-5
– volume: 94
  start-page: 26
  year: 2013
  ident: ref_6
  article-title: Streetscape greenery and health: Stress, social cohesion and physical activity as mediators
  publication-title: Soc. Sci. Med.
  doi: 10.1016/j.socscimed.2013.06.030
– ident: ref_60
– volume: 45
  start-page: 797
  year: 2018
  ident: ref_72
  article-title: A tool to predict perceived urban stress in open public spaces
  publication-title: Environ. Plan. B Urban Anal. City Sci.
  doi: 10.1177/0265813516686971
– volume: 87
  start-page: 1007
  year: 2010
  ident: ref_13
  article-title: Can virtual streetscape audits reliably replace physical streetscape audits?
  publication-title: J. Urban Health
  doi: 10.1007/s11524-010-9505-x
– ident: ref_17
  doi: 10.1186/s12889-020-8300-1
SSID ssj0000331904
Score 2.342121
Snippet Deep Learning (DL) based identification and detection of elements in urban spaces through Earth Observation (EO) datasets have been widely researched and...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3363
SubjectTerms Algorithms
Braunschweig
Buildings
Computer vision
Corridors
data collection
Datasets
Deep Learning
Identification methods
Image segmentation
Infrastructure
Machine learning
Neural networks
object detection
Object recognition
Remote sensing
road detection
Roads & highways
semantic segmentation
spatial data
State-of-the-art reviews
streetscape
Training
Urban areas
vegetation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BigQXHm0RgYAWlUsPVr1ee717Qg20KpeoVKXqzfK-UiRwQpwg9d8zY2_SolZcuNpra7Xz3pn5BuCDthmXLrWJ1sYkuQqoB2vFE20tmjtODQn9sIlyMlGXl_o0Xri1saxyrRM7Re1mlu7ID5C1OIH3F-XH-a-EpkZRdjWO0HgIW4RUlg9ga3w0OT3b3LKkAlkszXtcUoHx_cGi5WgyhZDiL0vUAfbf0cedkTl-9r_bew5Po3vJDnt-eAEPfLMNj-Ok86vrHfjad-Z23U2sT0m3VAPFyBdcYezNuiICdnFyxr78JICLa1Y3jn32fs4iGOuUHd5Ke-_Ct-Oj808nSRyrkFih82UiVS0DrwlpPqt5yZFSIphCCaPIGUGfRZQmYKBjuDSqFo4LGVCMM-u0crIUL2HQzBr_CpjHT2QuVWEEBmqFMk57F4K1SgeZOzWE_fURVzZijtPoix8Vxh5EjuqGHEPY26yd90gb964aE6U2Kwgdu3swW0yrKGyVyQrqILYet0at_io10uoySCNFlio7hNGaiFUU2ba6oeAQ3m9eo7BRBqVu_GyFa6SQhaBDev3vX7yBJxkVv3TFaCMYLBcr_xYe2d_L7-3iXeTSP-Yu73E
  priority: 102
  providerName: ProQuest
Title Identifying Streetscape Features Using VHR Imagery and Deep Learning Applications
URI https://www.proquest.com/docview/2571500057
https://www.proquest.com/docview/2636534670
https://doaj.org/article/b258022ce468431680b6c97f6b63208c
Volume 13
WOSCitedRecordID wos000694504700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-QwDLYQIC0XxGNXDI9REFw4VEyaNk2OPAbBgVF57IrdS9WkCSBBQfNA4sJvx27LMGiRuHDJoXGlyE78kO3PANvahlwWHRtobUwQKY96MFc80NaiuePUkFAPm0h6PXV1pdOJUV9UE1bDA9eM2zVhTN2g1kVSUdu26hhpdeKlkSLsKEvaF72eiWCq0sECr1YnqvFIBcb1u_0BR1MphBQfLFAF1P-fHq6My9ECzDdeIdurT7MIU65cgh_NgPKb52U4qxtqq6YkVmeSB1S6xMiFG2HIzKrcP_tzfM5O7gmX4pnlZcEOnXtkDYbqNdubyFb_hN9H3cuD46CZhhBYoaNhIFUuPc8JID7MecKRwcKbWAmjyIdAV0MkxmN8Yrg0KhcFF9Lj6wttoVUhE_ELpsuH0q0Ac_iLRH7GRmB8FStTaFd4b63SXkaFasHOG4cy20CF08SKuwxDBuJm9s7NFmyNaR9rgIxPqfaJ0WMKArWuPqCos0bU2VeibsH6m5iy5qUNMlQ5nIY6xEkLNsfb-EYo8ZGX7mGENFLIWBCTVr_jHGswF1JlS1Vptg7Tw_7IbcCsfRreDvptmNnv9tLzdnUh21RLekHrSxfXNP6H--nJafr3Ffoe5Tg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVK58EYsFDACDhyixnHi2AeECqXaVdvVggoqpxA_UpAguyS7oP1T_EZm8tiCQNx64JpMrMTzZWbsGX8D8FjbiEsX2kBrY4JYFWgHc8UDbS26O04HEtpmE-lkok5O9HQDfvRnYaissreJjaF2M0t75DsILU7k_Un6fP41oK5RlF3tW2i0sDjwq--4ZKufjfdQv0-iaP_V8ctR0HUVCKzQ8SKQKpcFz4loPcp5yvFFRWESJYwiX4wuW6SmwDjfcGlULhwXskAUR9Zp5WQqcNwLsBkj2NUANqfjo-n79a5OKBDSYdzyoAqhw52q5uiihZDiN8_XNAj4w_43Tm3_yv82HVfhchc-s90W79dgw5fXYavr5P5xdQNetyePm9NbrE2511TjxSjWXVa-Zk2RBHs3esPGX4jAY8Xy0rE97-esI5s9Zbu_pPVvwttz-aJbMChnpb8NzOMjMpYqMQIXookyTntXFNYqXcjYqSE87VWa2Y5TnVp7fM5wbUXqz87UP4RHa9l5yyTyV6kXhIy1BLF_Nxdm1WnWGZPMIPQw9rIeX42oDFRopNVpIY0UUajsELZ70GSdSaqzM8QM4eH6NhoTyhDlpZ8tUUYKmQiapDv_HuIBbI2Ojw6zw_Hk4C5ciqjQpym824bBolr6e3DRflt8qqv73R_C4MN5o_AnallJsg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NDgEvfCMKA4yABx6ixXHq2A8IdSvVqqGqTID2FmLH3iZBWpIW1H-Nv467fHQgEG974DW5WI79853tu_sdwHNtIy7z0AZaGxPEyqMezBQPtLVo7jglJDTFJpLpVB0f69kW_OhyYSisstOJtaLO55buyHcRWpzI-_EA79uwiNlo_HrxNaAKUuRp7cppNBA5dOvveHyrXk1GONcvomj85v3-QdBWGAis0PEykCqTnmdEuh5lPOHYaeHNQAmjyC6j-RaJ8bjnN1walYmcC-kR0ZHNtcplIrDdS7CtUDTqwfZsf294tLnhCQXCO4wbTlQhdLhbVhzNtRBS_GYF62IBf9iC2sCNb_zPQ3MTrrfbajZs1sEt2HLFbbjaVng_Xd-Bd01Gcp3VxRpXfEWxX4z2wKvSVawOnmAfD47Y5AsRe6xZVuRs5NyCtSS0J2z4i7v_Lny4kD-6B71iXrj7wBx-ImOpBkbgAXWgTK5d7r21SnsZ56oPL7vpTW3LtU4lPz6neOYiKKTnUOjDs43somEY-avUHqFkI0Gs4PWDeXmStkomNdGAMqetw64RxYEKjbQ68dJIEYXK9mGnA1DaqqoqPUdPH55uXqOSIc9RVrj5CmWkkANBg_Tg3008gSsIvfTtZHr4EK5FFP9Tx-PtQG9ZrtwjuGy_Lc-q8nG7WBh8umgQ_gRWclIi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Streetscape+Features+Using+VHR+Imagery+and+Deep+Learning+Applications&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Deepank+Verma&rft.au=Olaf+Mumm&rft.au=Vanessa+Miriam+Carlow&rft.date=2021-09-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=13&rft.issue=17&rft.spage=3363&rft_id=info:doi/10.3390%2Frs13173363&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b258022ce468431680b6c97f6b63208c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon