RCE-GAN: A Rebar Clutter Elimination Network to Improve Tunnel Lining Void Detection from GPR Images

Ground penetrating radar (GPR) is one of the most recommended tools for routine inspection of tunnel linings. However, the rebars in the reinforced concrete produce a strong shielding effect on the electromagnetic waves, which may hinder the interpretation of GPR data. In this work, we proposed a me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Jg. 14; H. 2; S. 251
Hauptverfasser: Wang, Yuanzheng, Qin, Hui, Tang, Yu, Zhang, Donghao, Yang, Donghui, Qu, Chunxu, Geng, Tiesuo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.01.2022
Schlagworte:
ISSN:2072-4292, 2072-4292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Ground penetrating radar (GPR) is one of the most recommended tools for routine inspection of tunnel linings. However, the rebars in the reinforced concrete produce a strong shielding effect on the electromagnetic waves, which may hinder the interpretation of GPR data. In this work, we proposed a method to improve the identification of tunnel lining voids by designing a generative adversarial network-based rebar clutter elimination network (RCE-GAN). The designed network has two sets of generators and discriminators, and by introducing the cycle-consistency loss, the network is capable of learning high-level features between unpaired GPR images. In addition, an attention module and a dilation center part were designed in the network to improve the network performance. Validation of the proposed method was conducted on both synthetic and real-world GPR images, collected from the implementation of finite-difference time-domain (FDTD) simulations and a controlled physical model experiment, respectively. The results demonstrate that the proposed method is promising for its lower demand on the training dataset and the improvement in the identification of tunnel lining voids.
AbstractList Ground penetrating radar (GPR) is one of the most recommended tools for routine inspection of tunnel linings. However, the rebars in the reinforced concrete produce a strong shielding effect on the electromagnetic waves, which may hinder the interpretation of GPR data. In this work, we proposed a method to improve the identification of tunnel lining voids by designing a generative adversarial network-based rebar clutter elimination network (RCE-GAN). The designed network has two sets of generators and discriminators, and by introducing the cycle-consistency loss, the network is capable of learning high-level features between unpaired GPR images. In addition, an attention module and a dilation center part were designed in the network to improve the network performance. Validation of the proposed method was conducted on both synthetic and real-world GPR images, collected from the implementation of finite-difference time-domain (FDTD) simulations and a controlled physical model experiment, respectively. The results demonstrate that the proposed method is promising for its lower demand on the training dataset and the improvement in the identification of tunnel lining voids.
Author Qu, Chunxu
Tang, Yu
Yang, Donghui
Geng, Tiesuo
Wang, Yuanzheng
Qin, Hui
Zhang, Donghao
Author_xml – sequence: 1
  givenname: Yuanzheng
  orcidid: 0000-0002-0473-9537
  surname: Wang
  fullname: Wang, Yuanzheng
– sequence: 2
  givenname: Hui
  orcidid: 0000-0003-4127-8765
  surname: Qin
  fullname: Qin, Hui
– sequence: 3
  givenname: Yu
  orcidid: 0000-0002-7604-155X
  surname: Tang
  fullname: Tang, Yu
– sequence: 4
  givenname: Donghao
  orcidid: 0000-0001-9764-4408
  surname: Zhang
  fullname: Zhang, Donghao
– sequence: 5
  givenname: Donghui
  surname: Yang
  fullname: Yang, Donghui
– sequence: 6
  givenname: Chunxu
  orcidid: 0000-0002-7569-0945
  surname: Qu
  fullname: Qu, Chunxu
– sequence: 7
  givenname: Tiesuo
  orcidid: 0000-0002-6818-6679
  surname: Geng
  fullname: Geng, Tiesuo
BookMark eNptkd-LEzEQxxe5A8-7e_EvCPgiwmp-bJKNb6XWWih3UoqvS7KZLam7yZlkFf97Yysqx83LDMNnvszM90V14YOHqnpJ8FvGFH4XE2kwxZSTZ9UVxZLWDVX04r_6eXWb0hGXYIwo3FxVdrdc1evF3Xu0QDswOqLlOOcMEa1GNzmvswse3UH-EeJXlAPaTA8xfAe0n72HEW2dd_6AvgRn0QfI0J_4IYYJrT_vCq0PkG6qy0GPCW7_5Otq_3G1X36qt_frzXKxrXummlxzsI0xphlAGK5aww2XYtBMYKOs0lz1upfEYAmSYCYbKVsOWAk8WCV6ya6rzVnWBn3sHqKbdPzZBe26UyPEQ6djdv0IndBMGkE0aRU0RihTnsGVFdJy21Bmi9brs1a59tsMKXeTSz2Mo_YQ5tRRwYTAreS4oK8eoccwR18OLRQlrMUSk0K9OVN9DClFGP4uSHD3277un30Fxo_g3uWTFTlqNz418gvfE5tB
CitedBy_id crossref_primary_10_1109_JSEN_2023_3305681
crossref_primary_10_3390_agriculture12091440
crossref_primary_10_1016_j_autcon_2023_105185
crossref_primary_10_3389_feart_2023_1340484
crossref_primary_10_1016_j_measurement_2024_115432
crossref_primary_10_1109_TGRS_2024_3394750
crossref_primary_10_1016_j_jappgeo_2025_105869
crossref_primary_10_3390_s23115078
crossref_primary_10_1016_j_tust_2024_106287
crossref_primary_10_1016_j_tust_2025_106440
crossref_primary_10_3390_rs15133382
crossref_primary_10_1109_TGRS_2025_3533609
crossref_primary_10_3390_rs17050823
crossref_primary_10_1109_LGRS_2025_3562426
crossref_primary_10_1109_TGRS_2024_3445495
crossref_primary_10_3390_rs14225871
crossref_primary_10_1088_1361_6501_adcd8c
crossref_primary_10_3390_buildings14113662
crossref_primary_10_1109_TITS_2023_3319003
crossref_primary_10_1016_j_autcon_2024_105574
crossref_primary_10_1109_JERM_2024_3409846
crossref_primary_10_1109_TGRS_2023_3308205
crossref_primary_10_1016_j_autcon_2024_105394
crossref_primary_10_1016_j_tust_2025_106557
crossref_primary_10_3390_rs15143650
crossref_primary_10_1109_TGRS_2024_3373025
crossref_primary_10_1038_s41598_025_87123_3
crossref_primary_10_1016_j_engfailanal_2025_109332
crossref_primary_10_1109_TGRS_2024_3505946
crossref_primary_10_1016_j_measurement_2023_113903
crossref_primary_10_1016_j_tust_2023_105265
crossref_primary_10_1109_TGRS_2024_3360101
crossref_primary_10_1016_j_autcon_2024_105506
crossref_primary_10_1109_TGRS_2024_3413993
crossref_primary_10_3390_app15010367
crossref_primary_10_1016_j_eswa_2024_124395
crossref_primary_10_3390_app15073728
crossref_primary_10_1016_j_ndteint_2024_103087
crossref_primary_10_1088_1361_6501_ae0062
Cites_doi 10.1007/s00603-016-0943-y
10.1109/ICCV.2017.244
10.1109/CVPR.2009.5206848
10.1088/1755-1315/861/4/042057
10.1109/ULTSYM.2018.8579658
10.1109/ACCESS.2021.3088630
10.1109/JSTARS.2017.2752163
10.1109/CVPRW.2018.00034
10.1109/IGARSS.2018.8517683
10.3390/rs13091761
10.1016/j.autcon.2021.103830
10.1109/TPAMI.2016.2577031
10.1007/978-3-319-10602-1_48
10.1016/j.cpc.2016.08.020
10.1038/nature14539
10.1016/j.autcon.2019.102839
10.1109/CVPR.2017.632
10.1016/j.ndteint.2017.04.002
10.1016/j.conbuildmat.2017.09.100
10.3115/v1/P15-1107
10.1109/TSP.2018.8441206
10.2113/JEEG18-085
10.1016/j.tust.2021.103913
10.1007/978-3-319-46448-0_2
10.1016/j.conbuildmat.2017.06.132
10.1016/j.conbuildmat.2020.120371
10.2113/JEEG17.3.159
10.1016/j.ndteint.2018.04.009
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
DOA
DOI 10.3390/rs14020251
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_6a37b61a189e4b69b90459d67d5d423d
10_3390_rs14020251
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c394t-5ed4bbb4fe6b598b5b576fa360b9d9a59cac71b07e7103747785e0960fd96c73
IEDL.DBID DOA
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000747113700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Mon Nov 10 04:34:53 EST 2025
Fri Sep 05 14:21:25 EDT 2025
Fri Jul 25 09:48:52 EDT 2025
Sat Nov 29 07:13:47 EST 2025
Tue Nov 18 21:06:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c394t-5ed4bbb4fe6b598b5b576fa360b9d9a59cac71b07e7103747785e0960fd96c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7569-0945
0000-0002-6818-6679
0000-0002-0473-9537
0000-0003-4127-8765
0000-0001-9764-4408
0000-0002-7604-155X
OpenAccessLink https://doaj.org/article/6a37b61a189e4b69b90459d67d5d423d
PQID 2621380701
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_6a37b61a189e4b69b90459d67d5d423d
proquest_miscellaneous_2636608750
proquest_journals_2621380701
crossref_primary_10_3390_rs14020251
crossref_citationtrail_10_3390_rs14020251
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Alani (ref_1) 2018; 158
Qin (ref_6) 2021; 112
ref_34
LeCun (ref_9) 2015; 521
ref_11
Wang (ref_26) 2021; 9
ref_33
ref_32
ref_31
ref_18
Wang (ref_30) 2021; 861
ref_16
ref_37
Liu (ref_7) 2017; 154
Munda (ref_4) 2012; 17
Tong (ref_19) 2020; 258
Xu (ref_13) 2018; 2018
Qin (ref_5) 2020; 25
Krizhevsky (ref_10) 2012; 25
Qin (ref_14) 2021; 130
ref_25
ref_23
ref_22
ref_21
Annan (ref_2) 2018; 96
ref_20
Benedetto (ref_8) 2017; 132
Lei (ref_12) 2019; 106
Vincent (ref_24) 2010; 11
Xiao (ref_17) 2017; 10
ref_29
Lebens (ref_3) 2016; 49
ref_28
ref_27
Warren (ref_36) 2016; 209
Dinh (ref_15) 2018; 98
Ren (ref_35) 2017; 39
References_xml – volume: 25
  start-page: 1097
  year: 2012
  ident: ref_10
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 49
  start-page: 2811
  year: 2016
  ident: ref_3
  article-title: Detection of rockfall on a tunnel concrete lining with Ground-Penetrating Radar (GPR)
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-016-0943-y
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref_24
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: ref_31
  doi: 10.1109/ICCV.2017.244
– ident: ref_27
  doi: 10.1109/CVPR.2009.5206848
– volume: 861
  start-page: 042057
  year: 2021
  ident: ref_30
  article-title: A deep learning network to improve tunnel lining defect identification using ground penetrating radar
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/861/4/042057
– ident: ref_32
– ident: ref_20
  doi: 10.1109/ULTSYM.2018.8579658
– volume: 9
  start-page: 87207
  year: 2021
  ident: ref_26
  article-title: Deep learning-based rebar clutters removal and defect echoes enhancement in GPR images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3088630
– volume: 10
  start-page: 4273
  year: 2017
  ident: ref_17
  article-title: Suppression of clutters caused by periodic scatterers in GPR profiles with multibandpass filtering for NDT&E imaging enhancement
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2752163
– ident: ref_33
  doi: 10.1109/CVPRW.2018.00034
– ident: ref_11
  doi: 10.1109/IGARSS.2018.8517683
– ident: ref_21
  doi: 10.3390/rs13091761
– volume: 130
  start-page: 103830
  year: 2021
  ident: ref_14
  article-title: Automatic recognition of tunnel lining elements from GPR images using deep convolutional networks with data augmentation
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103830
– ident: ref_16
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_35
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref_37
– ident: ref_28
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref_23
– volume: 209
  start-page: 163
  year: 2016
  ident: ref_36
  article-title: gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2016.08.020
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_9
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 132
  start-page: 201
  year: 2017
  ident: ref_8
  article-title: An overview of ground-penetrating radar signal processing techniques for road inspections
  publication-title: Signal Process. Off. Publ. Eur. Assoc. Signal Process. EURASIP
– volume: 106
  start-page: 102839
  year: 2019
  ident: ref_12
  article-title: Automatic hyperbola detection and fitting in GPR B-scan image
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.102839
– ident: ref_25
– ident: ref_29
  doi: 10.1109/CVPR.2017.632
– volume: 96
  start-page: 58
  year: 2018
  ident: ref_2
  article-title: A review of ground penetrating radar application in civil engineering: A 30-year journey from locating and testing to imaging and diagnosis
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2017.04.002
– volume: 158
  start-page: 1111
  year: 2018
  ident: ref_1
  article-title: GPR applications in structural detailing of a major tunnel using different frequency antenna systems
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.09.100
– ident: ref_18
  doi: 10.3115/v1/P15-1107
– ident: ref_22
  doi: 10.1109/TSP.2018.8441206
– volume: 25
  start-page: 65
  year: 2020
  ident: ref_5
  article-title: Experimental study on GPR detection of voids inside and behind tunnel linings
  publication-title: J. Environ. Eng. Geophys.
  doi: 10.2113/JEEG18-085
– volume: 112
  start-page: 103913
  year: 2021
  ident: ref_6
  article-title: Shield tunnel grouting layer estimation using sliding window probabilistic inversion of GPR data
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2021.103913
– ident: ref_34
  doi: 10.1007/978-3-319-46448-0_2
– volume: 154
  start-page: 1207
  year: 2017
  ident: ref_7
  article-title: Time-frequency analysis of air-coupled GPR data for identification of delamination between pavement layers
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.06.132
– volume: 2018
  start-page: 4832972
  year: 2018
  ident: ref_13
  article-title: Railway subgrade defect automatic recognition method based on improved Faster R-CNN
  publication-title: Sci. Program.
– volume: 258
  start-page: 120371
  year: 2020
  ident: ref_19
  article-title: Advances of deep learning applications in ground-penetrating radar: A survey
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120371
– volume: 17
  start-page: 159
  year: 2012
  ident: ref_4
  article-title: GPR investigations to assess the state of damage of a concrete water tunnel
  publication-title: J. Environ. Eng. Geophys.
  doi: 10.2113/JEEG17.3.159
– volume: 98
  start-page: 45
  year: 2018
  ident: ref_15
  article-title: Migration-based automated rebar picking for condition assessment of concrete bridge decks with ground penetrating radar
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2018.04.009
SSID ssj0000331904
Score 2.479456
Snippet Ground penetrating radar (GPR) is one of the most recommended tools for routine inspection of tunnel linings. However, the rebars in the reinforced concrete...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 251
SubjectTerms Accuracy
Clutter
Concrete
data collection
Deep learning
design
Discriminators
Efficiency
Electromagnetic radiation
Electromagnetic shielding
Generative adversarial networks
generative adversarial networks (GAN)
Generators
Ground penetrating radar
ground penetrating radar (GPR)
image analysis
Inspection
learning
Methods
Noise
physical models
Radar imaging
Rebar
rebar clutter elimination
Reinforced concrete
Remote sensing
Signal processing
Signatures
Tunnel linings
tunnel void
unsupervised learning
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Ni9QwFA-6CnrxWxxdJaIXD2GbpkkaLzKOs-tBhmUdZG8lr0l0YWjXtiP435uXdmYRxYvX9lFK3sv7ysvvR8hrHYISzkomygxYEbhnVklgoc4g5svcgQiJbEKvVuX5uTmdGm79NFa584nJUbu2xh75Ua5yjuDoGX93-Z0haxSerk4UGtfJDURJyNPo3ud9jyUT0cCyYkQlFbG6P-p6jgVTLvlvcSjB9f_hjVOIOb77vz93j9yZkks6H63hPrnmmwfk1sRz_u3nQ-LOFkt2Ml-9pXMaF9Z2dLFJTNV0uUn0XqgmuhpHw-nQ0rHn4Ol6i_Mw9FOik6Bf2gtHP_ghjXE1FK-o0JPTsygdvVP_iKyPl-vFRzbxLLBamGJg0rsCAIrgFUhTgoRYhAQrVAbGGStNbWvNIdNe463CQutSeix9gjOq1uIxOWjaxj8hlOsQox-AwTFP4RQoL0Omg5e8tEHAjLzZLXpVTxjkSIWxqWItggqqrhQ0I6_2spcj8sZfpd6j7vYSiJadHrTd12rafJWyQoPilpfGF6AMRKOQxintpIvppJuRw51aq2kL99WVTmfk5f513Hx4omIb325RRiiFnADZ039_4hm5neO9idS7OSQHQ7f1z8nN-sdw0XcvktX-Am0c9R4
  priority: 102
  providerName: ProQuest
Title RCE-GAN: A Rebar Clutter Elimination Network to Improve Tunnel Lining Void Detection from GPR Images
URI https://www.proquest.com/docview/2621380701
https://www.proquest.com/docview/2636608750
https://doaj.org/article/6a37b61a189e4b69b90459d67d5d423d
Volume 14
WOSCitedRecordID wos000747113700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFA5SBb2IP3Ftu0T04mHoZDNJJt6222kVdBjWRaqXIW-SYGGZld3ZQi_9283LTNeKghcvOUweTHgveXkvefk-Qt4o7yW3RiQ8TyHJPHOJkQIS36QQ4mVmgftINqHKMj8_19Utqi-sCevhgXvFHUnDFUhmWK5dBlKDDkGItlJZYUMoYNH7hqjnVjIVfTAPUyvNejxSHvL6o_WGYao0Eey3HSgC9f_hh-PmcvqIPByiQjrtR_OY3HHtE3J_ICj_fvWU2PmsSM6m5Ts6pUEjZk1ny0gxTYtl5OVC_dKyr-mm3Yr2hwWOLrZYyEI_Rh4I-mV1YemJ62L9VUvxbQk9q-ZBOriVzTOyOC0Ws_fJQJCQNFxnXSKczQAg806C0DkICNmDN1ymoK02QjemUQxS5RQ-B8yUyoXDnMVbLRvFn5O9dtW6F4Qy5cO2BaCxPpNbCdIJnyrvBMuN5zAib290VjcDeDhyWCzrkESgfutf-h2R1zvZHz1kxl-ljlH1OwmEuY4fgvHrwfj1v4w_Igc3hquHtbepJ3LCEEY_Df94tesOqwavQkzrVluU4VIimH_68n-MY588mOCziHg0c0D2uvXWHZJ7zWV3sVmPyd3joqzm4zhFx1hd-hnb6yK0lfgW-qsPn6qvPwGE1O0L
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKQSoXvhELBYyAA4eodhzbMRJCy3b7oS6rqqxQb1Ec21BplZQkC-qP4j_icZKtEIhbD1yTkaXEz8_j8cw8hF5J5wQzOY9YSnSUOGqjXHAduYJo7y9To5kLYhNyPk9PT9XxBvo51MJAWuXAiYGoTVVAjHwnFjGF5uiEvj__FoFqFNyuDhIaHSyO7MUPf2Rr3h3u-vl9Hcd708XkIOpVBaKCqaSNuDWJ1jpxVmiuUs21d7ldzgTRyqicqyIvJNVEWgk1dImUKbfg6DujRCGZH_Yaup4A-YdMwU_rkA5hHs8k6ZqgMqbITt1QOJ_FnP627QV1gD_IP-xoe7f_s39xB93qXWc87rB-F23Y8h7a6lXcv17cR-ZkMo32x_O3eIw9bPIaT5ZBhxtPl0G8DECI513iO24r3EVULF6sINsHz4JYBv5cnRm8a9uQpFZiKMDB-8cn3tpzb_MALa7iGx-izbIq7SOEqXR-b9daQRIrM0ILyx2RznKa5o7pEXozzHFW9B3WQehjmfmTFuAhu8TDCL1c2553fUX-avUBoLK2gF7g4UFVf8l6aslEzqQWNKepsokWSnsMcmWENNx4Z9mM0PaAoqwnqCa7hNAIvVi_9tQC90V5aasV2DAhQPGAPP73EM_R1sHi4yybHc6PnqCbMVSIhCjVNtps65V9im4U39uzpn4WFgxG2RWD8he5HVGF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bi9QwFA7rKuqLd3F01Yj64EOZpmmSRhAZ57Iuu5RhGWTxpTRNogtDu7YdZX-a_86ctJ1FFN_2wdf2EGjz5dxyzvkQeiWs5VTnLKBJqILYEhPknKnAFqFy_jLRilpPNiHSNDk5kcsd9HPohYGyykEnekWtqwJy5OOIRwSGo4dkbPuyiOVs8f7sWwAMUnDTOtBpdBA5NOc_XPjWvDuYub1-HUWL-Wr6MegZBoKCyrgNmNGxUiq2hismE8WUc79tTnmopJY5k0VeCKJCYQT008VCJMyA02-15IWgbtkr6KpwISbEfUv2eZveCanDdhh3A1EpleG4bgjEahEjv5lAzxTwhyHw1m1x-z_-L3fQrd6lxpPuDNxFO6a8h2707O5fz-8jfTydB_uT9C2eYAenvMbTtefnxvO1JzUDcOK0K4jHbYW7TIvBqw1UAeEjT6KBP1WnGs9M64vXSgyNOXh_eeyknU5uHqDVZXzjQ7RbVqV5hDAR1tl8pSQUt1LNFTfMhsIaRpLcUjVCb4b9zop-8joQgKwzF4EBNrILbIzQy63sWTdv5K9SHwA2WwmYEe4fVPWXrFc5Gc-pUJzkJJEmVlwqh0cmNReaaedE6xHaGxCV9YqryS7gNEIvtq-dyoF7pLw01QZkKOfAhBA-_vcSz9F1h8Xs6CA9fIJuRtA44pNXe2i3rTfmKbpWfG9Pm_qZPzsYZZeMyV8wPVpo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RCE-GAN%3A+A+Rebar+Clutter+Elimination+Network+to+Improve+Tunnel+Lining+Void+Detection+from+GPR+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Yuanzheng+Wang&rft.au=Hui+Qin&rft.au=Yu+Tang&rft.au=Donghao+Zhang&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=2&rft.spage=251&rft_id=info:doi/10.3390%2Frs14020251&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6a37b61a189e4b69b90459d67d5d423d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon