Active Fire Mapping on Brazilian Pantanal Based on Deep Learning and CBERS 04A Imagery
Fire in Brazilian Pantanal represents a serious threat to biodiversity. The Brazilian National Institute of Spatial Research (INPE) has a program named Queimadas, which estimated from January 2020 to October 2020, a burned area in Pantanal of approximately 40,606 km2. This program also provides dail...
Saved in:
| Published in: | Remote sensing (Basel, Switzerland) Vol. 14; no. 3; p. 688 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.02.2022
|
| Subjects: | |
| ISSN: | 2072-4292, 2072-4292 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Fire in Brazilian Pantanal represents a serious threat to biodiversity. The Brazilian National Institute of Spatial Research (INPE) has a program named Queimadas, which estimated from January 2020 to October 2020, a burned area in Pantanal of approximately 40,606 km2. This program also provides daily data of active fire (fires spots) from a methodology that uses MODIS (Aqua and Terra) sensor data as reference satellites, which presents limitations mainly when dealing with small active fires. Remote sensing researches on active fire dynamics have contributed to wildfire comprehension, despite generally applying low spatial resolution data. Convolutional Neural Networks (CNN) associated with high- and medium-resolution remote sensing data may provide a complementary strategy to small active fire detection. We propose an approach based on object detection methods to map active fire in the Pantanal. In this approach, a post-processing strategy is adopted based on Non-Max Suppression (NMS) to reduce the number of highly overlapped detections. Extensive experiments were conducted, generating 150 models, as five-folds were considered. We generate a public dataset with 775-RGB image patches from the Wide Field Imager (WFI) sensor onboard the China Brazil Earth Resources Satellite (CBERS) 4A. The patches resulted from 49 images acquired from May to August 2020 and present a spatial and temporal resolutions of 55 m and five days, respectively. The proposed approach uses a point (active fire) to generate squared bounding boxes. Our findings indicate that accurate results were achieved, even considering recent images from 2021, showing the generalization capability of our models to complement other researches and wildfire databases such as the current program Queimadas in detecting active fire in this complex environment. The approach may be extended and evaluated in other environmental conditions worldwide where active fire detection is still a required information in fire fighting and rescue initiatives. |
|---|---|
| AbstractList | Fire in Brazilian Pantanal represents a serious threat to biodiversity. The Brazilian National Institute of Spatial Research (INPE) has a program named Queimadas, which estimated from January 2020 to October 2020, a burned area in Pantanal of approximately 40,606 km2. This program also provides daily data of active fire (fires spots) from a methodology that uses MODIS (Aqua and Terra) sensor data as reference satellites, which presents limitations mainly when dealing with small active fires. Remote sensing researches on active fire dynamics have contributed to wildfire comprehension, despite generally applying low spatial resolution data. Convolutional Neural Networks (CNN) associated with high- and medium-resolution remote sensing data may provide a complementary strategy to small active fire detection. We propose an approach based on object detection methods to map active fire in the Pantanal. In this approach, a post-processing strategy is adopted based on Non-Max Suppression (NMS) to reduce the number of highly overlapped detections. Extensive experiments were conducted, generating 150 models, as five-folds were considered. We generate a public dataset with 775-RGB image patches from the Wide Field Imager (WFI) sensor onboard the China Brazil Earth Resources Satellite (CBERS) 4A. The patches resulted from 49 images acquired from May to August 2020 and present a spatial and temporal resolutions of 55 m and five days, respectively. The proposed approach uses a point (active fire) to generate squared bounding boxes. Our findings indicate that accurate results were achieved, even considering recent images from 2021, showing the generalization capability of our models to complement other researches and wildfire databases such as the current program Queimadas in detecting active fire in this complex environment. The approach may be extended and evaluated in other environmental conditions worldwide where active fire detection is still a required information in fire fighting and rescue initiatives. Fire in Brazilian Pantanal represents a serious threat to biodiversity. The Brazilian National Institute of Spatial Research (INPE) has a program named Queimadas, which estimated from January 2020 to October 2020, a burned area in Pantanal of approximately 40,606 km 2 . This program also provides daily data of active fire (fires spots) from a methodology that uses MODIS (Aqua and Terra) sensor data as reference satellites, which presents limitations mainly when dealing with small active fires. Remote sensing researches on active fire dynamics have contributed to wildfire comprehension, despite generally applying low spatial resolution data. Convolutional Neural Networks (CNN) associated with high- and medium-resolution remote sensing data may provide a complementary strategy to small active fire detection. We propose an approach based on object detection methods to map active fire in the Pantanal. In this approach, a post-processing strategy is adopted based on Non-Max Suppression (NMS) to reduce the number of highly overlapped detections. Extensive experiments were conducted, generating 150 models, as five-folds were considered. We generate a public dataset with 775-RGB image patches from the Wide Field Imager (WFI) sensor onboard the China Brazil Earth Resources Satellite (CBERS) 4A. The patches resulted from 49 images acquired from May to August 2020 and present a spatial and temporal resolutions of 55 m and five days, respectively. The proposed approach uses a point (active fire) to generate squared bounding boxes. Our findings indicate that accurate results were achieved, even considering recent images from 2021, showing the generalization capability of our models to complement other researches and wildfire databases such as the current program Queimadas in detecting active fire in this complex environment. The approach may be extended and evaluated in other environmental conditions worldwide where active fire detection is still a required information in fire fighting and rescue initiatives. |
| Author | Rodrigues, Thiago Almeida, Laisa Gonçalves, Wesley Nunes Marcato Junior, José Zamboni, Pedro Higa, Leandro Silva, Jonathan Liesenberg, Veraldo Roque, Fábio Libonati, Renata Silva, Rodrigo |
| Author_xml | – sequence: 1 givenname: Leandro surname: Higa fullname: Higa, Leandro – sequence: 2 givenname: José orcidid: 0000-0002-9096-6866 surname: Marcato Junior fullname: Marcato Junior, José – sequence: 3 givenname: Thiago orcidid: 0000-0003-0902-6824 surname: Rodrigues fullname: Rodrigues, Thiago – sequence: 4 givenname: Pedro surname: Zamboni fullname: Zamboni, Pedro – sequence: 5 givenname: Rodrigo orcidid: 0000-0003-0197-3392 surname: Silva fullname: Silva, Rodrigo – sequence: 6 givenname: Laisa surname: Almeida fullname: Almeida, Laisa – sequence: 7 givenname: Veraldo orcidid: 0000-0003-0564-7818 surname: Liesenberg fullname: Liesenberg, Veraldo – sequence: 8 givenname: Fábio surname: Roque fullname: Roque, Fábio – sequence: 9 givenname: Renata orcidid: 0000-0001-7570-1993 surname: Libonati fullname: Libonati, Renata – sequence: 10 givenname: Wesley Nunes orcidid: 0000-0002-8815-6653 surname: Gonçalves fullname: Gonçalves, Wesley Nunes – sequence: 11 givenname: Jonathan surname: Silva fullname: Silva, Jonathan |
| BookMark | eNptkU1vEzEQhleolShtL_wCS1wQUmD8Ea99TEILkYJAfF1Xs_Zs5GhjL_YGqf313RAEqGIuM5p55tVo3mfVWUyRquo5h9dSWniTC1cgQRvzpLoQUIuZElac_VM_ra5L2cEUUnIL6qL6vnBj-EnsNmRiH3AYQtyyFNky433oA0b2CeOIEXu2xEL-OHtLNLANYY5HGKNnq-XN5y8M1IKt97ilfHdVnXfYF7r-nS-rb7c3X1fvZ5uP79arxWbmpFXjTKHp5lqD19JJT7bzxnZIunVcEqDtQPnWeSG8RS25BgPOdyC48DXwrpWX1fqk6xPumiGHPea7JmFofjVS3jaYx-B6arRqudNeeQKr0JLFumtbaY0zeo5cTVovT1pDTj8OVMZmH4qjvsdI6VAaoZUxmgttJvTFI3SXDnl60pEStRH1nMNEvTpRLqdSMnV_DuTQHB1r_jo2wfAIdmHEMaQ4Zgz9_1YeAFV7lzY |
| CitedBy_id | crossref_primary_10_1016_j_rse_2023_113814 crossref_primary_10_1071_WF24182 crossref_primary_10_3389_fenvs_2022_888578 crossref_primary_10_1007_s11069_025_07446_2 crossref_primary_10_1080_01431161_2025_2496000 crossref_primary_10_3390_land13101696 crossref_primary_10_1016_j_geomat_2024_100008 crossref_primary_10_1016_j_jag_2022_103151 crossref_primary_10_1016_j_rsase_2023_100922 crossref_primary_10_1007_s11069_025_07518_3 crossref_primary_10_1016_j_scitotenv_2024_173273 crossref_primary_10_1038_s41598_023_49154_6 crossref_primary_10_1007_s11069_024_06622_0 crossref_primary_10_1016_j_catena_2025_108919 crossref_primary_10_3390_rs15215099 crossref_primary_10_3390_rs14133141 crossref_primary_10_3390_fire6050192 crossref_primary_10_3390_info15090538 crossref_primary_10_1016_j_chemosphere_2023_139429 crossref_primary_10_3389_fendo_2023_1073219 crossref_primary_10_1007_s10668_024_05081_8 |
| Cites_doi | 10.1007/s11760-019-01600-7 10.3390/s20216070 10.1109/ICCV.2017.324 10.1109/ICCV.2017.89 10.3390/rs11141702 10.1007/s11263-009-0275-4 10.2991/ifmeita-16.2016.105 10.1127/0941-2948/2013/0507 10.1109/CVPR.2017.106 10.1109/WACV.2018.00097 10.1007/978-3-030-58548-8_24 10.1109/CVPR.2009.5206848 10.1016/j.isprsjprs.2019.12.014 10.3390/rs12010166 10.1109/IGARSS.2002.1026158 10.1109/CVPR42600.2020.01060 10.1109/CVPR46437.2021.00841 10.3390/s20226442 10.1016/j.isprsjprs.2019.11.023 10.23919/ChiCC.2018.8484035 10.1109/ICCV.2019.00972 10.1177/1748302619887689 10.1109/CVPR42600.2020.00978 10.1007/978-3-030-58595-2_22 10.1002/nav.3800020109 10.4257/oeco.2012.1604.17 10.1007/s00027-006-0851-4 10.1016/S0034-4257(03)00184-6 10.1029/2021GL093789 10.1016/j.isprsjprs.2018.01.004 10.1007/978-3-319-10602-1_48 10.1109/ICIAI.2019.8850815 10.1139/er-2020-0019 10.3390/rs13010054 10.1109/CVPR42600.2020.01022 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 DOA |
| DOI | 10.3390/rs14030688 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database (subscription) AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_64b1c6d4de094a9e9a7fbb398c865a14 10_3390_rs14030688 |
| GeographicLocations | Brazil Pantanal China |
| GeographicLocations_xml | – name: Brazil – name: China – name: Pantanal |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c394t-4a8f5660d63c3de9fd89fae6bc13e0a9f04dbcd22d9a6316080cdf0212d701fb3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000757307800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:45:28 EDT 2025 Fri Sep 05 13:04:31 EDT 2025 Fri Jul 25 11:38:33 EDT 2025 Sat Nov 29 07:15:04 EST 2025 Tue Nov 18 20:56:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c394t-4a8f5660d63c3de9fd89fae6bc13e0a9f04dbcd22d9a6316080cdf0212d701fb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7570-1993 0000-0002-8815-6653 0000-0002-9096-6866 0000-0003-0564-7818 0000-0003-0902-6824 0000-0003-0197-3392 |
| OpenAccessLink | https://www.proquest.com/docview/2627827510?pq-origsite=%requestingapplication% |
| PQID | 2627827510 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_64b1c6d4de094a9e9a7fbb398c865a14 proquest_miscellaneous_2648861268 proquest_journals_2627827510 crossref_primary_10_3390_rs14030688 crossref_citationtrail_10_3390_rs14030688 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Wang (ref_18) 2019; 13 Everingham (ref_10) 2010; 88 Ren (ref_38) 2015; 28 Pinto (ref_26) 2020; 160 Braz (ref_6) 2020; 55 ref_11 ref_16 ref_15 Alho (ref_4) 2012; 16 Xu (ref_8) 2021; 48 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 ref_29 ref_28 ref_27 Zhou (ref_12) 2018; 145 ref_36 ref_34 ref_33 Jain (ref_14) 2020; 28 ref_31 Abuelgasim (ref_35) 2002; Volume 3 Wahyuni (ref_17) 2019; 7 ref_30 ref_39 Kuhn (ref_47) 1955; 2 Pan (ref_19) 2019; 14 ref_46 ref_45 ref_44 ref_43 ref_42 ref_41 Junior (ref_2) 2021; 308 ref_40 ref_1 ref_3 Li (ref_13) 2020; 159 Alvares (ref_32) 2013; 22 Giglio (ref_37) 2003; 87 ref_49 ref_48 ref_9 Junk (ref_5) 2006; 68 ref_7 |
| References_xml | – volume: 14 start-page: 675 year: 2019 ident: ref_19 article-title: Additive neural network for forest fire detection publication-title: Signal Image Video Process. doi: 10.1007/s11760-019-01600-7 – ident: ref_49 doi: 10.3390/s20216070 – ident: ref_39 doi: 10.1109/ICCV.2017.324 – ident: ref_42 doi: 10.1109/ICCV.2017.89 – ident: ref_25 doi: 10.3390/rs11141702 – volume: 88 start-page: 303 year: 2010 ident: ref_10 article-title: The pascal visual object classes (voc) challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0275-4 – ident: ref_1 – ident: ref_16 doi: 10.2991/ifmeita-16.2016.105 – volume: 22 start-page: 711 year: 2013 ident: ref_32 article-title: Köppen’s climate classification map for Brazil publication-title: Meteorol. Z. doi: 10.1127/0941-2948/2013/0507 – ident: ref_40 doi: 10.1109/CVPR.2017.106 – ident: ref_48 doi: 10.1109/WACV.2018.00097 – volume: 55 start-page: 157 year: 2020 ident: ref_6 article-title: A estrutura fundiária do pantanal brasileiro publication-title: Finisterra – ident: ref_27 doi: 10.1007/978-3-030-58548-8_24 – ident: ref_9 doi: 10.1109/CVPR.2009.5206848 – volume: 160 start-page: 260 year: 2020 ident: ref_26 article-title: A deep learning approach for mapping and dating burned areas using temporal sequences of satellite images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.12.014 – ident: ref_31 – ident: ref_23 doi: 10.3390/rs12010166 – volume: Volume 3 start-page: 1489 year: 2002 ident: ref_35 article-title: Day and night-time active fire detection over North America using NOAA-16 AVHRR data publication-title: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium doi: 10.1109/IGARSS.2002.1026158 – volume: 28 start-page: 91 year: 2015 ident: ref_38 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_45 doi: 10.1109/CVPR42600.2020.01060 – ident: ref_7 – ident: ref_29 doi: 10.1109/CVPR46437.2021.00841 – ident: ref_15 doi: 10.3390/s20226442 – volume: 159 start-page: 296 year: 2020 ident: ref_13 article-title: Object detection in optical remote sensing images: A survey and a new benchmark publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.11.023 – ident: ref_20 doi: 10.23919/ChiCC.2018.8484035 – ident: ref_3 – ident: ref_24 – ident: ref_34 – ident: ref_41 doi: 10.1109/ICCV.2019.00972 – volume: 7 start-page: 455 year: 2019 ident: ref_17 article-title: Smoke and Fire Detection Base on Convolutional Neural Network publication-title: ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron. – volume: 13 start-page: 1748302619887689 year: 2019 ident: ref_18 article-title: Forest fire image recognition based on convolutional neural network publication-title: J. Algorithms Comput. Technol. doi: 10.1177/1748302619887689 – ident: ref_28 doi: 10.1109/CVPR42600.2020.00978 – ident: ref_30 doi: 10.1007/978-3-030-58595-2_22 – volume: 2 start-page: 83 year: 1955 ident: ref_47 article-title: The Hungarian Method for the Assignment Problem publication-title: Nav. Res. Logist. Q. doi: 10.1002/nav.3800020109 – volume: 16 start-page: 958 year: 2012 ident: ref_4 article-title: Seasonal Pantanal flood pulse: Implications for biodiversity publication-title: Oecologia Aust. doi: 10.4257/oeco.2012.1604.17 – volume: 68 start-page: 278 year: 2006 ident: ref_5 article-title: Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil publication-title: Aquat. Sci. doi: 10.1007/s00027-006-0851-4 – volume: 87 start-page: 273 year: 2003 ident: ref_37 article-title: An enhanced contextual fire detection algorithm for MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00184-6 – volume: 48 start-page: e2021GL093789 year: 2021 ident: ref_8 article-title: Active Fire Dynamics in the Amazon: New Perspectives From High-Resolution Satellite Observations publication-title: Geophys. Res. Lett. doi: 10.1029/2021GL093789 – ident: ref_33 – ident: ref_46 – volume: 145 start-page: 197 year: 2018 ident: ref_12 article-title: PatternNet: A benchmark dataset for performance evaluation of remote sensing image retrieval publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.01.004 – ident: ref_11 doi: 10.1007/978-3-319-10602-1_48 – ident: ref_21 doi: 10.1109/ICIAI.2019.8850815 – volume: 308 start-page: 108559 year: 2021 ident: ref_2 article-title: Temporal variability in evapotranspiration and energy partitioning over a seasonally flooded scrub forest of the Brazilian Pantanal publication-title: Agric. For. Meteorol. – ident: ref_36 – ident: ref_43 – ident: ref_22 – volume: 28 start-page: 478 year: 2020 ident: ref_14 article-title: A review of machine learning applications in wildfire science and management publication-title: Environ. Rev. doi: 10.1139/er-2020-0019 – ident: ref_50 doi: 10.3390/rs13010054 – ident: ref_44 doi: 10.1109/CVPR42600.2020.01022 |
| SSID | ssj0000331904 |
| Score | 2.403849 |
| Snippet | Fire in Brazilian Pantanal represents a serious threat to biodiversity. The Brazilian National Institute of Spatial Research (INPE) has a program named... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 688 |
| SubjectTerms | Accuracy Artificial neural networks Biodiversity Brazil Cameras China convolutional neural network data collection Datasets Deep learning Drought Earth resources Environmental conditions Environmental impact Fire detection Fire fighting Forest & brush fires Image acquisition Neural networks object detection Object recognition Pantanal Remote sensing Satellites Sensors Spatial data Spatial discrimination Spatial resolution Surveillance Unmanned aerial vehicles wildfire Wildfires |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlFNpL6ZNuuw0q7aUHE1mSZem4m2RJDl1C24TcjJ5JIPUu-yhsf31nZGez0EIuvVqDETPSpxl79H2EfA5aQ5pqRKFipQuJvTXGARiWsuKsSiJK47PYRD2d6stLc7Yj9YU9YR09cOe4AyVd6VWQIUIhYk00tk7OCaO9VpXNEtac1WanmMoYLGBpMdnxkQqo6w8WS2Sm6yVW7k-gTNT_Fw7nw2XynDzrs0I66mbzgjyK7UvypBcov968IhejjEt0AghFv1okVbiis5aOF_b3DX6poGfgIosvGcO5FHDsKMY57flTr6htAz0cH3_7Tpkc0dOfyF2xeU3OJ8c_Dk-KXhKh8MLIVSGtTpCAsaCEFyGaFLRJNirnSxGZNYnJ4HzgPBirRKkgH_QhIY17qFmZnHhD9tpZG98SmmRlkZVWBB6ldaW2UQrvYmBJKc_dgHy5c1Pje75wlK24baBuQJc29y4dkE9b23nHkvFPqzF6e2uBzNb5AcS76ePdPBTvARnexarpt9uy4YpDplMDvgzIx-0wbBT8-2HbOFujDWAV5HNKv_sf83hPnnK8CZEbuIdkb7VYxw_ksf-1ulku9vNq_APPfOK0 priority: 102 providerName: Directory of Open Access Journals |
| Title | Active Fire Mapping on Brazilian Pantanal Based on Deep Learning and CBERS 04A Imagery |
| URI | https://www.proquest.com/docview/2627827510 https://www.proquest.com/docview/2648861268 https://doaj.org/article/64b1c6d4de094a9e9a7fbb398c865a14 |
| Volume | 14 |
| WOSCitedRecordID | wos000757307800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Open Access: DOAJ - Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgFwkuvFcUlsoILhyidWLHtU-oWVqxh62iXUALl8jPshIkJe0iLQd-Ox7XbQ8gLlxyiEdW5BnPjMeT70PolRUipKmSZtyVImPQWyN1cIY5KwtSeuqYNJFsYjSbiYsLWaeC2zK1VW58YnTUtjNQIz8qeBGC2SiY0JvF9wxYo-B2NVFo3ET7gJKQx9a9822NhdBgYIStUUlpON0f9UvAp0tEK7s4FOH6__DGMcRM7_3vx91Hd1Nyicdra3iAbrj2IbqdeM6_XD9CH8fRveFpcHT4VAE2wxx3La569fMSCh64DiutYJIqhDcLY2-dW-AEwzrHqrX4uJqcnWPCxvjkG0BgXD9GH6aT98fvssSskBkq2SpjSviQxxHLqaHWSW-F9MpxbXLqiJKeMKuNLQorFac5D2mlsR7Q4O2I5F7TA7TXdq17grBnpQJwW2oLx5TOhXKMGu0s8ZybQg_Q6806NybBjgP7xdcmHD9AJ81OJwP0ciu7WINt_FWqAnVtJQAgO77o-nmT9lvDmc4Nt8y6cH5V0kk18lpTKYzgpcrZAB1uNNmkXbtsdmocoBfb4bDf4BJFta67Apng8kJayMXTf0_xDN0p4FeJ2OF9iPZW_ZV7jm6ZH6vLZT9E-9VkVp8NYw1gGM0Wnr8m4VmXn8N4fXJaf_oNh6_2pQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKVLZ8EYECgwCFiysjj3jycwCoaRt1KhNFEFB7cqM5xEqgR2SFBQ-im9krmMnCxC7Lth6rkay5_jcO69zAF5aKUOZqlgkXCojjmdrVB7IMOZpQlPPHFemMpvojEby7EyNt-BXcxcGj1U2nFgRtS0NrpHvJSIJyawTIPR2-i1C1yjcXW0sNFawOHbLH2HKNn8zOAjj-ypJ-oen-0dR7SoQGab4IuJa-lDDUCuYYdYpb6Xy2oncxMxRrTzlNjc2SazSgsUilFTGelRCtx0a-5yFfq_BNkewt2B7PBiOz9erOpQFSFO-0kFlTNG92RwV8Wprl03mqwwC_uD_Kqn1b_1vn-M23KzLZ9Jd4f0ObLniLuzUTu6fl_fgY7cicNIPVE6GGtUnJqQsSG-mf17gkg4ZByxp7KQXErjFtgPnpqQWmp0QXViy3zt8955Q3iWDryjysbwPH67ktR5AqygL9xCI56lG-V5mE8d1HkvtODO5s9QLYZK8Da-bcc1MLayO_h5fsjDBQgxkGwy04cU6drqSE_lrVA_hsY5ACfDqQTmbZDWjZILnsRGWWxdm6Fo5pTs-z5mSRopUx7wNuw1yspqX5tkGNm14vm4OjILbRLpw5SXGBFIPha-Qj_7dxTPYOTodnmQng9HxY7iR4MWQ6jz7LrQWs0v3BK6b74uL-exp_ZsQ-HTVUPwN3y5Qdw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWBbFceCMKCxgBBw5RHdtx7ANC7XYrqoWq4qUVl-BndyVIStoFlZ_Gr8OTpu0BxG0PXOORpSSfv5mxx98g9NRJGcNUxRLhM5lwqK1RJpJhyjNKssA8V7ZpNpGPx_L4WE120K_1XRgoq1xzYkPUrrKwR96lgkZnlkcIdUNbFjEZDF_OviXQQQpOWtftNFYQOfLLHzF9m78YDeK_fkbp8PD9wauk7TCQWKb4IuFahhjPECeYZc6r4KQK2gtjU-aJVoFwZ6yj1CktWCpieGVdAFV0l5M0GBbnvYAu5jHHhHLCSfZps79DWAQ34StFVMYU6dZz0MZrm7xsfWDTKuAPT9C4t-G1__nDXEdX26Aa91ar4Aba8eVNtNf2dz9Z3kIfew2t42EkePxGgybFFFcl7tf65yls9OBJRJiGSfrRrTsYG3g_w6387BTr0uGD_uHbd5jwHh59BemP5W304Vxe6w7aLavS30U48EyDqC9z1HNtUqk9Z9Z4R4IQlpoOer7-x4Vt5dah68eXIqZdgIdii4cOerKxna1ERv5q1QeobCxAGLx5UNXTouWZQnCTWuG48zFv18ornQdjmJJWikynvIP21ygqWraaF1sIddDjzXDkGTg80qWvzsAmUn0Mh4W89-8pHqHLEX_F69H46D66QuG2SFPkvo92F_WZf4Au2e-L03n9sFkvGH0-bxz-BuX2V9o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+Fire+Mapping+on+Brazilian+Pantanal+Based+on+Deep+Learning+and+CBERS+04A+Imagery&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Higa%2C+Leandro&rft.au=Marcato+Junior%2C+Jos%C3%A9&rft.au=Rodrigues%2C+Thiago&rft.au=Zamboni%2C+Pedro&rft.date=2022-02-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=14&rft.issue=3&rft.spage=688&rft_id=info:doi/10.3390%2Frs14030688&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs14030688 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |