RCE-GAN: A Rebar Clutter Elimination Network to Improve Tunnel Lining Void Detection from GPR Images
Ground penetrating radar (GPR) is one of the most recommended tools for routine inspection of tunnel linings. However, the rebars in the reinforced concrete produce a strong shielding effect on the electromagnetic waves, which may hinder the interpretation of GPR data. In this work, we proposed a me...
Gespeichert in:
| Veröffentlicht in: | Remote sensing (Basel, Switzerland) Jg. 14; H. 2; S. 251 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.01.2022
|
| Schlagworte: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Ground penetrating radar (GPR) is one of the most recommended tools for routine inspection of tunnel linings. However, the rebars in the reinforced concrete produce a strong shielding effect on the electromagnetic waves, which may hinder the interpretation of GPR data. In this work, we proposed a method to improve the identification of tunnel lining voids by designing a generative adversarial network-based rebar clutter elimination network (RCE-GAN). The designed network has two sets of generators and discriminators, and by introducing the cycle-consistency loss, the network is capable of learning high-level features between unpaired GPR images. In addition, an attention module and a dilation center part were designed in the network to improve the network performance. Validation of the proposed method was conducted on both synthetic and real-world GPR images, collected from the implementation of finite-difference time-domain (FDTD) simulations and a controlled physical model experiment, respectively. The results demonstrate that the proposed method is promising for its lower demand on the training dataset and the improvement in the identification of tunnel lining voids. |
|---|---|
| AbstractList | Ground penetrating radar (GPR) is one of the most recommended tools for routine inspection of tunnel linings. However, the rebars in the reinforced concrete produce a strong shielding effect on the electromagnetic waves, which may hinder the interpretation of GPR data. In this work, we proposed a method to improve the identification of tunnel lining voids by designing a generative adversarial network-based rebar clutter elimination network (RCE-GAN). The designed network has two sets of generators and discriminators, and by introducing the cycle-consistency loss, the network is capable of learning high-level features between unpaired GPR images. In addition, an attention module and a dilation center part were designed in the network to improve the network performance. Validation of the proposed method was conducted on both synthetic and real-world GPR images, collected from the implementation of finite-difference time-domain (FDTD) simulations and a controlled physical model experiment, respectively. The results demonstrate that the proposed method is promising for its lower demand on the training dataset and the improvement in the identification of tunnel lining voids. |
| Author | Qu, Chunxu Tang, Yu Yang, Donghui Geng, Tiesuo Wang, Yuanzheng Qin, Hui Zhang, Donghao |
| Author_xml | – sequence: 1 givenname: Yuanzheng orcidid: 0000-0002-0473-9537 surname: Wang fullname: Wang, Yuanzheng – sequence: 2 givenname: Hui orcidid: 0000-0003-4127-8765 surname: Qin fullname: Qin, Hui – sequence: 3 givenname: Yu orcidid: 0000-0002-7604-155X surname: Tang fullname: Tang, Yu – sequence: 4 givenname: Donghao orcidid: 0000-0001-9764-4408 surname: Zhang fullname: Zhang, Donghao – sequence: 5 givenname: Donghui surname: Yang fullname: Yang, Donghui – sequence: 6 givenname: Chunxu orcidid: 0000-0002-7569-0945 surname: Qu fullname: Qu, Chunxu – sequence: 7 givenname: Tiesuo orcidid: 0000-0002-6818-6679 surname: Geng fullname: Geng, Tiesuo |
| BookMark | eNptkd-LEzEQxxe5A8-7e_EvCPgiwmp-bJKNb6XWWih3UoqvS7KZLam7yZlkFf97Yysqx83LDMNnvszM90V14YOHqnpJ8FvGFH4XE2kwxZSTZ9UVxZLWDVX04r_6eXWb0hGXYIwo3FxVdrdc1evF3Xu0QDswOqLlOOcMEa1GNzmvswse3UH-EeJXlAPaTA8xfAe0n72HEW2dd_6AvgRn0QfI0J_4IYYJrT_vCq0PkG6qy0GPCW7_5Otq_3G1X36qt_frzXKxrXummlxzsI0xphlAGK5aww2XYtBMYKOs0lz1upfEYAmSYCYbKVsOWAk8WCV6ya6rzVnWBn3sHqKbdPzZBe26UyPEQ6djdv0IndBMGkE0aRU0RihTnsGVFdJy21Bmi9brs1a59tsMKXeTSz2Mo_YQ5tRRwYTAreS4oK8eoccwR18OLRQlrMUSk0K9OVN9DClFGP4uSHD3277un30Fxo_g3uWTFTlqNz418gvfE5tB |
| CitedBy_id | crossref_primary_10_1109_JSEN_2023_3305681 crossref_primary_10_3390_agriculture12091440 crossref_primary_10_1016_j_autcon_2023_105185 crossref_primary_10_3389_feart_2023_1340484 crossref_primary_10_1016_j_measurement_2024_115432 crossref_primary_10_1109_TGRS_2024_3394750 crossref_primary_10_1016_j_jappgeo_2025_105869 crossref_primary_10_3390_s23115078 crossref_primary_10_1016_j_tust_2024_106287 crossref_primary_10_1016_j_tust_2025_106440 crossref_primary_10_3390_rs15133382 crossref_primary_10_1109_TGRS_2025_3533609 crossref_primary_10_3390_rs17050823 crossref_primary_10_1109_LGRS_2025_3562426 crossref_primary_10_1109_TGRS_2024_3445495 crossref_primary_10_3390_rs14225871 crossref_primary_10_1088_1361_6501_adcd8c crossref_primary_10_3390_buildings14113662 crossref_primary_10_1109_TITS_2023_3319003 crossref_primary_10_1016_j_autcon_2024_105574 crossref_primary_10_1109_JERM_2024_3409846 crossref_primary_10_1109_TGRS_2023_3308205 crossref_primary_10_1016_j_autcon_2024_105394 crossref_primary_10_1016_j_tust_2025_106557 crossref_primary_10_3390_rs15143650 crossref_primary_10_1109_TGRS_2024_3373025 crossref_primary_10_1038_s41598_025_87123_3 crossref_primary_10_1016_j_engfailanal_2025_109332 crossref_primary_10_1109_TGRS_2024_3505946 crossref_primary_10_1016_j_measurement_2023_113903 crossref_primary_10_1016_j_tust_2023_105265 crossref_primary_10_1109_TGRS_2024_3360101 crossref_primary_10_1016_j_autcon_2024_105506 crossref_primary_10_1109_TGRS_2024_3413993 crossref_primary_10_3390_app15010367 crossref_primary_10_1016_j_eswa_2024_124395 crossref_primary_10_3390_app15073728 crossref_primary_10_1016_j_ndteint_2024_103087 crossref_primary_10_1088_1361_6501_ae0062 |
| Cites_doi | 10.1007/s00603-016-0943-y 10.1109/ICCV.2017.244 10.1109/CVPR.2009.5206848 10.1088/1755-1315/861/4/042057 10.1109/ULTSYM.2018.8579658 10.1109/ACCESS.2021.3088630 10.1109/JSTARS.2017.2752163 10.1109/CVPRW.2018.00034 10.1109/IGARSS.2018.8517683 10.3390/rs13091761 10.1016/j.autcon.2021.103830 10.1109/TPAMI.2016.2577031 10.1007/978-3-319-10602-1_48 10.1016/j.cpc.2016.08.020 10.1038/nature14539 10.1016/j.autcon.2019.102839 10.1109/CVPR.2017.632 10.1016/j.ndteint.2017.04.002 10.1016/j.conbuildmat.2017.09.100 10.3115/v1/P15-1107 10.1109/TSP.2018.8441206 10.2113/JEEG18-085 10.1016/j.tust.2021.103913 10.1007/978-3-319-46448-0_2 10.1016/j.conbuildmat.2017.06.132 10.1016/j.conbuildmat.2020.120371 10.2113/JEEG17.3.159 10.1016/j.ndteint.2018.04.009 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs14020251 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_6a37b61a189e4b69b90459d67d5d423d 10_3390_rs14020251 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c394t-5ed4bbb4fe6b598b5b576fa360b9d9a59cac71b07e7103747785e0960fd96c73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000747113700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Mon Nov 10 04:34:53 EST 2025 Fri Sep 05 14:21:25 EDT 2025 Fri Jul 25 09:48:52 EDT 2025 Sat Nov 29 07:13:47 EST 2025 Tue Nov 18 21:06:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-5ed4bbb4fe6b598b5b576fa360b9d9a59cac71b07e7103747785e0960fd96c73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7569-0945 0000-0002-6818-6679 0000-0002-0473-9537 0000-0003-4127-8765 0000-0001-9764-4408 0000-0002-7604-155X |
| OpenAccessLink | https://doaj.org/article/6a37b61a189e4b69b90459d67d5d423d |
| PQID | 2621380701 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6a37b61a189e4b69b90459d67d5d423d proquest_miscellaneous_2636608750 proquest_journals_2621380701 crossref_primary_10_3390_rs14020251 crossref_citationtrail_10_3390_rs14020251 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Alani (ref_1) 2018; 158 Qin (ref_6) 2021; 112 ref_34 LeCun (ref_9) 2015; 521 ref_11 Wang (ref_26) 2021; 9 ref_33 ref_32 ref_31 ref_18 Wang (ref_30) 2021; 861 ref_16 ref_37 Liu (ref_7) 2017; 154 Munda (ref_4) 2012; 17 Tong (ref_19) 2020; 258 Xu (ref_13) 2018; 2018 Qin (ref_5) 2020; 25 Krizhevsky (ref_10) 2012; 25 Qin (ref_14) 2021; 130 ref_25 ref_23 ref_22 ref_21 Annan (ref_2) 2018; 96 ref_20 Benedetto (ref_8) 2017; 132 Lei (ref_12) 2019; 106 Vincent (ref_24) 2010; 11 Xiao (ref_17) 2017; 10 ref_29 Lebens (ref_3) 2016; 49 ref_28 ref_27 Warren (ref_36) 2016; 209 Dinh (ref_15) 2018; 98 Ren (ref_35) 2017; 39 |
| References_xml | – volume: 25 start-page: 1097 year: 2012 ident: ref_10 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 49 start-page: 2811 year: 2016 ident: ref_3 article-title: Detection of rockfall on a tunnel concrete lining with Ground-Penetrating Radar (GPR) publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-016-0943-y – volume: 11 start-page: 3371 year: 2010 ident: ref_24 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – ident: ref_31 doi: 10.1109/ICCV.2017.244 – ident: ref_27 doi: 10.1109/CVPR.2009.5206848 – volume: 861 start-page: 042057 year: 2021 ident: ref_30 article-title: A deep learning network to improve tunnel lining defect identification using ground penetrating radar publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/861/4/042057 – ident: ref_32 – ident: ref_20 doi: 10.1109/ULTSYM.2018.8579658 – volume: 9 start-page: 87207 year: 2021 ident: ref_26 article-title: Deep learning-based rebar clutters removal and defect echoes enhancement in GPR images publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3088630 – volume: 10 start-page: 4273 year: 2017 ident: ref_17 article-title: Suppression of clutters caused by periodic scatterers in GPR profiles with multibandpass filtering for NDT&E imaging enhancement publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2752163 – ident: ref_33 doi: 10.1109/CVPRW.2018.00034 – ident: ref_11 doi: 10.1109/IGARSS.2018.8517683 – ident: ref_21 doi: 10.3390/rs13091761 – volume: 130 start-page: 103830 year: 2021 ident: ref_14 article-title: Automatic recognition of tunnel lining elements from GPR images using deep convolutional networks with data augmentation publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103830 – ident: ref_16 – volume: 39 start-page: 1137 year: 2017 ident: ref_35 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – ident: ref_37 – ident: ref_28 doi: 10.1007/978-3-319-10602-1_48 – ident: ref_23 – volume: 209 start-page: 163 year: 2016 ident: ref_36 article-title: gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2016.08.020 – volume: 521 start-page: 436 year: 2015 ident: ref_9 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 132 start-page: 201 year: 2017 ident: ref_8 article-title: An overview of ground-penetrating radar signal processing techniques for road inspections publication-title: Signal Process. Off. Publ. Eur. Assoc. Signal Process. EURASIP – volume: 106 start-page: 102839 year: 2019 ident: ref_12 article-title: Automatic hyperbola detection and fitting in GPR B-scan image publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.102839 – ident: ref_25 – ident: ref_29 doi: 10.1109/CVPR.2017.632 – volume: 96 start-page: 58 year: 2018 ident: ref_2 article-title: A review of ground penetrating radar application in civil engineering: A 30-year journey from locating and testing to imaging and diagnosis publication-title: NDT E Int. doi: 10.1016/j.ndteint.2017.04.002 – volume: 158 start-page: 1111 year: 2018 ident: ref_1 article-title: GPR applications in structural detailing of a major tunnel using different frequency antenna systems publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.09.100 – ident: ref_18 doi: 10.3115/v1/P15-1107 – ident: ref_22 doi: 10.1109/TSP.2018.8441206 – volume: 25 start-page: 65 year: 2020 ident: ref_5 article-title: Experimental study on GPR detection of voids inside and behind tunnel linings publication-title: J. Environ. Eng. Geophys. doi: 10.2113/JEEG18-085 – volume: 112 start-page: 103913 year: 2021 ident: ref_6 article-title: Shield tunnel grouting layer estimation using sliding window probabilistic inversion of GPR data publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2021.103913 – ident: ref_34 doi: 10.1007/978-3-319-46448-0_2 – volume: 154 start-page: 1207 year: 2017 ident: ref_7 article-title: Time-frequency analysis of air-coupled GPR data for identification of delamination between pavement layers publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.06.132 – volume: 2018 start-page: 4832972 year: 2018 ident: ref_13 article-title: Railway subgrade defect automatic recognition method based on improved Faster R-CNN publication-title: Sci. Program. – volume: 258 start-page: 120371 year: 2020 ident: ref_19 article-title: Advances of deep learning applications in ground-penetrating radar: A survey publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120371 – volume: 17 start-page: 159 year: 2012 ident: ref_4 article-title: GPR investigations to assess the state of damage of a concrete water tunnel publication-title: J. Environ. Eng. Geophys. doi: 10.2113/JEEG17.3.159 – volume: 98 start-page: 45 year: 2018 ident: ref_15 article-title: Migration-based automated rebar picking for condition assessment of concrete bridge decks with ground penetrating radar publication-title: NDT E Int. doi: 10.1016/j.ndteint.2018.04.009 |
| SSID | ssj0000331904 |
| Score | 2.479456 |
| Snippet | Ground penetrating radar (GPR) is one of the most recommended tools for routine inspection of tunnel linings. However, the rebars in the reinforced concrete... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 251 |
| SubjectTerms | Accuracy Clutter Concrete data collection Deep learning design Discriminators Efficiency Electromagnetic radiation Electromagnetic shielding Generative adversarial networks generative adversarial networks (GAN) Generators Ground penetrating radar ground penetrating radar (GPR) image analysis Inspection learning Methods Noise physical models Radar imaging Rebar rebar clutter elimination Reinforced concrete Remote sensing Signal processing Signatures Tunnel linings tunnel void unsupervised learning |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Ni9QwFA-6CnrxWxxdJaIXD2GbpkkaLzKOs-tBhmUdZG8lr0l0YWjXtiP435uXdmYRxYvX9lFK3sv7ysvvR8hrHYISzkomygxYEbhnVklgoc4g5svcgQiJbEKvVuX5uTmdGm79NFa584nJUbu2xh75Ua5yjuDoGX93-Z0haxSerk4UGtfJDURJyNPo3ud9jyUT0cCyYkQlFbG6P-p6jgVTLvlvcSjB9f_hjVOIOb77vz93j9yZkks6H63hPrnmmwfk1sRz_u3nQ-LOFkt2Ml-9pXMaF9Z2dLFJTNV0uUn0XqgmuhpHw-nQ0rHn4Ol6i_Mw9FOik6Bf2gtHP_ghjXE1FK-o0JPTsygdvVP_iKyPl-vFRzbxLLBamGJg0rsCAIrgFUhTgoRYhAQrVAbGGStNbWvNIdNe463CQutSeix9gjOq1uIxOWjaxj8hlOsQox-AwTFP4RQoL0Omg5e8tEHAjLzZLXpVTxjkSIWxqWItggqqrhQ0I6_2spcj8sZfpd6j7vYSiJadHrTd12rafJWyQoPilpfGF6AMRKOQxintpIvppJuRw51aq2kL99WVTmfk5f513Hx4omIb325RRiiFnADZ039_4hm5neO9idS7OSQHQ7f1z8nN-sdw0XcvktX-Am0c9R4 priority: 102 providerName: ProQuest |
| Title | RCE-GAN: A Rebar Clutter Elimination Network to Improve Tunnel Lining Void Detection from GPR Images |
| URI | https://www.proquest.com/docview/2621380701 https://www.proquest.com/docview/2636608750 https://doaj.org/article/6a37b61a189e4b69b90459d67d5d423d |
| Volume | 14 |
| WOSCitedRecordID | wos000747113700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFA5SBb2IP3Ftu0T04mHoZDNJJt6222kVdBjWRaqXIW-SYGGZld3ZQi_9283LTNeKghcvOUweTHgveXkvefk-Qt4o7yW3RiQ8TyHJPHOJkQIS36QQ4mVmgftINqHKMj8_19Utqi-sCevhgXvFHUnDFUhmWK5dBlKDDkGItlJZYUMoYNH7hqjnVjIVfTAPUyvNejxSHvL6o_WGYao0Eey3HSgC9f_hh-PmcvqIPByiQjrtR_OY3HHtE3J_ICj_fvWU2PmsSM6m5Ts6pUEjZk1ny0gxTYtl5OVC_dKyr-mm3Yr2hwWOLrZYyEI_Rh4I-mV1YemJ62L9VUvxbQk9q-ZBOriVzTOyOC0Ws_fJQJCQNFxnXSKczQAg806C0DkICNmDN1ymoK02QjemUQxS5RQ-B8yUyoXDnMVbLRvFn5O9dtW6F4Qy5cO2BaCxPpNbCdIJnyrvBMuN5zAib290VjcDeDhyWCzrkESgfutf-h2R1zvZHz1kxl-ljlH1OwmEuY4fgvHrwfj1v4w_Igc3hquHtbepJ3LCEEY_Df94tesOqwavQkzrVluU4VIimH_68n-MY588mOCziHg0c0D2uvXWHZJ7zWV3sVmPyd3joqzm4zhFx1hd-hnb6yK0lfgW-qsPn6qvPwGE1O0L |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKQSoXvhELBYyAA4eodhzbMRJCy3b7oS6rqqxQb1Ec21BplZQkC-qP4j_icZKtEIhbD1yTkaXEz8_j8cw8hF5J5wQzOY9YSnSUOGqjXHAduYJo7y9To5kLYhNyPk9PT9XxBvo51MJAWuXAiYGoTVVAjHwnFjGF5uiEvj__FoFqFNyuDhIaHSyO7MUPf2Rr3h3u-vl9Hcd708XkIOpVBaKCqaSNuDWJ1jpxVmiuUs21d7ldzgTRyqicqyIvJNVEWgk1dImUKbfg6DujRCGZH_Yaup4A-YdMwU_rkA5hHs8k6ZqgMqbITt1QOJ_FnP627QV1gD_IP-xoe7f_s39xB93qXWc87rB-F23Y8h7a6lXcv17cR-ZkMo32x_O3eIw9bPIaT5ZBhxtPl0G8DECI513iO24r3EVULF6sINsHz4JYBv5cnRm8a9uQpFZiKMDB-8cn3tpzb_MALa7iGx-izbIq7SOEqXR-b9daQRIrM0ILyx2RznKa5o7pEXozzHFW9B3WQehjmfmTFuAhu8TDCL1c2553fUX-avUBoLK2gF7g4UFVf8l6aslEzqQWNKepsokWSnsMcmWENNx4Z9mM0PaAoqwnqCa7hNAIvVi_9tQC90V5aasV2DAhQPGAPP73EM_R1sHi4yybHc6PnqCbMVSIhCjVNtps65V9im4U39uzpn4WFgxG2RWD8he5HVGF |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bi9QwFA7rKuqLd3F01Yj64EOZpmmSRhAZ57Iuu5RhGWTxpTRNogtDu7YdZX-a_86ctJ1FFN_2wdf2EGjz5dxyzvkQeiWs5VTnLKBJqILYEhPknKnAFqFy_jLRilpPNiHSNDk5kcsd9HPohYGyykEnekWtqwJy5OOIRwSGo4dkbPuyiOVs8f7sWwAMUnDTOtBpdBA5NOc_XPjWvDuYub1-HUWL-Wr6MegZBoKCyrgNmNGxUiq2hismE8WUc79tTnmopJY5k0VeCKJCYQT008VCJMyA02-15IWgbtkr6KpwISbEfUv2eZveCanDdhh3A1EpleG4bgjEahEjv5lAzxTwhyHw1m1x-z_-L3fQrd6lxpPuDNxFO6a8h2707O5fz-8jfTydB_uT9C2eYAenvMbTtefnxvO1JzUDcOK0K4jHbYW7TIvBqw1UAeEjT6KBP1WnGs9M64vXSgyNOXh_eeyknU5uHqDVZXzjQ7RbVqV5hDAR1tl8pSQUt1LNFTfMhsIaRpLcUjVCb4b9zop-8joQgKwzF4EBNrILbIzQy63sWTdv5K9SHwA2WwmYEe4fVPWXrFc5Gc-pUJzkJJEmVlwqh0cmNReaaedE6xHaGxCV9YqryS7gNEIvtq-dyoF7pLw01QZkKOfAhBA-_vcSz9F1h8Xs6CA9fIJuRtA44pNXe2i3rTfmKbpWfG9Pm_qZPzsYZZeMyV8wPVpo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RCE-GAN%3A+A+Rebar+Clutter+Elimination+Network+to+Improve+Tunnel+Lining+Void+Detection+from+GPR+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Yuanzheng+Wang&rft.au=Hui+Qin&rft.au=Yu+Tang&rft.au=Donghao+Zhang&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=14&rft.issue=2&rft.spage=251&rft_id=info:doi/10.3390%2Frs14020251&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6a37b61a189e4b69b90459d67d5d423d |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |